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Abstract: To
recommendation

improve the training efficiency and
cold-start
recommendation systems, a new graph structure called item

similarity graph is proposed on the basis of real data from a

accuracy  in interactive

public dataset. The proposed graph is built from collaborative
interactions and a deep reinforcement learning-based graph-
enhanced neural interactive collaborative filtering ( GE-ICF)
model. The GE-ICF framework is developed with a deep
reinforcement learning framework and comprises an
embedding propagation layer designed with graph neural
networks. Extensive experiments are conducted to investigate
the efficiency of the proposed graph structure and the
superiority of the proposed GE-ICF framework. Results show
that in cold-start interactive recommendation systems, the
in data

proposed item well

relationship modeling, with the training efficiency showing

similarity graph performs

significant improvement. The proposed GE-ICF framework
also demonstrates superiority in decision modeling, thereby
increasing the recommendation accuracy remarkably.
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ersonalized recommendation systems have become u-
biquitous in the information industry, and they have
been applied to classic online services. Traditional recom-
mendation systems have been widely studied under the as-
sumption of a stationary environment, where user prefer-

12
. However, such mod-

ences are assumed to be static'
els fail to explore users’ interests when few reliable user-i-
tem interactions are provided, such as that in a cold-start
scenario. They also fail to model the dynamics of user
preferences, thus leading to poor performance. There-
fore, the research into interactive recommendation sys-

tems (IRSs) has flourished in recent years. IRSs consider
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recommendations as sequential interactions between sys-
tems and users. The main idea in modeling IRSs is to
capture the dynamic nature of user preferences and
achieve optimal recommendations in a time period 7.
IRS research has two directions: contextual bandit and re-
inforcement learning (RL). Although contextual bandit
algorithms have been used in different recommendation

! and e-commerce

scenes, such as collaborative filtering!*”
recommendation'”, they are usually invalid in nonlinear
models and demonstrate too much pessimism toward rec-
ommendations. RL is a suitable learning framework for
interactive recommendation tasks as it does not suffer
from such issues. In the study of applying RL to IRSs,
the themes include large action spaces, off-policy train-
ing[H] , and online model framework™' .

The interactive recommendation problem in the current
study is set in a cold-start scenario, which provides noth-
ing about items or users other than insufficient observa-
tions of user-item ratings. A deep RL framework'”,
which can be regarded as a generalized neural Q-network,
is adopted to tackle the above problem. As for the repre-
sentation of items, an embedding lookup table X ¢ R"**
is adopted, with each item e being represented as a vector
x, e R“. The embedding lookup table is trained end to
end in the framework. However, because such an embed-
ding layer is optimized by user-item interactions in inter-
active recommendations and lacks an explicit encoding of
crucial collaborative signals, an item similarity graph is
proposed, and an embedding propagation layer construc-
ted by graph neural networks ( GNNs) is devised in this
work to refine items’ embeddings by aggregating the em-
beddings of similar items.

Given the graph structure from the data in recommen-
dation systems, designing a proper graph and utilizing
GNNSs in recommendation systems are appealing.

User-item bipartite graphs are constructed in traditional
recommendation methods for improved performance in

rating prediction tasks''",

while sequence graphs are
transformed in sequential recommendation methods to
capture sequential knowledge'”. Knowledge graphs'"”
are utilized for additional information. By introducing an
item similarity bipartite graph in the recommendation
framework, we make interactive recommendations effec-
tive because of the deep exploitation in structural item
similarity information inferred from user-item interac-

tions. A user-item bipartite graph is suggested in the RL
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framework for interactive recommendations'"*.

In sum, a new graph called an item similarity graph is
built in this study to alleviate the computational burden
while showing comparative structural information as a
user-item bipartite graph. Then, a graph-enhanced neu-
ral interactive collaborative filtering ( GE-ICF) frame-
work, which devises an embedding propagation layer in-
to an RL framework, is proposed for interactive recom-
mendation tasks. Empirical studies on a real-world
benchmark dataset are conducted, and the results show
that the proposed GE-ICF framework outperforms base-
line methods.

