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Abstract: To improve the level of active traffic management,
a short-term traffic flow prediction model is proposed by
combining phase space reconstruction ( PSR) and extreme
gradient boosting ( XGBoost ) Firstly, the
traditional data preprocessing method is improved. The new

algorithms.

method uses hierarchical clustering to determine the traffic
flow state and fills in missing and abnormal data according to
different traffic flow states. Secondly, one-dimensional data
are mapped into a multidimensional data matrix through PSR,
and the time series complex network is used to verify the data
reconstruction effect. Finally,
matrix is inputted into the XGBoost model to predict future
traffic flow parameters. The experimental results show that the

the multidimensional data

mean square error, average absolute error, and average
absolute percentage error of the prediction results of the PSR-
XGBoost model are 5. 399%, 1. 632%, and 6. 278%,
respectively, and the required running time is 17.35 s.
Compared with mathematical-statistical models and other
machine learning models, the PSR-XGBoost model has clear
advantages in multiple predictive indicators,
feasibility and superiority in short-term traffic flow prediction.
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proving its

As a critical component of intelligent transportation-
systems, traffic flow prediction plays a vital role in
providing traffic state predictions and implementing con-
trol measures for traffic management departments. At
present, there are mainly two categories of traffic flow
prediction methods: model-based and data-driven meth-
ods.

Dynamic traffic simulation models can be the typical
example of the former, such as DynaMIT-R and Visum-
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online. However, the model algorithm and software ap-
plication in this method are very complex, and real-time
simulations require substantial computing resources. The
latter method is mainly based on historical data and uses
statistical analysis and machine learning to make predic-
tions. It has the advantages of a simple algorithm, effi-
cient online operation, and accurate prediction for small-
scale road networks. Therefore, this method has also be-
come a research focus in recent years.

Traffic flow prediction methods driven by data can be
divided into three categories: 1) linear prediction method
based on time series theory and Kalman filter theory,
such as the autoregressive integrated moving average
(ARIMA) forecasting model'!, and Kalman filter fore-
casting model '; 2) nonlinear prediction method based
on chaos theory, such as chaos of traffic system'’ and
multi-step prediction algorithm of traffic flow based on
chaos theory''; 3) intelligent prediction method based on
machine learning, such as support vector regression
(SVR) model™, random forest (RF) model', and long
short-term memory ( LSTM) neural network speed predic-
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tion model” ™.

Intelligent prediction methods have grad-
ually become the mainstream method of short-term traffic
flow forecasting because of their advantages of accurate
forecasting, fast calculation, and good feasibility. How-
ever, the current related research mainly focuses on the
optimization of model parameters and the exploration of
application scenarios. It still lacks the processing of col-
lected data to reflect the traffic situation comprehensively.

In response to the above problems, this paper proposes
a short-term traffic flow prediction model combining
phase space reconstruction ( PSR) and extreme gradient
boosting ( XGBoost) algorithms, which mainly include
four parts: data preprocessing, PSR, complex network a-
nalysis, and XGBoost model training and prediction. The
advantages of the model in terms of prediction accuracy
and calculation speed are verified through examples.

1 Improved Data Preprocessing Method

Data preprocessing is the premise of data analysis, es-
pecially the filling of missing and abnormal data. Howev-
er, traditional data filling methods lack the pertinence of
the research object, especially the analysis of the state of



Short-term traffic flow prediction with PSR-XGBoost considering chaotic characteristics 93

a transportation system. On this basis, this paper propo-
ses a data filling method based on a hierarchical clustering
algorithm and traffic flow state. The data in this paper are
the measured speed data of an expressway in Guangzhou
from August 1st to September 25th, 2016. The time span
is eight weeks, the time interval of data collection is 10
min, and the total number of data sets is 8 064.

