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Abstract: To solve the fuzzy and unstable tactile similarity
relationship between some sample points in the perception
experiment, an improved non-metric multidimensional scaling
(INMDS ) is proposed in this paper.
inconsistency of each sample’s contribution, the maximum
marginal decision when constructing the perception space to
describe the tactile perception characteristics is also proposed.
The corresponding constraints are set according to the degree
of similarity, and controlling the relaxation variable factor is
proposed to optimize the perception dimension and coordinate
measurement. The effectiveness of the INMDS algorithm is
verified by two perception experiments. The results show that
compared with the metric multidimensional scaling ( MDS)
and non-metric multidimensional scaling (NMDS) algorithms,
the perceptual space constructed by INMDS can more
accurately reflect the difference relationship between different
leather sample points perceived by people. Moreover, the
relative position of sample points in the perceptual space is
more consistent with subjective perception results.
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In view of the

actile perception is the human response to objective
Tmechanical stimuli. Tactile perception is of great
significance for identifying the physical attributes of the
external world and improving the control accuracy'' ™.
The research on the characteristics of tactile perception
and the mechanism'*™
hind compared with vision hearing. Consequently, it is

not only difficult to accurately measure the relationship

of tactile generation is lagging be-

between the feature dimensions and attributes of touch but
also difficult to establish a clear response mechanism
model of receptors, such as vision. Therefore, a large
number of researchers have examined the subjective per-
ception of objective force tactile using psychophysical
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methods. For instance,
scribed through clustering experiments and adjective sco-
ring experiments!’ "

quantify and construct the tactile perceptual space using

tactile perception can be de-
. The essence of these methods is to

limited perceptual sample points in psychophysical experi-
ments.

Considerable research has been performed to quantify
and construct the tactile perceptual space. Some research-
ers have used subjective perception experiments, such as
scoring based on psychophysics. Here, a given adjective
for a certain stimulus is scored and evaluated using a psy-
chological scale to obtain specific perceptual difference
values. However, the subjective scoring method is quite
different in experimental data because of the differences in
psychological scales and personal understanding. Moreo-
ver, this method needs a host of training before the exper-
iment. Meanwhile, the size of the perception difference
obtained from subjective perception experiments can be
further used to calculate the perception space. Multidi-
mensional scaling (MDS) is a statistical research method
that simplifies a research object in a multidimensional
space into a low-dimensional space and classifies them ac-
cording to the similarity between samples or varia-

12-19
bles'* ™.
[17]

MDS includes metric and non-metric algo-
. Metric MDS takes the paired distance between
stimuli as an input and calculates the embedding of all

rithms

samples in a multidimensional space that respects their
relative positions'"™ 1. 2
lation between tactile perception roughness and surface
geometric parameters (e. g., contour arithmetic mean de-

. Neumann et al studied the corre-

viation, Ra) using MDS, which was used to predict the
tactile perception of different groups on rough surfaces.
This classification method allows participants to classify
multiple materials presented simultaneously according to
similarity, which is user-friendly and has advantageous
data consistency. However, this method cannot obtain ac-
curate similarity data between research objects, assuming
that the texture discrimination of the same source is very
small. Moreover, it may lead to the loss of differential
information. Therefore, the metric MDS is no longer ap-
plicable, and the non-metric MDS ( NMDS) method
based on the ranking method is needed. Piovari et al. "
analyzed a sample’s tactile perception by sorting the sub-
jective perception compliance. The sorting method is rel-
atively simple and has advantageous consistency between
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subjects. Therefore, the sorting method is proven to be of
advantageous stability and effectiveness'* .
NMDS, distance values can be calculated according to the
sorting order without the need for manual inputs'™ ™.
The constraint of the traditional generalized NMDS algo-
rithm is to assume that the similarity relationship between
samples is significant and stable. In the perception experi-

ment,

By using

the tactile similarity relationship between some
sample points is fuzzy and unstable. Therefore, it is nec-
essary to identify the similar or significant differences in
perceptual similarity.

To solve this problem, an improved NMDS (INMDS)
algorithm is proposed to quantify and construct the tactile
perceptual space. In view of the inconsistency of each
sample’s contribution, the maximum marginal decision
when constructing the perception space to describe the
tactile perception characteristics is proposed. The corre-
sponding constraints are set according to the degree of
similarity, and controlling the relaxation variable factor is
proposed to optimize the perception dimension and coor-
dinate measurement. This method can enlarge the percep-
tual space distance of sample points with low similarity
and reduce the distance of sample points with high simi-
larity. The results verify that the INMDS algorithm can
tactile perception, and the
sample’s perceived difference is clear.