1 GE-ICF Framework’s Method

1.1 Preliminaries

A typical recommendation system has a set of m users
Uu={1, 2, ...
observed feedback matrix ¥ € R"*", where y, represents
the feedback from user i to item j. Here feedback can be
explicit (e. g., rating, like/dislike choice) or be implic-

, m}yand nitems I = {1, 2, ..., n} with an

itly inferred from watching time, clicks, reviews, etc.
For cold-start users in this study, an interactive recom-
mendation process is conducted in a time period T be-
tween the recommender agent and a certain user. At each
time step ¢ in the interaction time period {0, 1, 2, ...,
T}, the recommendation agent calculates item i, to be rec-
ommended by policy 7: s,—1 and suggests it to certain
user u, where s, represents the user state at time step ?.
Then, the user gives feedback y,, on the recommended
item to the recommender agent, and this feedback guides
the agent in updating the user’s state and making next-
round recommendations. The goal of designing an inter-
active recommendation system is to design a policy 7 that
maximizes G_(T) as

G(T) = E . | Zy) (D

where G_(T) is the expected cumulative feedback in a
time period 7. Although exploiting the user state at the
current time step facilitates the derivation of accurate rec-
ommendations and maximization of immediate user feed-
back y, ., the exploration of items for recommendation is
necessary for completing user profiles and maximizing cu-
mulative user feedback G(T7T), which is regarded as the
delayed reward for a recommendation. RL is a sequential
decision learning framework that is aimed at maximizing
the sum of delayed rewards from an overall aspect'".
Therefore, RL is applied in our system to balance exploi-
tation and exploration during interactive recommenda-
tions.

The essential underlying model of RL is a Markov de-
cision process (MDP). An MDP occurs between agents
and the environment. In this study, the agent is the pro-

posed recommendation system, and the environment is
equivalent to the users of the system, as well as all the
movies recorded in the system. The MDP is defined with
five factors (S, A, P, D, y). These factors are introduced
and instantiated in the IRS for cold-start users. Fig. 1 il-
lustrates the interactive recommendation in the MDP for-
mulation.
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Fig.1 Interactive recommendation process in MDP formula-
tion

State space S contains a set of states s,. In this study, a
state at time #: s, = {iy, ¥, > ---» §,_y» Y, ,  t denotes the
browsing history and corresponding feedback of a user
u before time t. To reflect the change of user interests
with time, the items in s, are sorted in chronological
order.

Action space A is equivalent to item set / in a recom-
mendation. An action at time #: a, € A denotes the item
recommended to a user by the recommender system ac-
cording to current user state s,.

Reward D is a set the recommender system receives de-
pending on user feedback.

Feedback y,; on the recommended item i, is returned
by user u, and it may be explicit or implicit depending on
certain systems. The recommendation system receives im-
mediate reward r

Se @,

according to the feedback. Rewards
may not be the same as feedback; that is, reward shaping
technology may be used to improve algorithm perform-
ance.

Transition probability p(s,,, | s,, a,) defines the proba-

t+1
bility of state transition from s, to s,,, after an item is rec-
ommended as an action. An MDP is assumed to have a

Markov property; that is, it satisfies p(s \ Sis Ay oees

r+1
s,a)=p(s,., |s.a). p(s,., |s.a)=1is set at any
time step, which means that the state at the next time step
t +1 is determined once state s, and action a, are fixed. In
this work, the state at ¢ + 1 is updated by appending ac-
tion a, and corresponding feedback y, ; to state s,; that is,
it is accumulative.

Discount factor y € [0, 1] defines the discount factor

measuring the importance of future reward in the present
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state value. Specifically, vy =0 means that the recommen-
der agent only considers the immediate reward while y =1
means that all future rewards are thought to be as impor-
tant as the immediate reward.

Solving the RL task is to find an optimal policy 7,: S
A that maximizes the expected cumulative rewards from
a global view. The expected cumulative rewards can be

presented by a value function V(s) = E_ ( z YT, |s, =
k=0

t

o

s ) or an action-value function Q(s,a) =E, ( S Y ls
=0

=s,a, =a ) . Note that E_ is the expectation under poli-

cy 7r,, tis the current time step, and r,,, presents the im-

t+k
mediate reward at a future time step ¢ + k. A variant of
neural network O(s, a; 6) (i.e., Q-network)"” is adopt-
ed to estimate the policy 7,. A Q-network adopts the ex-
perience replay mechanism and a periodically updated tar-
get network to ensure the coverage of the model. A fi-
nite-size memory called a replay buffer is applied, and
transition samples represented by (s,, a,,
stored there for sampling and model training.