The main processes of the hierarchical clustering algo-
rithm used to fill in missing and abnormal values are as
follows: 1) Clustering speed data are processed by the hi-
erarchical clustering algorithm. Fig. 1 shows the data
clustering results of the first and second weeks in the time
series data. The hierarchical clustering algorithm can
clearly divide the speed value into three categories. 2)
According to the clustering results, the traffic conditions
of different categories are identified. According to the
basic graph theory, the clustering results can be identified
as free flow, transition flow, and congested flow. 3) The
traffic state where the missing or abnormal value is loca-
ted is determined. 4) Fill it with the average value of data
in the same state.
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Fig.1 Hierarchical clustering results. (a) First week; (b) Second
week

2 Data Reconstruction

From the perspective of the meso-traffic flow model,
the various dimensional states of the transportation system
evolve over time to obtain a sequence of multidimensional

state parameters to form a phase space. However, in the
actual data acquisition process, only a certain dimensional
component of the system can be acquired through the de-
tector. Suppose v = {v, |i=1,2,...n} is the speed se-
quence of the traffic system, where v, represents the aver-
age speed of vehicles in a certain period of time and n is
the length of the time sequence.
component can be reconstructed into a multidimensional
data matrix by

The one-dimensional

vl vl+r v1+(m71)7-
V= Va Vaus v2+(r'n—l)7- (1)
vn—(m—])r Vn—(m—Z)r tec Vn

where V is the data matrix after reconstruction; 7 is the
delay time; m is the embedding dimension.

The selection of parameters is the key to PSR. For the
delay time 7, the mutual information method is used"”"" .
For two sequences, mutual information entropy is posi-
tively correlated with the degree of correlation between
two sequences. Therefore, by calculating the mutual in-
formation entropy of the initial sequence and the sequence
delay by 7, the correlation between the sequences can be
determined. Fig.2(a) shows the variation of mutual in-
formation entropy with delay time, where the best delay
time is 2.

For the embedding dimension m, the false k-nearest

neighbor method is used”™”. The calculation idea of the
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Fig.2 Phase space reconstruction parameter selection. (a) De-
lay time; (b) Embedded dimension
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false k-nearest neighbor method is to gradually eliminate
false neighbors by increasing the dimensionality of the
phase space until the proportion of false nearest neigh-
bors remains unchanged. Fig. 2(b) shows that as the
embedding dimension increases, the proportion of the
false k-nearest neighbors rapidly decreases and then sta-
bilizes. The acceptable value of the embedding dimen-
sion is 6.

3 Complex Network Analysis

The data matrix after PSR reflects the evolution of mul-
tidimensional states. When constructing a time series
complex network, the vector in the matrix is used as the
network node, and the connection between nodes is deter-
mined by the node distance and critical threshold. If the
node distance is smaller than the threshold, then there is a
connection between the nodes.

The choice of the critical threshold is very important to
the construction of the network. In this study, the thresh-
old through the network density is examined. In a chaotic
system network, there are many clusters of different si-
zes. As nodes in a cluster are adjacent to one another, the
degree will rapidly increase as the threshold within the
cluster radius changes. When the threshold is close to the
average radius of all clusters, the edge increase will reach
the maximum rate, and exceeding the threshold will result
in redundant connections between nodes. Therefore, the
critical threshold can select the point where the network
density grows the fastest. Fig. 3 shows that when the
threshold is 25, the network density grows the fastest, so
it is used as the network connection threshold.
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Fig.3 Selection of the complex network connection threshold

Fig. 4 plots a complex network of the time series of
daily period data. From the perspective of the topological
structure, the network is mainly composed of clusters of
different sizes, without isolated nodes or clusters. From
the perspective of quantitative indicators, the Pajek soft-
ware is used to calculate the degree of nodes in the net-
work. The distribution of node degrees is shown in Fig.
5. Its distribution in double logarithmic coordinates can
be fitted with a straight line with a negative slope. The
finding shows that the network presents a scale-free char-

. e . . e . 11
acteristic. According to existing research conclusions''"’,

the network has scale-free characteristics, and the recon-
structed time series data has strong robustness and noise
resistance and is suitable for prediction.
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Fig.5 Degree distribution of network nodes

4 Traffic Flow Prediction
4.1 XGBoost

XGBoost is improved on the basis of the gradient boos-
ting decision tree ( GBDT) algorithm!”. The construc-
tion of each tree in XGBoost is completed by fitting the
negative gradient of the loss function of the previous
model. To make up for the shortcomings of GBDT in
terms of prediction accuracy and overfitting, XGBoost in-
troduces regularization in the objective function to quanti-
fy the complexity of the tree model. The complexity of
the tree model mainly depends on the number and weight
of leaf nodes—the lower the complexity of the tree mod-
el, the stronger the generalization ability of the model.
Intuitively speaking, when the model expects to minimize
the objective function, the model is inclined to choose a
simple tree model with a strong generalization ability for
prediction. The objective function of the XGBoost model
can be calculated by

L= Uy,y) + )
A =T+ A (2)

where L is the objective function; I( + ) is the loss func-
tion of predicted value and expected value; y; is the j-th
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expected value; )A)j is the j-th predicted value;f, is the k-th
tree model; 2( - ) is the complexity of the tree model
(i.e., regular term) ; vy is the complexity cost; T is the
number of leaf nodes; A is the penalty coefficient; w is
the weight of the leaf node.