1 Methods

effectively describe the

In this section, the proposed method will be described
in detail. First, a brief description of the NMDS algo-
rithm is presented to lay the context for describing our IN-
MDS algorithm for indistinguishable small-scale sample
tactile perceptual spaces. Then, the improvement of the
INMDS algorithm is introduced, and the boundary condi-
tions are defined to constrain triplets with high and low
repetition.

1.1 NMDS algorithm

Unlike metric MDS, where the input data consist of
distances between samples, our data contain triplets (i, j,
k), which indicate that the distance between samples i
and j is smaller than that between j and k. This condition
is denoted as D; < D,. The goal of NMDS is to find a
Euclidean embedding that satisfies as many constraints as
possible.

NMDS takes the following multiple inequality con-
straints as the inputs of the algorithm:

S={(i,j. k) | D, <D,} (D)

In NMDS, D, can be converted to matrix K. Wills et
al. ¥* summarized the NMDS solving process as the

following optimization problem of solving matrix K:

arg min 2 &y T A(K) (2)

K& (iiDes

Y(ijkeS

£ =0,

Kkk _Kii +2 Kik _2Kjk>1 _é:{/k (3)

Z Kbc =0’

where K, is the element of the i-th row and j-th column of
K; tr(K)is the trace of K; and £ is a relaxation variable,
which means that inequality constraints are allowed to be
violated within a range. The value of ¢ determines the
strictness of the constraint. The constraint strength is neg-
atively related to the value of £&. A is an adjustable regu-
larized parameter, which represents the complexity of op-
timization problems. It balances the relationship between
the inequality violation and the dimension of embedded
coordinates.

Eq. (2) is the objective function of NMDS, whose
function is to find the coordinates of the perceptual space
of samples with the minimum violation rate. Due to the
uncertainty of translation and scaling, the inequality con-
straint (3) is not enough to determine the unique positive
semi-definite matrix K. To solve this problem, Eq. (4)
is added, where the embedded coordinate should be cen-
tered on the origin.

K=0 (4)

1.2 INMDS algorithm

In previous studies, A appears unstable with the varia-
tion of error. Later, this phenomenon was discovered to
be due to the redundancy and overfitting of data. Data re-
dundancy is caused by perceived personalized differences
among different subjects. For example, for three sam-
ples, S1, S2, and S3, 10 students chose S1 and S2 to
have a closer touch, whereas the other 10 students chose
S3 and S2 to get closer. Such situations can result in un-
der-constraints in solving optimal problems and unstable
results. Therefore, in this study, the repetitiveness of ex-
perimental data is examined. Triplets are divided into two
categories, low repetitiveness and high repetitiveness,
with different constraints.

This study calculates the repetitiveness ( P,,) of each

ijk
triplet. The calculation process divides the number of
times the subjects make this judgment by the total number

of subjects:
P,==" (5)

where N, is the number of times that the subjects think
that i and j are more similar in the triplet (i, j, k) , and N
is the number of times all subjects make judgments on the
triplet.

The NMDS algorithm ignores the difference of repeti-
tiveness and assumes that all triplets have the same contri-
bution. In fact, triplets with different repetitiveness repre-
sent different meanings. Triplets with high repetitiveness
show that the data are reliable and easy to judge, and the
distance D, — D, of this type of triplets is large. Triplets
with low repetitiveness show that the difference between
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samples is difficult to distinguish and the distance is
close.

In view of the inconsistency of each sample’s contribu-
tion, the maximum marginal decision when constructing
the perception space to describe the tactile perception
characteristics is proposed. The corresponding constraints
are set according to the degree of similarity, and control-
ling the relaxation variable factor is proposed to optimize
the perception dimension and coordinate measurement.
The improved constraints are as follows:

arg min z g[jk + Atr( K) (6)
K& (iiDes
<y+&.P. P <P
K,-K,+2K, -2 K,-k{ y+EuPy Py <P, -
=1 _gijkPijk P,-jkBPc
£4=0, Y K. =0, K=0 (8

where P_ is a low-repetition and high-repetition boundary
value, and v is the constraint coefficient, which is deter-
mined by subsequent experimental results. The repetitive-
ness coefficient is used as the weight ( penalty coefficient)
P, to scale the size of the slack variable A to control the
strictness of the constraint. vy as a constraint coefficient is
used to give a restrictive constraint to the triplets with low
repetitiveness. This method aims to prevent the scaled
slack variable from being too small to reflect the differ-
ence in similarity. For triplets with low repetitiveness,
the distance D, — D, is less than a certain range. Moreo-
ver, for triplets with high repetitiveness, the distance D,
- D, is greater than or equal to a certain range. The high-
er the repetitiveness of the triplets, the greater the propor-
tion of error penalty caused by the violation of the triplets
in the objective function, that is, the stricter the con-
straint.

