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Abstract: To realize the automatic detection of solar radio
burst ( SRB)
multifactor support vector machine ( SVM) algorithm is
proposed. First, the influence of SRB on global navigation
satellite system ( GNSS) signals is analyzed. Feature vectors,
which can reflect the SRB intensity of stations,
extracted. SRB intensity is classified according to the solar

intensity, detection based on a modified

are also

radio flux, and different class labels correspond to different
SRB intensity types. The training samples are composed of
feature vectors and their corresponding class labels. Second,
training samples are input into SVM classifiers to one-against-
one training to obtain the optimal classification models.
Finally, the optimal classification model is synthesized into a
which
intensity of new data.

modified multifactor SVM classifier, is used to
automatically detect the SRB
Experimental results indicate that for historical SRB events,
the average accuracy of SRB intensity detection is greater than
90% when the solar incident angle is higher than 20°.
Compared with other methods, the proposed method considers
many factors with higher accuracy and does not rely on radio
telescopes, thereby saving cost.
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ith the wide application of global navigation satel-

lite systems ( GNSS) in modern society, the in-
fluence of solar radio burst (SRB) on GNSS signals has
attracted the extensive attention of scholars. SRBs are in-
tense radio wave emissions, usually related to solar
flares'"'. Previous studies revealed that the satellite carri-
er-to-noise ratio ( C/N,) decreases, the positioning error
and the geometry dilution of precision (GDOP) increase,
and the navigation signals are lost to varying degrees dur-
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ing severe SRBs'”'. Chen et al. "' presented that the flux
density threshold of SRBs affecting GPS signals is be-
tween 4 000 and 12 000 solar flux units (SFU). Huang et
al. " analyzed the SRB event on December 13, 2006,
and found that in this event,
locked of multiple stations was less than 4. Berdermann
et al. ', Linty et al. ', and Sato et al.'” analyzed the
impact of the SRB event on September 6, 2017, follow-
ing its effects on the ionosphere and the resulting serious
problems for precise positioning and GNSS signals.

For mainly relying on manual, the traditional detection
and classification of SRBs have a huge workload and low
efficiency. In recent years, many methods for automatic
detection and classification of SRBs have been proposed.
Ma et al. " proposed a new SRB classification method on
the basis of multimodal deep learning. Chen et al. "' used
the convolution neural network to classify the solar radio
spectrum. Singh et al. """ utilized a novel statistical meth-

the number of satellites

od to automatically distinguish the dynamic spectrum with
or without SRBs. However, this method does not classify
the types of SRBs.

At present, certain methods for the automatic detection
and classification of SRBs are available; most of them
must be realized by radio telescope data. Given that radio
telescopes are expensive and sparsely distributed, a real-
time and efficient method is urgently needed to detect
SRBs without utilizing radio telescopes. Yang et al. '
proposed an intense L-band SRB detection method with-
out the aid of a radio telescope. This method detects the
valley period of the C/N, of multiple satellites and com-
bines it with multiple stations to realize SRB detection.
However, the detection feature is single and can only de-
tect SRBs when they are severe. Huang et al. ''"* gave the
threshold range to define SRB intensity, providing a basis
for its classification. However, they did not conduct de-
tection.

In the present study, a method to detect SRB intensity
on the basis of a modified multifactor SVM algorithm is
proposed. This method detects the multiple effects of
SRBs on GNSS signals, including C/N,, GDOP, hori-
zontal dilution of precision (HDOP), vertical dilution of
precision (VDOP), and the number of satellites locked,
to detect SRB intensity. To solve the multiple classifica-
tion problems, a one-against-one method'”' is adopted.
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Every two types are combined into a binary classifier,
and the classification results are obtained by voting statis-
tics. When new data enter the classifier, it will be classi-
fied automatically.