In the recommendation procedure, the state space and
action space are represented by item vectors. In practice,
building item vectors by one-hot encoding is not efficient
enough because of the one-hot encoding’s extremely high

r, S, ) are

I

dimension and sparsity, especially in problems with a
large action space. Instead, we train dense,
vectors end to end in the RL framework. GNNs are inte-
grated into the embedding process because of their superi-
ority in representation learning.

low-item

1.2 Item similarity bipartite graph construction

Although a user-item interaction bipartite graph is
widely used in collaborative filtering, it suffers from huge
data size and a high calculational burden. Therefore, we
propose to build an item similarity bipartite graph with the
assumption that a user’s interest does not change frequent-
ly. On the basis of this assumption, we count the frequen-
cy of two items simultaneously existing in one user’s histo-
ry. Assume that two items exist in n users’ histories; they
are thought to be similar if n=g, where g denotes an item
similarity coefficient. An edge exists between two similar
item nodes in the item similarity graph. We set all edges
to have equal weights initially and learn the contribution of
each neighbor to central nodes with an attention network.
A toy sample of a user-item interaction bipartite graph and
an item similarity bipartite graph is illustrated in Fig.2.

Through the design of the item similarity graph, struc-
tural information among items is modeled with the graph
size sharply decreasing because user nodes are no longer
built in it.

1.3 Model architecture

We now present details of the proposed GE-ICF frame-

work, the architecture of which is illustrated in Fig. 3.
The framework is structured with four components: 1) an
embedding layer that initializes all item embeddings in the
system; 2) an embedding propagation layer that refines
the item embeddings by injecting structural item similarity
relations; 3) a stacking self-attention block that takes
item embeddings and a user’s corresponding feedback as
input to generate a user profile; 4) a policy layer that pre-
dicts the most preferable item for the user. The frame-
work is trained end to end with Q-learning'"’.
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Fig.2 Illustration of a user-item interaction bipartite graph and
an item similarity bipartite graph. (a) User-item interaction bipartite

graph; (b) Item similarity bipartite graph
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Input
Fig.3 Architecture of the GE-ICF framework

e

1.3.1 Embedding layer

Given a user state s, = {iy, ¥, ;5 s [,_15 Y, }» We first
represent items i, with embedding vectors. We build an
embedding lookup table X € R"** for the initialization of
all N items’ embeddings in the system, with d, denoting
the embedding size. The embedding lookup table is ini-
tialized randomly and optimized in an end-to-end style.
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In contrast to traditional collaborative filtering methods,
which take these ID embeddings as items’ final embed-
dings, they are refined by propagating the information of
similar items on an item similarity graph in the GE-ICF
framework, thus leading to effective item representa-
tions.

1.3.2 Embedding propagation layer

We develop an embedding propagation layer from the
idea of GAT. This layer aims to aggregate similar items’
features to refine the central nodes’ embedding vectors. It
takes the embedding lookup table X € R*** and item sim-
ilarity bipartite graph as input and outputs a graph-aware
embedding lookup table X' € R"**, thus transforming an
item i’s embedding vector from x, € R” to x/ e R”.

A shared weight matrix W e R“** is necessary in the
first step for transforming inputted embedding vectors into
high-order features. This step allows the framework to
Then,
mechanism attention: R* x R“—R is adopted to measure
different importance levels of neighbor nodes for central
nodes in the form of attention coefficients:

obtain sufficient expressive power. an attention

e, = attention( Wx,, Wx,) (2)

where e is an attention coefficient calculated to measure
the contribution of a neighbor node j e N, for the central
node i, and N, denotes all the one-hop neighbors of
node i, in the graph as well as the node i ., itself. A
softmax function is then applied to all attention coeffi-
cients e;, as

exp(e;)
2 exp(e,)

keN,

(3)

a; = softmax,(e;) =

where o, is a normalized attention coefficient that makes
all the importance levels of nodes in N, comparable.

