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Abstract: To solve the ambiguity and uncertainty in the
labeling process of power equipment corrosion datasets, a
novel hierarchical annotation method ( HAM) is proposed.
Firstly, large boxes are used to label a large area covering the
range of corrosion, provided that the area is visually
continuous and adjacent to corrosion that cannot be clearly
divided. Secondly, in each labeling box established in the first
step, regions with distinct corrosion and relative independence
are labeled to form a second layer of nested boxes. Finally, a
series of comparative experiments are conducted with other
common annotation methods to validate the effectiveness of
HAM. The experimental results show that, with the help of
HAM, the recall of YOLOVS increases from 50. 79% to
59.41% ; the recall of Faster R-CNN + VGG16 increases from
66.50% to 78.94% ; the recall of Faster R-CNN + Res101
increases from 78. 32% to 84. 61% . Therefore, HAM can
effectively improve the detection ability of mainstream models
in detecting metal corrosion.
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C orrosion is the result of deterioration caused by the
reaction of metallic materials’ surface and internal
micro-structure with corrosive environments'' .  With
long-term exposure to the external environment, corrosion
has become a common defect of power equipment. Cor-
rosion can substantially shorten the power equipment’ s
life span and cause economic losses if not tackled prompt-
ly. Hence, it is important to regularly detect and elimi-
nate corrosion in time.

Currently, non-destructive methods are usually applied
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to detect corrosion. These include X-raysm , local wave-
number'”, infrared thermography'”™®, magneto-optic im-
aging'”, and cameras. However, all these methods have
strict requirements related to the testing environment, tes-
ting equipment, and the professional level of testing per-
sonnel. At present,
(CNNs) "™ are employed to perform corrosion detection
using collected RGB images.

Since the first appearance of AlexNet'' in ImageNet
competition, methods using CNNs for feature extraction
and image classification have rapidly developed and are
now widely used in image recognition and object detec-
tion across various fields. Among the current CNN-based
object detection models, prominent architectures include
Faster R-CNN'"""" and YOLO!"'™'.

However, due to the irregular shape and detachable na-
ture of corrosion, these detection models cannot directly
achieve satisfying results'"”’
ditional annotation methods entail ambiguity and uncer-
tainty during the labeling process, making it difficult for
this process to be unified. As a result, inconsistent anno-
tation causes problems for detection models intending to
effectively learn the inherent features of metal corrosion
during the training process. At present, three main data
annotation approaches are used in object detection tasks:
two-dimensional (2D) bounding box, three-dimensional
(3D) cuboids, and polygonal segmentation.

While the 2D bounding-box approach is relatively sim-
ple and widely used, the rectangular area usually contains
non-target objects. Particularly relevant to the present
context is that metal corrosion exhibits obvious irregulari-
ties, resulting in a large area of non-corrosion in the la-
beled box. Ref.[14] used a sliding window to intercept a
small area so as to reduce the non-corroded area contained
in the window. Subsequently, a small CNN was used to
judge whether each window contained a corroded area.
However, this method divides an image into many tiny
windows, so the model only focuses on local pixel data in
each window and ignores global pixel data. Thus, the
features learned by the model are too partial and one-si-
ded. Meanwhile, due to the size of the window, the de-
signed CNN should be small, which limits the CNN’ s
learning ability. 3D cuboids can display the depth of the

convolutional neural networks

. The main reason is that tra-
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target, but this is rarely required for metal corrosion de-
tection. Moreover, polygonal segmentation can fit the
target shape well and resolve the shortcomings of the
bounding-box method. However, this annotation method
is highly time-consuming and costly and hence is rarely
used on a large scale in practice.

This paper proposes a novel hierarchical annotation
method (HAM). Firstly, large boxes were used to label a
large area covering the range of corrosion, provided that
the area is visually continuous and adjacent to corrosion
that cannot be clearly divided. Secondly, within each box
established in the first step, regions with distinct corro-
sion and relative independence were labeled to create a
second layer of nested boxes. This method is simple and
can easily produce unified and unambiguous annotation
results. In addition, it highlights the corrosion features
and increases the number of ground truth, which enables
data augmentation to be achieved and makes it easier for
detection models to learn the inherent features of corro-
sion during the training process.