2 INMDS Algorithm Implementation
2.1 Data preparation

To obtain the input of the INMDS algorithm, in this
study, a triplet sorting experiment was designed. Twenty
university students ( 14 males and 6 females, 22 to 27
years old) participated in the experiment. Based on a
self-report, all the participants were right-handed with
normal upper-limb motion and hand function. They were
ignorant of the purpose of the experiments and signed in-
formed consent forms before the experiments. Because
the experiment took a certain amount of time and required
a certain number of subjects, they were paid for their par-
ticipation.

The experiment consisted of 10 leather samples with
slightly different material textures. The samples with a
small degree of discrimination were produced and provid-
ed by the manufacturer to the maximum extent. The man-
ufacturer hopes to have different actual feelings on leather
samples with different textures. However, some tactile

perceptual feelings are very similar and difficult to distin-
guish subjectively. Therefore, it needs to be quantified.
The details of all the textured surfaces are presented in
Fig. 1, where all samples are cut into the same size.

(a) (b) (o) (d) (e)
() (2) (h) (1) )

Fig.1 Ten leather samples in the subjective perception experi-
ment. (a) S1; (b) S2; (c) S3; (d) S4; (e) S5; (f) S6; (g) S7;
(h) S8; (i) S9; (j) S10

The triplet sorting experiment aims to determine the
difference order among samples as the input of the IN-
MDS analysis, so as to determine the distribution rela-
tionship of the samples in the subjective perception space.
In each experiment, the participants were provided with
two test samples and one reference sample. They were
asked to determine the test sample that was closer to the
reference sample in terms of tactile perception. Then, the
selected test samples, reference samples, and non-chosen
test samples were recorded in order. There is no limit to
the number of interactions in each experiment.

2.2 Parameter determination

Triplets (i, j, k) were obtained from the triplet sorting
experiment, in which i, j, and k of the triplets are the se-
lected sample, reference sample, and non-chosen sam-
ple, respectively (e. g., the triplet (S2, S1, S3)). A
total of 360 comparative experiments were performed.
Then, the triplet inputs to INMDS were statistically ana-
lyzed, and the repetitiveness of samples was standard-
ized. Therefore, for triplets with repetitiveness less than
0.5, we conducted a “reverse” process. Afterwards, all
triplets were distributed in the interval 0.5 to 1. 0. The
repetitiveness of some triplets is shown in Tab. 1.

2.2.1 Parameters in key constraints

In the INMDS algorithm, two key parameters, i.e.,
P, and vy, in inequality constraints need to be determined
according to the actual test results. First, we sety = 1 in
the inequality constraint Eq. (7), where 0. 50, 0. 55,
0.60, 0.65, and 0.70 were selected as the boundary val-
ues of low repetitiveness and high repetitiveness. The
pairwise distance between samples was calculated according
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Tab.1 Repetitiveness of triplets obtained from the triplet sor-
ting experiment

Triplets(i, j, k) Repetitiveness( Py )
2, SI, 3 0.50
$2, 3, S8 0.55
$3, 57, Sl 0.60
S4, S5, 82 0.65
$6, S1, s4 0.70
S6. S4, S8 0.75
s7, S1, 3 0.80
S7, S10, 2 0.85
S8, S5, S3 0.90
S10, 9, 7 100

to the output sample coordinates, so as to calculate the dis-
tance of each triplet. Ideally, the distance D, - D, is not
only positive but also proportional to repetitiveness, which
means that the samples are easy to distinguish. We coun-
ted the correlation coefficient o between the distance and
repetitiveness when selecting different boundary values and
the number of groups B that do not meet the positive dis-
tance.

As shown in Tab. 2, when the boundary value is 0. 6,
there is an advantageous correlation and a minimum num-
ber of violation groups. Accordingly, we recorded statis-
tics on the values of « and B for different values of 7.

