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Abstract ; The finite element( FE) -based simulation of welding
characteristics was carried out to explore the relationship
among welding assembly properties for the parallel T-shaped
thin-walled parts of an antenna structure. The effects of
fixed
constraints, and welding sequences on these properties were

welding direction, clamping, fixture release time,
analyzed, and the mapping relationship among welding
characteristics was thoroughly examined. Different machine
learning algorithms, including the generalized regression
neural network ( GRNN) , wavelet neural network (WNN)
and fuzzy neural network ( FNN), are used to predict the
multiple welding properties of thin-walled parts to mirror their
variation trend and verify the correctness of the mapping
relationship. Compared with those from GRNN and WNN,
the maximum mean relative errors for the predicted values of
deformation, temperature, and residual stress with FNN were
less than 4. 8% , 1. 4%, and 4. 4% , respectively. These
results indicate that FNN generated the best predicted welding
characteristics. Analysis under various welding conditions also
shows a mapping relationship among welding deformation,
temperature, and residual stress over a period of time. This
finding further provides a paramount basis for the control of
welding assembly errors of an antenna structure in the future.
Key words: parallel T-shaped thin-walled parts; welding
assembly property; finite element analysis; mapping
relationship; machine learning algorithm
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elding assembly is a widely used joining method
due to its high productive characteristics and is ap-
plied in aerospace, aircraft, automobile, and marine en-
gineering industries'' ™. During this process, the existing
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deformation, residual stress, and temperature distribution
have a great impact on the whole product and the assem-
bly performance. Understanding the mechanism of weld-
ing deformation and the interrelation among welding dis-
tortion, temperature, and residual stress is of paramount
importance in the actual manufacturing process.

For welding assembly, researchers focused on the pre-
diction, numerical simulation, and calculation of relative
welding problems. To compute the accumulated distortion
during welding assembly, Murakawa et al. ' proposed a
prediction method that involves inherent strain theory and
interface element formulation and considers the shrinkage
caused by heat input and gap size. Considering the effect
of jig constraint on welding deformation, Ma et al. **'
simulated the transient temperature and welding deforma-
tion with the 3D thermal elastic-plastic finite element
(FE) method and analyzed the welding residual stress.
Bhatti et al. "’ examined the influence of thermo-mechan-
ical material characteristics of different steels on welding
residual stress and angular distortion for T-fillet joints.
Other researchers also employed the thermal elastic-plastic
FE method to predict the residual stress distribution and
distortion by considering the effect of different plate
thicknesses and welding sequences’*'. Cheon et al. "
conducted the numerical thermal-metallurgical-mechanical
analysis of the gas metal arc welding process to predict
the stress distribution and concentration near the welding
line and under nonlinear deflection. Mondal et al. "* re-
searched the effect of welding sequences on residual stress
and angular deformation for arc welding fillet joints with
FE simulation. Lee et al. """’ proposed a computationally
efficient method to predict welding distortion using scalar
input variables and FE-measured distortion rate for large
welded structures. Ahmad et al. "> proposed the thermo-
mechanical FE simulation for three-pass TIG welding to
analyze the thermal distribution, residual stress, and in-
terpass temperature and investigate the effect of welding
speed on residual stress and thermal distribution. Arunku-
mar et al. "’
through ANSYS parametric design language and FE simu-
lation with a 3D conical heat source model to predict the
temperature distribution and residual stress. The above-
mentioned studies mostly employed methods combined

presented the transient thermal analysis
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with FE, such as the inherent strain theory, equivalent
force method, and thermo-elasto-plastic FE method, to
predict and simulate welding distortion or residual stress.
However, only a few researchers examined the interrela-
tion among welding distortion, temperature, and residual
stress and predicted these parameters after welding assem-
bly from qualitative and quantitative perspectives.

In this work, the effect of welding direction, clam-
ping, fixture release time, fixed constraints, and welding
sequences on welding properties was analyzed with FE
simulation. The mapping relationship between welding
deformation, temperature, and residual stress was also
explored. Various machine learning algorithms were uti-
lized to predict the variation trend of welding characteris-
tics and establish their mapping relationship.

1 FE-Based Simulation Analysis of Parallel T-
joint Welding Assembly Characteristics under
Various Conditions

The parallel T-shaped assembly unit was selected as the
research object from the whole antenna structure, and its
FE model is shown in Fig. 1. This unit consists of three
web plates and one base plate with thicknesses of 2 and 6
mm, respectively. Other sizes were also marked. Moreo-

The clamping zone

Web plate 1

-
-

Web plate 2

ver, the black and red arrows denote the welding direc-
tion. For the analysis of the welding characteristics of
thin-wall parts, the selected key points( points 1 to 30 on
the web plate, points 31 to 96 on the base plate) were e-
venly distributed on the web plate and base plate, and the
distance between these points on the base plate and the
bottom of web plate was 8§ mm. For accurate welding
simulation results, the mesh of the connection zone for
the web plate and base plate was dense, and the other me-
shes were relatively sparse.