In summary, this work makes three main contribu-
tions: Firstly, a novel method named HAM is proposed
to accurately detect metal corrosion in power equipment.
Secondly, a detection box merging algorithm is applied to
merge intersecting boxes. Finally, novel definitions of
precision and recall are proposed in view of corrosion fea-
tures.

1 HAM
1.1 Labeling of training samples

Due to the diversity of equipment and ways in which
corrosion spreads, the shape and size of corroded areas
tend to be highly irregular. Meanwhile, corrosion is often
detachable and can thus be regarded as either a whole area
or several small independent areas. In view of the charac-
teristics of metal corrosion, two methods are generally
used in applying the 2D bounding-box approach to label
corrosion areas:

1) Fine-grained annotation method (FAM). Using the
smallest possible box to label the corrosion area

2) Coarse-grained annotation method ( CAM). Using
the largest possible box to label the corrosion area

FAM can minimize the area containing non-target ob-
jects within a rectangular box. However, the tendency of
metal corrosion to spread will cause significant ambiguity
in the labeling process, yielding inconsistent annotation
results. One simple solution is to ignore corrosion sprea-
ding areas. Fig. 1 (a) shows some unlabeled corrosion
spreading areas near the labeled corrosion. However, cor-
rosion spreading is such a highly important feature of
metal corrosion where ignorance will significantly reduce
the annotation quality of the dataset.

CAM adopts a large box to label a dataset, specifically
one large enough to encompass all areas of spreading

e T |
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Fig. 1  Performance of the labeling process using different
methods. (a) The annotation result by FAM; (b) The annotation result
by CAM; (c) The detachability of metal corrosion; (d) The annotation
result by HAM

corrosion. Thus, the problem encountered by FAM can
be avoided during the labeling process. The annotation
results for this method are shown in Fig. 1(b). However,
CAM also has certain shortcomings: Firstly, the number
of non-target objects contained in the labeling box greatly
increases. Moreover, different objects may have the same
annotation results, whereas similar objects may have dif-
ferent annotations. For example, this method causes the
normal nut in the lower-right corner and the corroded nut
in the top-right corner in Fig. 1(b) to be labeled as a part
of the labeling box. Meanwhile, the corroded nut in Fig.
1(b) is labeled as a part of the corrosion area, but anoth-
er similar corroded nut in Fig. 1(c) is labeled as an inde-
pendent corrosion area. Hence, CAM results in the insta-
bility of detection model training.

The HAM proposed in this paper is adopted to solve
the above problems. Firstly, a large-enough box labels a
large area covering the range of corrosion, as long as the
area is visually continuous and adjacent to corrosion that
cannot be clearly divided; an example is shown in GT1 in
Fig. 1(d). Then, based on the previous labeling box, ar-
eas with distinct features and relative independence are la-
beled twice to form a second layer of nested labeling, as
shown in GT2 and GT3 in Fig. 1(d).

Therefore, the first operation of HAM provides a solu-
tion to the problem of labeling omission in FAM using a
large box to annotate metal corrosion, and the second op-
eration of HAM reannotates independent corrosion in the
large box to refrain the problem of labeling ambiguity in
CAM. At the same time, the number of ground truth per
sample is increased after using HAM. Thus, data aug-
mentation is achieved to a certain extent, which will
counteract the negative impact of the rectangular box con-
taining non-target objects.

1.2 Detection box merging algorithm

Although HAM can effectively solve labeling omis-
sion and labeling ambiguity, there must be labeling
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nested boxes in the outer labeling boxes. Therefore, in
the final detection results, the models trained by a hier-
archical labeling dataset will also output nesting or in-
tersection detection boxes, as shown in Fig. 2 in detec-
tion boxes A and B. Although this condition does not
affect actual detection results, it interferes with the vi-
sualization of results and the calculation of the detec-
tion models’ precision and recall. Accordingly, we
transformed the detection results in this study. The in-
tersection and nesting detection boxes were merged to
form the final annotation result. That is, in Fig. 2, or-
ange box C is adopted to replace A and B as the final
annotation result.