Tab.2 Values of correlation coefficient o and violation group
number B under different P,

P, o B
0.50 0.607 21
0.55 0.612 21
0.60 0.669 20
0.65 0.598 31
0.70 0.541 36

As shown in Tab. 3, when vy is 0.8, the highest correla-
tion and least number of violation groups can be obtained.
The constraints of the INMDS algorithm are as follows:
P, <0.6

ijk
(9)
P, =0.6

<0.8 +¢&, P,

Ky -K,+2 K, _2K/k{>1 —&.P
= ijk* ijk

Tab.3 Values of correlation coefficient o and violation group
number B under different y

Y o B
0 0.692 21
0.1 0.721 16
0.2 0.732 16
0.3 0.739 18
0.4 0.739 18
0.5 0.740 17
0.6 0.741 17
0.7 0.749 16
0.8 0.754 15
0.9 0.671 21
1.0 0.668 21

2.2.2 Perceptual space dimension
According to the INMDS principle, the regularization

parameter can affect the quality of the embedded coordi-
nates. An advantageous embedding space should have the
generalization ability, which can explain not only ob-
served data but also unobserved data. Accordingly, in
this study, the cross-validation method was performed
five times to determine the best regularization parameters.
The triplet dataset was divided into 80% for the training
set and 20% for the test set each time. Training and test
errors were measured by calculating the number of viola-
tions of paired comparisons of the training and test sets.
The purpose of cross-validation is to determine the mini-
mum test error. Fig. 2 shows the training error and test
error of the cross-validation and rank. As shown in Fig.
2(a), when the regularization parameter A is 8, the test
error reaches a minimum of 0. 152 4, and the training er-
ror is relatively small. The results show that the embed-
ding space has the best generalization ability.

0351 .
----Training

—— Testing

030

Error

0.15 :
TN 80152 4)
0.10 ™
|
0.05
0 1 1 1 1 1 1 1 1 1 ]
0 5 10 15 20 25 30 35 40 45 50
A
()
15
10

-
g (8.3)
¢ 5 /\”»/xw\
1 1 1 1 1 || 1 1 1
10 15 20 25 30 35 40 45 50
A
(b)

Fig.2
curves for varying choices of the regularization parameter A for the IN-

Cross-validation and rank. (a) Training and testing error
MDS algorithm; (b) Rank as a function of the regularization parameter

According to the INMDS principle, the complexity of
the model is determined by the regularization parameter
A. The larger the parameter A, the simpler the model;
that is, the fewer the dimensions of the perception space
constructed. As shown in Fig. 2(b), the dimension of
the embedding space decreases with the increase in the
regularization parameter A. When A is 8, the value of
matrix K, that is, the dimension of the embedded space,
is 3. The corresponding value of stress, which can meas-
ure the deviation between the analytical results and the
observation differences of the original samples, is only
0.11. To explain the dataset well, the best embedding
space only needs three dimensions.
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3 Experimental Verification and Analysis

To examine the accuracy of the perception spatial sam-
ple distribution and the consistency of subjective percep-
tion under the three algorithms, a validation experiment
was designed. The INMDS algorithm was verified by the
collected data, which includes verification experiments

and comparisons against other algorithms.
3.1 Validation experiment design

The sample clustering experiment aims to verify the
perceived differences between samples. The basis of clus-
tering is explained based on the adjective label description
of the subjects’ perceived attributes in the sample catego-
ry.

1) The subjects perceived each texture sample in turn
and described the texture’s tactile perception using as
many adjective tags as possible.

2) The subjects were asked to classify texture samples,
with a minimum of three classes and a maximum of seven
classes. In the specific experiment, the subjects perceived
each texture sample in turn and classified the samples,
which are considered to have the same subjective percep-
tion into the same category. During the course of the ex-
periment, the subjects could reconfirm or modify the pre-
vious clustering results.

3) After completing the clustering experiment, the sub-
jects were asked to describe the subjective perception or
clustering basis of each type of sample.

3.2 Result comparison of the three algorithms

As shown in Tab. 4, Mean_dist illustrates the discrim-
ination of samples in the spatial distribution, which is the
average distance between all samples calculated by the
Euclidean distance; B represents the accuracy of the spa-
tial distribution, which is counted by the number of
groups that do not meet the positive difference. The lar-
ger Mean_dist and the smaller 8, the more accurate the
sample distribution in the perceptual space. The Mean _
dist of INMD is 0. 954 and 8 of INMD is 14, which
shows that the accuracy of the spatial distribution is accu-
rate and has excellent discrimination.