We adopt a single-layer feed forward neural network
for the attention mechanism, in which the normalized at-
tention coefficient can be expanded as

a; = softmax;(e;) =
exp(LeakyReLU(a"[ Wx, | Wx,1)) (4
2 exp(LeakyReLU(a'[ Wx, || Wx,]))

keN,

where a” € R**“ is a parameter vector for linear transfor-
mation; || is the concatenation operation; LeakyReLU
( - ) is a function for nonlinearity modeling.

As the central node i, is already contained in the
node set N,, the message propagation process and the
message aggregation process can be regarded to be con-
ducted simultaneously by a linear combination of the fea-
tures corresponding to related nodes and the nonlinearity
transformation on the combined embedding vector:

x' = (r( szN’aiijj ) (5)

where x/is a graph-aware embedding vector of item i .

We employ multihead attention to stabilize the learning
process of self-attention. The final item vectors can be re-
presented by the concatenation or average of K independ-
ent attention outputs. We find that concatenation is more
sensible to capture graph-aware item representations in

this work .
xi= Lo (X W) (6)

where k is the serial number of each attention head.
1.3.3 Stacking self-attention block

A user profile is then generated by stacking self-atten-
tion blocks with user history and the corresponding feed-
back, and user history is represented with refined item
embeddings.

The numbers of items with different user feedback
items in a user’s history show extreme imbalance ; that is,
positive feedback items are much fewer than negative
feedback items with the assumption that unexposed items
are negative samples for users. As we use a dataset within
an explicit rating in this work, the items in user history
are classified with ratings y, , in user state, and different
rated items are processed independently by stacked self-at-
tentive neural networks''"".

1.3.4 Policy layer

With the generated user profile, we apply a two-layer-
perceptron ( MLP) to extract useful information and mod-
el corresponding action-value function Q,(s,, + ) for all
items under the current state:

Qﬁ(st’ ° ) =ReLU(uTW(1) +b<l))TW(2) +b(2) (7)

where u, is the user profile vector at timestamp 7; W'
W are the weight matrixes of each perceptron layer;
b b'* are the biases of each perceptron layer; ReLU
(- ) is a function for nonlinearity modeling.

The policy 7,(s,) is to recommend item i with maxi-
mal Q-value for user u at time 7.

m,(s,) =argmax,Q,(s,,i) (8)

1.4 Model training

We utilize Q-learning'”’ to train the whole GE-ICF
framework ( see Fig.3). The adopted datasets are divided
into training set I',,, and test set I" ., by users. Before the
interaction, an item similarity graph is constructed with
training users’ interactive data I~

test

wain and item similarity co-
efficient g and is applied to the framework. In the #-th tri-
al, a user state s, = {i,,y,,,*",i,,,y,, | is observed,
and the item with the largest value calculated by the ap-
proximated value function Q,(s,, + ) is chosen as corre-
sponding recommendation i,. The /-greedy policy is used

for exploration during training to enrich the learning sam-
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ples. Then, the recommender agent receives the user’s
At the
same time, the user state is updated into s,,, = {i,,y,, ,
.. ’i”yw_l % .
) is generated and stored in the memory buffer

feedback y,, on i, and maps it into reward r, ;.

Therefore, a new transition sample (s,,i,,

i
T isSis1
for batch learning.

We train the weights in the framework in each episode

by minimizing the mean squared error ;
error(0) =E, ;. . ul (3, =Q,(5,.,i))"] (9)
where

yl=ru,[,+'YI’_}”1‘31),(Q0'(51+1J1+1> (10)
is the target value from the optimized Bellman equation,
and the target network "' is applied to improve system ro-
bustness. v is a discount factor, and Q,-(s,,,,i,,,) is the
Q-value calculated by the target network. Efficient learn-
ing is adopted'"”’ in this study, with y set to be dynamic
for improved model training. M is a transition sample set
stored in the memory buffer.