The main advantage of this method is that it can classi-
fy SRB intensity automatically in real-time, with high ef-
ficiency. Compared with the methods proposed in previ-
ous research, the current one only uses the previous radio
flux data provided by radio telescopes as the classification
standard to establish the model. The subsequent classifi-
cation needs the data provided by GNSS receivers, which
do not rely on radio telescopes, thereby saving cost and
having strong practicability. In addition,
many factors and has high accuracy.

1 Effects of SRBs on GNSS

Taking the SRB event on December 13, 2006, as an
example, the effects of SRBs on GNSS signals are ana-
lyzed. At 02:14:00, an X3.4 solar X-ray flare erupted.
The peak time and end time of the flare were 02: 40: 00
and 02: 57: 00 , respectively, lasting for 43 min. The
ground-based radio monitoring telescope recorded the
whole process of the burst. Fig. 1 shows the monitoring
results of L-band radio flux (represented by 1 415 MHz)
provided by the Radio Solar Telescope Network
(RSTN). The sampling frequency was 1 Hz. The maxi-

it considers

mum peak flux was greater than 1.1 x 10° SFU, which is
nearly a thousand times higher than that during the quiet
period" .
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Fig.1 Solar radio flux at 1 415 MHz provided by RSTN on
December 13, 2006
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To investigate the effects of SRBs on GNSS, the
NNOR station is selected as an example for analysis. Fig.
2 illustrates the variation of C/N, at GPS L1 frequency
for different satellites at the NNOR station. During the
SRBs, the C/N, of GPS satellites locked by the receivers
of the NNOR decreased significantly, their change trend
was almost identical, and the corresponding relationship
with solar radio flux was obvious. The analysis reveals
that the C/N, variation trend of other satellites locked at
different stations is similar during SRBs.
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Fig.2 C/N, at the GPS L1 frequency for the NNOR station
during the SRBs that occurred on December 13, 2006

GDOP, HDOP, and VDOP respectively represent the
amplification factor of the total positioning timing error,
horizontal position error, and vertical position error to the
ranging error. The NNOR station is located in a plain are-
a with flat terrain. Considering the obstructions in the sig-
nal propagation path, the elevation mask angle is set to
15° to avoid selecting invisible satellites as far as possi-
ble'".

Fig. 3 demonstrates that during the SRB event, the
GDOP, HDOP, and VDOP of NNOR increased signifi-
cantly, and the maximum GDOP reached over 30.
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Fig. 3 GDOP, HDOP, and VDOP variations for the

NNOR station during the SRBs that occurred on December
13, 2006

Fig. 4 shows that the number of satellites locked at
NNOR decreased during SRBs, which mainly occurred at
03:31:00—03:37:00.
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Fig.4 Number of satellites locked for the NNOR station dur-
ing the SRBs that occurred on December 13, 2006
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The analysis of several other stations shows that
GDOP, HDOP, VDOP, and satellite lock numbers are
also affected by SRBs. The above changes provide a basis
for the selection of feature vector composition.

2 Methodology
2.1 System schema of SRB intensity detection

The system schema of the proposed method is dis-
played in Fig. 5, which includes training sample acquisi-
tion, model training, and SRB intensity detection.

First, C/N,, GDOP, HDOP, VDOP, and the number
of satellites locked are extracted. SRB intensity is labeled
according to the solar radio flux. The feature vectors and
labels are combined to obtain training samples.

One-against-one

Training  |(k=Dn/k . sample
samples combination
wk
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RBF processing,
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Mutil-factors SVM
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Detected SRB
intensity type
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Fig.5 System schema of the SRB intensity detection based on a modified multifactor SVM algorithm

On the basis of the fact that SVM is a binary classifier,
a one-against-one method is adopted. Samples with dif-
ferent labels are combined in pairs. Then, the SVM bina-
ry classification model is trained for each combination to
obtain the corresponding optimal classification model.
Classification models form the final modified multifactor
SVM classifier.