A 6082 aluminum alloy material was adopted for thin-
walled parts. After the welding characteristics of thin-
walled parts were analyzed through FE simulation with
arc welding, the constraint conditions of the parallel T-
shaped thin-walled parts are marked in Fig. 1; that is, the
fixed constraints are the four corners of the base plate,
and the clamping constraint zone of web plates 2 and 3
are the same as the clamping zone for the first web plate.
The adopted welding heat source of high energy density
was used as the double ellipsoid heat source model to
control and reduce welding deformation, as shown in
Fig.2. The relative welding parameters for the parallel T-
joint thin-walled parts are shown in Tab. 1, and the fillet
weld dimensions for the FE model are marked in Fig. 3.

0IPe. -/'ThcﬁW

Fig.1 FE model of the parallel T-shaped structure of thin-walled parts(unit;mm )

Tab.1 Relative welding parameters

Welding parameter Heat source parameter Weld size
Welding Throat  Horizontal Vertical leg
Welding  Welding ~ Welding Front Rear Width/  Depth/ . Concavity
speed/ . thickness  leg length length
voltage/V current/A efficiency length/mm length/mm mm mm c
(mm-s~ ") h./mm h,/mm v;/mm
12 20 180 0.8 1.5 6 2.5 2.5 2 2.828 43 2.828 43 0.2
Web plate
/

Fig.2 Double ellipsoid heat source model ®"'*’

Fillet weld

Fig.3 FE model and dimension diagram of fillet weld
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In order to better analyze the welding assembly charac-
teristics of thin-walled part structure under various condi-
tions, when the FE simulation analysis is carried out, the
clamping force for fixtures is 200 N and its spring stiff-
ness is | MN/m, and the relative parameters of welding
process are shown in Tab. 1.

The differences of four conditions are as follows:

1) The first condition is that three web plates are sim-
ultaneously welded, and its welding direction is the black
arrow direction which is along the Y-axil negative direc-
tion in Fig. 1. The total analysis time for the welding
process is 360 s, the release time of fixtures is the 240th
s, the release time of the fixed constraints is the 360th s.

2) The second condition is that three web plates are
simultaneously welded, the welding direction of web
plates 1 and 3 is the black arrow direction which is along
the Y-axil negative direction, and the welding direction of
web plate 2 is the red arrow direction in Fig. 1, which is
respectively along the Y-axil positive direction and nega-
tive direction. The total analysis time for the welding
process, the release time of fixtures and the release time
of the fixed constraints are the same as the first condition.

3) The third condition is that three web plates together
with a base plate are welded. Moreover, the welding time
of web plate 1 starts from zero, the welding time of web
plate 2 starts from the 75th s, and the welding time of
web plate 3 starts from the 150th s, and their welding di-
rection is the black arrow direction which is along the Y-
axil negative direction in Fig. 1. The total analysis time
for the welding process is 600 s, the release time of fix-
tures is at the 480th s, and the release time of the fixed
constraints is at the 600th s.

4) The fourth condition is that three web plates togeth-
er with base plate are welded, and the beginning time of
the welding assembly for web plates 1, 2 and 3 together
with base plate are the same as the third condition, and
the welding direction of web plates 1 and 3 is the black
arrow direction, and the welding direction of web plate 2
is red arrow direction in Fig. 1. The total analysis time
for welding process, the release time of fixtures and the
release time of the fixed constraints are the same as the
third condition.

1.1 Effect of welding direction and clamping con-
straint of fixtures on welding assembly charac-

teristics

As shown in the T-shaped thin-walled parts in Fig. 1,
the key points 6, 16, and 26 on the web plate were cho-
sen to analyze the variation rules of temperature, residual
stress, and welding deformation and their mapping rela-
tionship. For the welding assembly characteristics under
the first and second conditions, their variation trends and
results during any change in welding direction are shown
in Fig.4. PT-6, PT-16, and PT-26 denote the key points