() (b)
Fig.2 Diagram of merging boxes. (a) Detection results before
merging; (b) Detection results after merging

1.3 Evaluation criteria

Based on the above discussion, one corrosion sample
may obtain different annotation results due to the use of
different annotation methods. Consequently, the test sets
labeled by different methods are also different. Thus,
the performance of models trained by the three annota-
tion methods cannot be meaningfully compared. To
solve this problem, in this study, the test set was labeled
uniformly using polygonal segmentation to create a uni-
fied test set. Some of the labeled samples are shown in
Fig. 3.

(a) (b)
Fig.3 Two annotation results using polygons. (a) One corro-
sion area labeled; (b) Two corrosion areas labeled

In the experiment, precision and recall were adopted as
the evaluation criteria. According to the positive and neg-
ative of predicted results and actual results, the classifica-
tion results can be divided into four categories, as shown
in Tab. 1.

Tab.1 Confusion matrix for binary classification

Predicted results

Actual results

Positive Negative
Positive TP FN
Negative FP TN

For object detection, the intersection over union (IoU)
is typically used to evaluate whether or not the detection
result is correct. The IoU calculates the ratio of the inter-
section and union of the “detection box” and “ground
truth. ” Usually, the threshold value of the IoU is set to
0.5 in actual projects. When the value of the IoU is lar-
ger than 0.5, the target has been detected. However, in
this study, the test set was labeled via polygonal segmen-
tation. As a result, the value of the IoU of the detection
box and ground truth is often very low. As shown in Fig.
4, the value of the IoU is lower than 0.5; thus, it is not
suitable to directly use the IoU to judge whether one pre-
dicted box is correct.

Fig.4 Large non-corroded area

Accordingly, the precision and recall of the models
were evaluated using the following expressions.

As shown in Fig 4, even if the model effectively de-
tects the corrosion area, several non-corroded areas are
present in the results. Therefore, if the ratio between the
area sum of correct detection areas and the area sum of
detection areas is used as the precision, then the calculat-
ed precision is often very low, and the performance of the
models cannot be correctly evaluated. Hence, in this
study, the precision was calculated with reference to the
number of detection areas. The expression for calculating
the precision is

Nca
A
where P is the precision of the models; N, is the number
of correct detection areas; and N, is the number of detec-
tion areas.

To reduce the influence of image size, all image sizes
were normalized before calculation. The expression for
calculating the recall is

S

R="2
S

ta

where R is the recall of the models; S, is the area sum of
the correct detection area; S, is the area sum of the true
corrosion areas.
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Therefore, the unified test set was used to ensure that
the three annotation methods can be compared correctly
through the use of the two calculation expressions presen-
ted above. Finally, the performance of different models
can be evaluated realistically.

2 Experimental Results and Analysis
2.1 Experimental environment

The experimental software and hardware environments
are presented in Tab. 2.

Tab.2 Experimental software and hardware environments

Configuration Description
CPU 17-9800X/8@4.4GHz
RAM 32GB
GPU Nvidia RTX2080Ti@ 11G
oS Centos7
Deep learning framework PyTorch

Faster R-CNN, YOLOv5!"!

Collected from actual substations by Nari

Object detection model

Dataset .
Corp; 1 180 training set, 199 test set

Evaluation indicators Precision, Recall

2.2 Experimental procedure

Firstly, this study used polygonal segmentation to label
199 images as the test set. Secondly, 1 180 images were
labeled by three annotation methods for training Faster
R-CNN and YOLOvVS models. Subsequently, VGG16 or
Res101" (as the backbone networks) and SGD"” (as the
optimizer) were applied to train Faster R-CNN, whereas
DarkNet53"" (as the backbone network) and SGD (as the
optimizer) were applied to train YOLOVS5. Finally, after
the detection box merging algorithm was used to merge
the intersecting boxes of each image, the precision and
recall of the detection models were calculated. The exper-
imental results are shown in Tab. 3.