Once the modified multifactor SVM classifier is con-
firmed, new feature vectors are preprocessed and input in-
to the trained modified multifactor SVM classifier. The
classifier automatically inputs the feature vectors into the
trained optimal classification models. Each model outputs
labels corresponding to the feature vectors. For each fea-
ture vector, the most frequent label is its corresponding
intensity type by voting.

2.2 Training sample acquisition

Take the average of the current C/N, of each satellite

captured as the C/ N, of the station at the current time, re-

corded as x,, measured in unit dB - Hz.

(1)

N Si
nTanw
where s, is the C/N, of each satellite captured, i =1,
2,---,N. N is the number of satellites captured.

The GDOP, VDOP, HDOP, and the number of satel-
lites locked at the observation station do not have to be
dealt with. Only the original data released by the Interna-
tional GNSS Service (IGS) are used.

The feature vectors are formed as

(i _ () () () () (D) (i) 4
x _{xl ’-xz ,)C3 ,X4 ,xS } x ER

(2)

-, x5 represent the C/N,, GDOP, HDOP,
VDOP, and the number of satellites locked, respectively.

Tab. 1 lists the SRB intensity types, radio flux thresh-
olds, and corresponding labels' ">’ .

where x, ,x,,

x'” represents the feature vector of the sample, and y'”
represents the label of the sample, i=1,2,--- n. x and
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Tab.1 Classification of SRB intensity types

SRB intensity type Radio flux/SFU y@®
Nonoccurrence <100
Moderate 100 to 10 000
Severe =10 000

y'” are combined into sample point (x'”,y").
2.3 Model training

One-against-many and one-against-one methods are the
commonly used SVM multiple classification methods.
SVM optimization problems in the one-against-many
method have high computational complexity and its gai-
ning speed slower than the one-against-one method'”’'. In
this study, SRBs are divided into three types, and no
classification overlap occurs. Therefore, the one-against-
one method for multiple classification is selected.

First, suppose that a nonlinear SVM binary classifier is
constructed for the training samples with labels u and v
(u, v=1,2,3, and u <v). The classification model is

flx) =wie(x) +b (3)

where w” is defined as the normal vector, and b is defined
as the intercept of the classification hyperplane. ¢(x) is
a high-dimensional linear mapping.

Second, solve the following optimization problems .

min - [w>+CY e (4)
wbe 2 e
S. t.
y“)(WTgD(x(i))"'b)?l_fi’ 5120 i=1,2,---,n
(5)
where ¢, is the slack variable of each sample, and C is a

hyperparameter.
Third, solve the Lagrangian multipliers,

max Y a; —%Zaiajy“)ym (6)
i=1 1

ij=

0<aq,

i

> ay?” =0, <C (7)
i=1

)

where «,, y'’ are the Lagrangian multipliers and data

classification label, respectively, i=1,2,---,n.
Furthermore ,
wy = Y aye(x") (8)
i=1
by =y" —wee(x") (9)
where x is the support vector, and y'’ is the corre-

sponding label.
Fourth, the calculated w and b are substituted into the
nonlinear SVM classifier model expression.

f(x) = Y ayk(x" x) +y" -
i=1

Y ayk(x? x) (10)
i=1

where the kernel function can be expressed as k(x'”  x)
=¢"(x")(x). The radial basis function (RBF) is se-
lected as the kernel function. In the absence of prior
knowledge of the training samples, as long as the parame-
ters are selected appropriately, SVM with RBF can

achieve strong learning ability. RBF is defined as

i x“) -X 2
k(x'" ,x) :exp{— > ‘ }

20 (1)

where ¢ is the kernel parameter.

Select k-fold cross validation, which enables the model
to encounter various data through multiple division and
training to improve its generalization ability.

Select the Gaussian nonlinear SVM classifier model and
set parameters C, 1/(2¢"). After training, the average
accuracy of these parameter settings is obtained.