6, 16, and 26, respectively, on web plates 1, 2, and 3
of the parallel T-shaped thin-walled part. Meanwhile,
PTr-6, PTr-16, and PTr-26 represent the key points 6,
16, and 26, respectively, on the web plate under reversed
welding direction, that is, the opposite welding direction
of web plate 2.
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Fig.4 Temperature, residual stress, and deformation curve di-
agram for simultaneous welding when changing welding direc-

tion and temperature distribution nephogram.
curve diagram; (b) Residual stress curve diagram; (c) Welding de-

(a) Temperature

formation curve diagram

As shown in Fig.4(a), when the welding direction of
the web plate was changed, an approximate temperature
variation trend was observed under the first and second
conditions. In the preliminary welding stage of the thin-
walled part, the welding temperature of thin-walled parts
was basically at the ambient temperature of 20 °C. With
the increase in welding time, the temperature sharply in-
creased and then decreased. At the 240th s, the clamping
constraint of fixtures was released, and the temperature of
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the selected points 6, 16, and 26 on the thin-walled part
slightly increased, then slightly dropped, and finally
reached the ambient temperature after cooling. On the ba-
sis of the temperature distribution nephogram at the 240th
s in Fig. 5, the welding assembly has a greater impact on
the temperature distribution of web plate 2 compared with
that of web plates 1 and 3. This result can be partially at-
tributed to the coupling effect and mutual influence of the
welding temperature field on the three web plates together
with the base plate. However, the temperature curve dia-
gram in Fig.4(a) also shows that the difference in weld-
ing direction has a slight influence on the variation of the
welding temperature of the thin-walled parts.

Temperature/C ;
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Fig.5 Temperature distribution nephogram at the 240th s un-
der the first two conditions corresponding to Fig. 4 (a). (a)
Temperature nephogram under the first condition; (b) Temperature
nephogram under the second condition

As shown in Fig. 4 (b), when the welding direction
was changed, the residual stress of thin-walled parts was
also greatly altered, especially from an overall perspec-
tive. The residual stress of key points 6 and 26 under the
first condition was less than that under the second condi-
tion. Owing to the coupling effect and mutual influence
of welding assembly, the residual stress of key point 16
on the web plate also varied under the first two condi-
tions. When the fixtures were released at the 240th s, the
residual stress of key point 16 under the first condition
sharply declined until it reached a steady state. Mean-
while, the residual stress of key point 16 under the second
condition slightly decreased and then slightly increased to
reach a steady state. Moreover, the residual stress fluctu-
ated by increasing and reaching the peak value at 60th s
and then sharply declining and increasing again to a small
peak value at about 90th s. After fluctuating, the residual
stress continued to decline until the fixtures were released

to reach a steady state. These results showed that the
welding residual stress is not only affected by the welding
direction to a great degree but also by the fixture release
and the coupling effect and mutual influence of the weld-
ing assembly of the multiple thin-walled parts.

As shown in Fig. 4 (c), the welding deformation of
key point 6 under two conditions exhibited a significant
change within 60 to 70 s. At the 240th s, the clamping
constraint of fixtures on web plate 2 was released, and the
welding deformation of key points 6, 16, and 26 on the
thin-walled parts sharply increased and then stabilized.
Owing to the difference in the welding deformations
among the key points, the different welding directions in-
fluenced the welding deformation to a certain extent, as
indicated by the variations in the welding deformation
curve for different key points. However, the release of
fixture constraints had a great impact on the spring-back
of welding deformation in the later welding assembly
stage. Therefore, welding deformation is affected by sin-
gle factors and the combined effects of multiple factors.

On the basis of the above results, the different welding
directions have an influence on temperature, residual
stress, and welding deformation. Before the clamping
constraint of fixtures was released at the 240th s, no spe-
cific one-to-one correspondence was observed among
temperature, residual stress, and welding deformation, as
shown in their variable curves. However, after the release
of the clamping constraint of fixtures at the 240th s due to
the existence of residual stress for the welding assembly
between the web and base plates, the welding temperature
increased in a shorter time, and the residual stress de-
clined, and the welding deformation intensified. When
the welding temperature dropped, the residual stress of
key points also generally declined, and the welding de-
formation slowly increased until it reached equilibrium.
These results reveal a variation relationship between tem-
perature, residual stress, and welding deformation over a
period of time.

Under the third and fourth conditions in Fig. 6, PTs-6,
PTs-16, and PTs-26 denote the key points 6, 16, and 26,
respectively, on web plates 1, 2, and 3 for the same se-
quential welding assembly of the parallel T-shaped thin-
walled part. PTsr-6, PTsr-16, and PTsr-26 represent the
key points 6, 16, and 26, respectively, on the web plate
under reversed welding direction. Moreover, three web
plates were sequentially welded, and the total welding
time was extended.