In addition, an approximate method of the greedy algo-
rithm is used to control the splitting of the tree in the XG-
Boost model. The approximation algorithm avoids the
greedy algorithm to enumerate data, but it is highly suit-
able for building a tree model with multidimensional data
characteristics. This fact also theoretically explains the
role of PSR in enhancing the dimension of data in this
model.

4.2 Experimental analysis

This experiment uses a computer with an Intel Core
i7 processor and 8 GB memory. To verify the feasibili-
ty of the PSR-XGBoost method proposed in this paper,
five control models were designed, namely, ARIMA,
XGBoost, PSR-RF, PSR-SVR, and PSR-LSTM. The
parameters of the model are determined by grid search
and step-by-step experiments. Fig. 6 shows the fit of
the predicted and actual values of the model. The re-
sults show that the prediction value of the PSR-XG-
Boost model fits better than that of other control predic-
tion models.
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Fig.6 Model prediction results. (a) Autoregressive integrated moving average ( ARIMA); (b) Extreme gradient boosting ( XGBoost) ;

(c) PSR-RF; (d) PSR-SVR; (e) PSR-LSTM; (f) PSR-XGBoost

To quantitatively describe the prediction effect of the
model, the following evaluation indicators are intro-
duced ; mean square error (MSE) , average absolute error
( MAE ), and average absolute percentage error
(MAPE). Tab. 1 shows the evaluation index table of the
six model prediction results.

Tab.1 Model prediction performance index table

Categories Model MSE MAE MAPE/% Time/s
Experimental model PSR-XGBoost 5.399 1.632 6.278 17.35
XGBoost  16.924 3.000 12.005  10.21

ARIMA  24.004 4.020 14.377 9.58

Control model PSR-SVR  13.489 2.303 9.173  21.15
PSR-RF  10.412 1.881 7.670  32.70

PSR-LSTM  6.436 1.728 6.399 45.83

The experimental results show that the prediction accu-
racy indicators MSE, MAE, and MAPE of the PSR-XG-
Boost model are 5.339% , 1.632% , and 6.278% , re-
spectively, and the calculation time is 17. 35 s. Com-
pared with the XGBoost model, the PSR-XGBoost model
enriches the structure of the tree model by increasing the
data dimension and greatly improves the prediction effect
of the model. Compared with the mathematical statistics

model, the calculation time of the PSR-XGBoost model is
longer, but the three accuracy indicators, MSE, MAE,
and MAPE, increased by 77.5% , 59.4% , and 56.3% ,
respectively. Compared with the PSR-SVR, PSR-RF,
and PSR-LSTM models, the prediction accuracy of the
PSR-XGBoost model improved to a certain extent; the
MSE increased by 59. 9% , 48. 1% , and 16. 1% ; the
MAE increased by 29.1% , 13.2% , and 5.6% ; and the
MAPE increased by 31. 6% , 18. 1%, and 1. 9% , re-
spectively. Although the prediction accuracy of the PSR-
XGBoost and PSR-LSTM models are not much different,
the time required for the prediction is significantly re-
duced.

5 Conclusions

1) The improved data preprocessing method is specific
to traffic data. This method can effectively identify the
road traffic state through the hierarchical clustering algo-
rithm and fill in missing and abnormal data based on the
traffic state.

2) PSR can map one-dimensional data to a multidi-
mensional matrix, effectively solving the problem of low
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basic data dimensions, optimizing the model input, enric-
hing the model structure, and improving the prediction
accuracy. In addition, complex network methods can an-
alyze and verify the characteristics of reconstructed data.

3) Considering the prediction accuracy and computing
efficiency, the PSR-XGBoost model has advantages over
mathematical-statistical models and other machine learn-
ing algorithms and can be used as an effective method for
short-term traffic flow prediction.
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