Change the value of parameters:

c=2" m=-5,-4,---,10
12:2" n=-5,-4,--,10
20

By comparing the average accuracy of all parameter
settings, parameters C and ¢~ with the maximum accuracy
are found as the optimal parameters. The trained model
under the optimal parameter setting is the optimal classifi-
cation model. Three optimal classification models form
the final modified multifactor SVM classifier.

2.4 SRB intensity detection

The feature vectors of the newly observed data are ex-
pressed as X = {x" ,x® -+ x™ |
ber of samples to be detected.

Input X into the modified multifactor SVM classifier,
and the voting strategy is adopted. For each feature vector

x'” if label P (P =1,2,3) outputs after an optimal clas-

. N is the total num-

sification model of the modified multifactor SVM classifi-
er completes the work, the number of label P is added by
one. The label that appears the most is the detected type
of SRB intensity at that time at the station.

3 Results and Discussion
3.1 Single station detection process

Take KUNM as an example. To train the modified
multifactor SVM classifier, the data of KUNM at 01 .30
00—03:59:30 on December 13, 2006, are selected, in-
cluding C/N,, GDOP, HDOP, VDOP, and locked satel-
lites. After data preprocessing and label allocation, the
training samples of KUNM are obtained from the IGS Da-
ta Center of Wuhan University. The sampling interval is
30 s, and each station has 300 times in total. Tab. 2 lists
five relatively representative sample points.
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Tab.2 Sample points corresponding to different times of the
KUNM station

Time Sample point
02:00:00 (46.444 44,1.8,0.9, 1.4, 8,1)
02:59:30 (46.65625,2.2,1,1.6,7,2)
03.31:.30 (42.000 00, 16.7, 5.5, 11.7, 4,3)
03:36.:00 (41.41667,/, /, /,3,3)
03:52.:00 (47.43750,2.1,1.2,1.5,7,1)

Note: / represents data that cannot be obtained.

The training samples are input into the SVM classifica-
tion learner, cross validation is conducted, and the k-fold
number is set to k =5. Through training, three classifica-
tion models under the optimal parameter setting are ob-

tained. When C =8, 1/(2¢°) =1, the classifiers of
Types 1 and 2 have the highest average accuracy of
96.8% . When C=2, 1/(2¢°) =0.5, the average accu-
racy of the optimal classifiers of Types 1 and 3 is
98.8% . When C =8, 1/(2¢°) =1, the average accura-
cy of the optimal classifiers of Types 2 and 3 is 94.0% .

The confusion matrix and ROC curve of optimal classifi-
cation models are shown in Fig.6. Each column of the con-
fusion matrix represents the prediction type, whereas each
row represents the actual type. As displayed on the left in
Figs. 6(a) to (c¢), 94% with Type 1 and 9% of the sam-
ple points with Type 2 SRB intensity are detected correctly.
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Fig. 6 Detection results of SRB intensity in KUNM. (a) Confusion matrix of Types 1&2; (b) Confusion matrix of Types 1&3; (c) Con-
fusion matrix of Types 2&3; (d) ROC curve of Types 1&2; (e) ROC curve of Types 1&3; (f) ROC curve of Types 2&3

The ROC curve reflects the relationship between sensi-
tivity and specificity. The area under the curve ( AUC) is
used to indicate the detection accuracy. The higher the
AUC value (the maximum value is 1) and the closer the
curve is to the upper left corner, the higher the prediction
accuracy. According to Figs. 6(d) to (f), each model
has high detection accuracy.

3.2 Detection results of multiple stations

To expand data coverage, two additional typical SRBs
are analyzed, that is, SRBs on September 24, 2011, and
September 6, 2017.

For each event, four stations are selected. Tabs. 3 to 5
list the station detail and the average accuracy correspond-
ing to the optimal model.

As can be seen from Tabs. 3 to 5, for three different
SRB events, the average accuracy of any classifier at dif-

ferent stations is between 91% and 100% .