Tab.4 Calculation results of the three algorithms

Calculation results MDS NMDS INMDS
Mean_dist 1.651 0.736 0.954
B 40 15 14

3.3 Result comparison of the algorithms and subjec-
tive clustering experiments

Fig. 3 shows the distribution of samples in the tactile
perceptual space obtained by the metric MDS, NMDS,
and INMDS algorithms proposed in this paper. The dot
represents the coordinate of the samples in the tactile per-

ceptual space. Through the subjective perception cluste-
ring experiment, the samples were divided into seven cat-
egories based on similarity. The connection represents the
absolute distance between similar samples from the same
category. The ideal spatial distribution not only needs to
distinguish samples well but also show the similarity be-
tween samples. For S2 and S8 from the same category,

1.0 22
.l @» 0.15
o} ‘o/

5 S9

-1.0_10
()

Fig.3 Distribution of the samples and the clustering results of
subjective perception in the perceptual space. (a) Perceptual space
in metric MDS; (b) Perceptual space in NMDS; (c) Perceptual space in
INMDS
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the absolute distance between them in INMDS is 0. 19
smaller than that in the other two algorithms. The percep-
tual space obtained by the INMDS algorithm has small
and large inter-class spacing. In addition, the method can
accurately reflect the difference relationship between dif-
ferent leather sample points perceived by people in the
perceptual space.

As shown in Tab. 5, d,; represents the perceptual
difference between samples i and j, which is calculated
by the Euclidean distance. The triplet with low repetitive-
ness illustrates that it is difficult to distinguish which of
the two test samples is more similar or less similar to the
reference sample. Therefore, d,; is similar to d;, for in-
distinguishable triplets under the INMDS algorithm,
which indicates that the INMDS algorithm is consistent
with subjective perception.

Tab.5 Absolute distance of paired samples under low repeti-

tiveness of triplets in the INMDS algorithm

Triplets(i, j, k) Repetitiveness(p ;) d;; dj;
S10, S1, S8 0.50 1.61 1.52
S9, S2, sS4 0.50 0.92 1.03
S5, S2, S10 0.55 0.89 0.94
S3, S7, S2 0.55 1.19 1.12
S10, S1, S2 0.60 1.61 1.73
S9, S1, S2 0.60 1.52 1.73

In Tab. 6, u represents the probability of sample simi-
larity under subjective perception, which is calculated by

__ab
m="p (10)

where P, is the number of participants who classified
samples ¢ and b into the same category in the sample
clustering experiment, and P is the total number of partic-
ipants in the experiment. Tab. 6 shows the absolute dis-
tance between two similar samples under a high y in the
three algorithms. Ideally, the higher the similarity be-
tween samples, the smaller the absolute distance. There-
fore, the absolute distance in the INMDS algorithm be-
tween two similar samples is smaller than that in the met-
ric MDS and NMDS algorithms. This finding shows that
the relative position of samples in the perceptual space ob-
tained from the INMDS algorithm is more accurate than
those obtained from the other algorithms.

Tab.6 Absolute distance between two similar samples under

high y in the three algorithms

Samples MDS NMDS INMDS i

S2, S8 0.32 0.22 0.19 0.50
S4,S7 0.95 0.25 0.24 0.50
S4, S9 0.45 0.28 0.25 0.75
S4, S10 0.51 0.15 0.12 0.80
S5, S9 1.32 0.25 0.26 0.70
S5, S10 1.39 0.58 0.29 0.50
S9, S10 0.55 0.39 0.17 0.95

4 Conclusions

1) An INMDS algorithm is proposed to quantify and
construct the tactile perceptual space under small-scale
samples that are difficult to distinguish subjectively. Be-
cause the probability of the similarity of actual samples is
different, contributions to coordinate space settlement be-
come difficult. Triplets were divided into low repetitive-
ness and high repetitiveness, and different constraints
were given to these types of triplets. Meanwhile, repeti-
tiveness was added to the constraint as the weight of the
relaxation variable to increase the consistency between the
fitting results and real perception results.

2) Ten leather samples that were difficult for subjective
perception were quantified, and the perception space was
obtained. The results show that the INMDS algorithm has
high spatial distribution accuracy in the tactile perceptual
space. Moreover, the sample distribution in the perceptu-
al space of the INMDS algorithm is more consistent with
the subjective clustering experimental results as compared
with the metric MDS and NMDS algorithms.

3) The results show that the INMDS algorithm is not
only suitable for groups that are difficult to quantify but
also suitable for quantifying a perceptual space with
small-scale samples. Thus, the INMDS algorithm has
good application values for the perceptual quantitative
evaluation and identification of samples.
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