2 Experiments

We conduct extensive experiments to answer the fol-
lowing questions;

1) Does the application of GNNs refine the item em-
beddings and improve the recommendation efficiency?

2) Does the designed item similarity graph achieve
comparable results to user-item bipartite graphs while
sharply decreasing training time?

3) How does the depth of GNNs influence the final
recommendation efficiency?

The experimental settings are reviewed first in the fol-
lowing subsection. Thereafter, the questions are dis-
cussed in the Results and Analysis section.

2.1 Experimental setting
2.1.1 Datasets

Experiments on recommendation systems should be
conducted online to determine their interactive perform-
ance. However, online experiments are not always possi-
ble as they require a platform and could possibly sacrifice
user experience. Therefore, a stable benchmark dataset,
MovieLens 100K, is adopted for the experiment in this
work. The statistics of the dataset are summarized in
Tab. 1.

To make the experiments reasonable, we assume that

Tab.1 Summary statistics of datasets

Dataset MovieLens 100K
Users 943
Items 1682
Interactions 100 000
Interactions per user 106. 04
Interactions per item 59.45

each item in a user’s history in the dataset is the user’s in-
stinctive action and is not biased by recommendations. In
addition, the ratings from users for items not in their re-
cords are assumed to be 0 following existing studies.
2.1.2 Comparison methods

To verify the efficiency of our proposed GE-ICF frame-
work, we select five baselines among different types of
recommendations for comparison.

1) Random:A policy uniformly samples items to rec-
ommend to users. It is a baseline to output the worst per-
formance, in which no algorithms are used for recom-
mendations.

2) Popular; An algorithm that orders items with the
number of ratings and recommends items accordingly.
Before the popularity of personalized recommendations,
Popular was a most widely adopted policy because of its
surprisingly excellent performance on recommendations.

3) Thompson sampling (TS)"”': An interactive col-
laborative filtering algorithm achieved with the combina-
tion of probabilistic matrix factorization ( PMF ) and
Thompson sampling. Thompson sampling can be replaced
with other exploration techniques, such as GLM-UCB.
We choose PMF with Thompson sampling as a represen-
tation of such techniques to compare it with our algorithm
with the goal of balancing exploitation and exploration in
recommendations.

4) NICE" . A state-of-the-art algorithm that applies
RL to interactive collaborative filtering. We refer to its
idea on the construction of the DQN-based framework and
compare our work with it to verify whether the devised
GNNs make sense.

5) GCQN:”] : A DQN-based recommendation that ap-
plies a user-item bipartite graph to detect the collaborative
signal and uses GRU layers to generate the user profile.

6) GE-ICF. The proposed approach to the interactive
recommendation with the item similarity bipartite graph
devised.

7) GE-ICF-8: The same architecture as the GE-ICF,
except that a user-item bipartite graph is devised in the
framework.

We compare GE-ICF and GE-ICF-38 to investigate
whether the proposed item similarity graph achieves com-
parable performance in abstracting collaborative signals
with the user-item bipartite graph while sharply reducing
the burden on calculation.

We adopt cumulative precision during 7 interactions p,
to evaluate the accuracy of recommendations ;

T

pr=—"2 b (11)

nusers users =1

where b, is a parameter indicating whether the recommen-
dation is satisfiable or not and n . is the number of us-

users

ers. b,=11ify, , =4, and 0 otherwise. As we set the re-

i

ward r; , under the same rule, the cumulative precision is
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equivalent to the cumulative reward in T interactions.

The dataset is divided into three disjoint sets by users:
85% of the users and their interactions are set as a train-
ing set, 5% of the users and their interactions comprise
the validation set, and the remaining 10% of the users are
set as the test set. In our approach, the batch size of
learning is set to be 128, and the learning rate is fixed to
0.001. The memory buffer to replay training samples is
set as large as 1 x 10° for sufficient learning, and the ex-
ploration factor ¢ decays from 1 to O during training. The
optimizer is chosen to be the Adam optimizer. The item
similarity coefficient g is set to be 10. The experiments
are conducted on the same machine with a 4-core 8-thread
CPU (i5-8300h, 2.30 GHz) , Nvidia GeForce GTX 1050
Ti GPU, and 64 GB RAM. We run each model separate-
ly five times under five different seeds and average the
outputs for the final results.