3.3 Influence of feature vector composition on aver-
age accuracy

To simplify the data preprocessing, this study tests
whether a higher average accuracy can still be obtained
when there were fewer combined feature vectors during
the SRBs on December 13, 2006. The C/N,, GDOP,
HDOP, VDOP, and the number of satellites locked of the
station are removed.

As illustrated in Fig. 7, the height of each column is
the difference between the average accuracy of the origi-
nal vectors and that of the vectors with a feature re-
moved. If it is a positive number, then the average accu-
racy decreases. On the contrary, the average accuracy in-
creases.
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Tab.3 Average accuracy of different stations during the SRBs
on December 13, 2006 ( detection period 00:00—10:00)

Station 1D Latitu(.ie and Solar incidence Type Average
longitude angle/(°) accuracy/ %
1&2 93.5
TWTF 121°E, 25°N 42.5 1&3 96.4
2&3 91.3
1&2 91.6
KUNM 103°E, 25°N 35.9 1&3 97.0
2&3 90.4
1&2 93.2
XIAN  109°E, 34°N 29.3 1&3 97.8
2&3 93.8
1&2 91.8
NNOR 116°E, 31°S 77.1 1&3 97.6
2&3 91.0

Tab.4 Average accuracy of different stations during the SRBs
on September 24, 2011 ( detection period 10:26—21:50)

Station ID Latitu(.ie and Solar incidence Type Average
longitude angle/(°) accuracy/ %
1&2 99.2
RABT  7°W, 33°N 56.2 1&3 100
2&3 99.7
1&2 99.2
MASI  16°W, 27°N 63.0 1&3 100
2&3 99.7
1&2 98.7
CHPI  45°W, 22°S 53.4 1&3 100
2&3 99.8
1&2 99.3
AREQ  72°W, 16°S 31.6 1&3 100
2&3 99.4

Tab.5 Average accuracy of different stations during the SRBs
on September 6, 2017 ( detection period 05:00—15:21)

Station ID Latituqe and Solar incidence Type Average
longitude angle/(°) accuracy/ %
1&2 97.2
VILL 4°W, 40°N 49.8 1&3 99.9
2&3 98.8
1&2 97.2
SFER 7°W, 36°N 53.4 1&3 99.9
2&3 98.2
1&2 9.6
MBAR  30°E, 0°N 60.0 1&3 99.3
2&3 95.5
1&2 9.1
HARB 27°E,25°S 53.9 1&3 99.9
2&3 97.0

When the influence of C/N, or the number of satellites
locked is removed, the average accuracy decreases most-
ly, with a maximum decrease of 20. 3% . The average
accuracy loss is less than any classifier with one of
GDOP, HDOP, and VDOP removed at different stations
and can still reach 85% . In sum, when the average accu-
racy requirement is not strict, one of the GDOP, HDOP,
and VDOP can be removed from the feature vectors.

15 = Remove VDOP
[ Remove the number of satellites loss-of-lock

Reduction of average accuracy/%

TWTF

KUMN XIAN NNOR

Fig.7 Difference in average accuracy between original vectors
and vectors with any feature removed

Fig. 8 demonstrates that the average accuracy of any
model is reduced if two of the three less influential feature
vectors are removed at the same time.
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4 Conclusions

1) SRB intensity detection based on a modified multi-
factor SVM algorithm can process a large amount of data
simultaneously and detect SRB intensity in multiple sta-
tions at the same time.

2) The proposed method not only improves detection
reliability, efficiency, and accuracy by considering vari-
ous factors but also saves cost, as it does not require the
use of radio telescopes. Thus, it is expected to be a use-
ful tool in the normal operation of the satellite navigation
system.

3) Using the original feature vectors in this study, the
average accuracy can reach more than 90% . If the accu-
racy requirement is not strict, then one of GDOP,
HDOP, and VDOP can be removed from the feature
vectors. However, two features cannot be removed at
the same time, as it can lead to inaccurate detection re-
sults.
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