Tab.3 Experimental results %
Model Annotation method Precision Recall
FAM 89.58 51.20
YOLOVS5 CAM 93.84 50.79
HAM 91.14 59.41
FAM 84.72 66. 50
Faster R-CNN +

CAM 84.69 70.51

VGG16
HAM 82.95 78.94
. R.CNN FAM 80.49 78.32
aster RARE =+ CAM 82.31 82.69

Res101
HAM 81.48 84.61

2.3 Discussion

In the experiment, Faster R-CNN + Res101 based on
HAM had the best detection result with the highest recall,
as shown in Fig. 5. In addition, Faster R-CNN achieved a
higher recall than YOLOVS, although its precision was
lower. For Faster R-CNN, using Res101 as the backbone

network resulted in a higher recall than that using
VGG16, and its precision was slightly reduced. With
HAM, YOLOvVS and Faster R-CNN + VGG16 exhibited
great improvement in recall and kept slight fluctuations in
precision. Furthermore, the recall of Faster R-CNN +
Res101 reached the maximum out of all the experiments.

Fig.5 Some outputs of Faster R-CNN + Res101 using HAM.
(a) One detection result by merging three boxes; (b) One detection re-
sult by merging two boxes; (c¢) One detection result without merging;
(d) Two detection results by merging four boxes

According to the actual requirements of corrosion de-
tection and processing procedures, further analysis of the
experimental results shows the following findings:

1) Although YOLOVS has the highest precision, it also
has the lowest recall. In practical applications, it is often
necessary to manually review the detection results of a
model. Therefore, compared with higher precision, it is
preferable to have a higher recall for corrosion detection
models to avoid the omission of corrosion to the greatest
extent possible.

2) In Faster R-CNN, ReslO1 has a higher recall than
VGG16, and its precision is slightly lower. Because the
structure of Resl0l is more complicated than that of
VGG16, Resl01 has more convolution layers than
VGGI16 and can thus learn more features. At the same
time, Resl0l uses batch normalization'”™ and rectified
linear unit activation function'” to ensure that the gradi-
ent can achieve good back propagation and speed up con-
vergence. Simultaneously, Resl01 enables the model to
be fully trained and not degrade through the residual mod-
ule. Therefore, its recall is higher.

3) After using HAM, the recall of each model clearly
increases as compared with those of the other two meth-
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ods, as shown in Tab.4. The models used in the experi-
ment are all object detection models based on region pro-
posal; that is, the object detection models detect objects
with different sizes using predefined anchors with differ-
ent sizes. Therefore, compared with FAM, HAM increa-
ses the number of larger predicted boxes. Although this
does not affect the detection ability of small-size anchors,
it improves that of large-size ones, thereby strengthening
the models’ comprehensive detection ability. The analy-
sis of CAM reveals the same results. Therefore, through
the use of HAM, the detection effect of models will be
improved.

Tab.4 Recall of models with different methods %

Model FAM CAM HAM
Res101 78.32 82.69 84.61
VGG16 66.50 70.51 78.94
YOLOvVS 51.20 50.79 59.41

3 Conclusions

1) The training effect of object detection models is
highly dependent on the availability of sufficient and
high-quality datasets. Traditional annotation methods en-
counter ambiguity and uncertainty because of the irregu-
larity and detachability of metal corrosion. Therefore,
when Faster R-CNN and YOLOVS are applied to directly
detect corrosion in power equipment, it is difficult to
standardize the labeling process of training samples and
keep annotation results consistent.

2) In this paper, a novel HAM that utilizes the charac-
teristics of corrosion is proposed. Meanwhile, a detection
box merging algorithm is applied to solve the problem of
nested boxes.

3) Ultimately, according to experimental findings, the
corrosion detection ability of YOLOvVS5 and Faster-R-CNN
models is found to be greatly improved after adopting
HAM. The models further obtain better generalization a-
bility, which can be popularized and widely applied in
practice.
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