2.2 Results and analysis
2.2.1 Influence of GNNs

The results of p, over different models on the dataset
MovieLens 100K are reported in Tab.2, where T =10,
20, 40.

Tab.2 p, of different models on MovieLens 100K

Method T=10 T=20 T =40
Random 0.292 8 0.629 6 1.308 0
Popular 3.2820 6.124 0 10.660 0
TS 2.170 5 3.564 2 5.4653
GCQN 2.869 5 4.766 3 6.724 2
NICF 4.656 8 8.162 1 13.762 1
GE-ICF 4.671 6 8.290 5 13.934 7

We compare our proposed framework with five base-
lines and find that when 7 =10, 20, and 40, the pro-
posed framework remarkably outperforms the other base-
lines in terms of recommendation accuracy. This result
verifies that the embedding propagation layer we proposed
indeed improves the model’s capability of detecting col-
laborative signals and improves the recommendation accu-
racy in a cold-start scenario.

2.2.2 Efficiency of the proposed item similarity
graph

The algorithms GE-ICF and GE-ICF-8 are further com-
pared on p, and seconds per training step ( SPT) with T
=40 in Tab. 3. Although the precision of GE-ICF-8 is
slightly higher than that of GE-ICF when T is small, the
training time of GE-ICF-gB is more than one and a half
times as long as that of GE-ICF. This result means that
the item similarity bipartite graph achieves comparable re-
sults to user-item bipartite graphs while the training effi-
ciency is improved remarkably.

Tab.3  Performance comparison between GE-ICF and GE-
ICF-B on MovieLens 100K
Method T=10 T=20 T=40 SPT
GE-ICF 4.671 6 8.2905 13.9347 60.61
GE-ICF-B8 4.7179 8.3179 13.903 1 95.73

2.2.3 Influence of GNN depth

To investigate the influence of the GNN layers in the
proposed framework, we vary the depths of the GNN lay-
ers in the range of {1, 2, 3}. Tab.4 summarizes the ex-
perimental results, and the results of the framework with-
out GNN layers are presented for reference.

Tab.4 p, of the GE-ICF framework with different GNN
depths on dataset MovieLens 100K
Layer depth T=10 T=20 T =40
0 4.656 8 8.162 1 13.762 1
1 4.671 6 8.290 5 13.934 7
2 4.722 1 8.240 0 13.8379
3 4.602 1 8.027 4 13.467 4

The results in Fig. 4 indicate that although the applica-
tion of GNN layers improves the recommendation precis-
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ion during time period 7', the recommendation perform-
ance worsens as the depth of the GNN layers increases.
D, achieves the best performance when the GNN layer
depth is equal to 1, and the GE-ICF framework with two
GNN layers works the best in the time period 7' =20, 40.
When the layer depth is up to 3, the recommendation ef-
ficiency decreases more sharply, even becoming worse
than that of the framework without GNN layers. The rea-
son might be that applying an excessively deep architec-
ture would introduce noise to representation learning.
Moreover, the multistacking of GNN layers might bring
about an over smoothness issue.

3 Conclusions

1) A GE-ICF framework is proposed in this work to
enhance neural interactive filtering performance by recom-
mending GNNs to capture collaborative signals. Exten-
sive experiments are conducted on a benchmark dataset in
this work. The results indicate that the recommended
GNNs indeed make sense for the training of item embed-
dings and that the proposed GE-ICF framework outper-
forms others in interactive recommendation tasks.

2) The proposed item similarity graph is of great sig-
nificance because it contains as much collaborative infor-
mation as user-item bipartite graphs while sharply decrea-
sing graph size and shortening training time.

3) Our future work involves several possible direc-
tions. Firstly, we would like to investigate how to extend
the model by incorporating rich user information (e. g. ,
age, gender, nationality, occupation) and context infor-
mation (e. g., location, dwell time, device) in a heuris-
tic way. Secondly, we are interested in the effective utili-
zation of RL in IRSs under the guidance of the diversity
of recommendations, which is the key indicator of model
exploration degree.
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