As shown in Fig. 6 (a), from an overall perspective,
the difference between the temperature variation curve of
key points was smaller, regardless of before or after the
release of the clamping constraint of fixtures. This find-
ing revealed that the welding direction has a minimal im-
pact on temperature variation. However, the clamping
constraint of fixtures was released at 480th s, and the tem-
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Fig. 6 Temperature, residual stress, and deformation curve di-
agram when changing welding direction. (a) Temperature curve
diagram; (b) Residual stress curve diagram; (c) Welding deformation
curve diagram

perature curve first increased and then declined to ambient
temperature. This result showed the effect of the clam-
ping constraint of fixtures on the welding temperature. As
shown in Fig. 6 (b), for the overall welding assembly
process, the residual stress of PTs-6 was less than that of
PTsr-6, and that of PTsr-26 was higher than that of PTs-
26. Owing to the coupling effect of multiple factors, no
difference in residual stress was found between PTs-16
and PTsr-26 in the early stage. However, in the later
stage, especially after the release of the clamping con-
straint of fixtures at the 480th s, the residual stress of
PTsr-26 was higher than that of PTs-26, indicating that
the residual stress on web plate 2 was larger than that be-
fore the clamping fixtures were released. As shown in
Fig. 6(c), when the clamping fixtures were not released
the welding deformation of PTs-6 was slightly larger than
that of PTsr-6, and that of PTs-16 was less than that of

For some local areas, the curves of residual stress and
welding deformation fluctuated. However, from the over-
all perspective, all of these curves firstly increased to the
peak value and then declined. Therefore, when the tem-
perature increased, the residual stress and welding de-
formation also increased with time. Conversely, when the
temperature dropped, the other two parameters showed
the corresponding changes. After the release of the clam-
ping fixtures at the 480th s, the temperature in the local
area increased, the residual stress declined, and the weld-
ing deformation increased with time.
stage of the temperature curve, the temperature and resid-
ual stress declined on the whole, and the welding deform-
ation slightly increased with time. On the basis of the
variation curve in Fig. 6, a mapping relationship exists
between temperature, residual stress, and welding de-

After the rising

formation over a period of time.

1.2 Effect of the releasing time of the clamping fix-
tures and assembly sequence on welding assem-
bly characteristics

In order to better understand and qualitatively analyze
the mapping relationship between multiple properties for
welding assembly, for the first and third conditions, they
have the same welding direction and welding parameters,
but the former is the synchronous welding assembly, and
the latter is the sequential welding assembly which has
different welding start time for three web plates together
with a base plate. Moreover, the releasing time of the
clamping fixtures are also different. In this work, the
effect of the releasing time of the clamping fixtures and
assembly sequence on welding characteristics is expoun-
ded and analyzed. The comparative curve diagrams for
different releasing times and assembly sequences and the
deformation nephogram are shown in Fig. 7.
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Fig.7 Comparative curve diagram for different releasing times
and assembly sequence, and the deformation nephogram. (a)

Temperature curve diagram; (b) Residual stress curve diagram; (c)
Welding deformation curve diagram

As shown in Fig. 7, PT-6, PT-16, PT-26, PTs-6,
PTs-16, and PTs-26 were explained in the above-men-
tioned section. When the released time of clamping fix-
tures on the web plates was changed to the 240th and
480th s, the welding temperature sharply increased and
then declined after the release of the clamping fixtures.
Simultaneously, the residual stress and welding deforma-
tion retained in the thin-walled parts were all liberated.
Thus, the releasing time of the clamping fixtures and as-
sembly sequence has a great impact on welding tempera-
ture, residual stress, and welding deformation. Moreo-
ver, the released clamping fixtures can effectively reduce
residual stress, ensure assembly quality, and relieve the
instability of the welding structure caused by welding re-
sidual deformation. At that moment, when the tempera-
ture declined from the overall perspective, the residual
stress decreased, and the welding deformation increased

with time. Moreover, the residual stress also dropped,
and the welding deformation slowly increased within the
range of 240 to 480 s. However, before the release of
clamping fixtures, the residual stress of the key point PT-
16 and the welding deformation of PTs-16 were most af-
fected by the coupling effect of multiple factors involving
the welding assembly effect of web plates 1 and 3, to-
gether with the base plate, as shown in Figs. 7(b) and
(¢). Meanwhile, this result can be also clearly seen from
Fig. 8 that the variation and distribution of welding de-
formation for simultaneous welding or sequential welding
assembly at the 90th, 240th, and 480th s. Therefore,
these results further confirmed that a mapping relationship
exists between temperature, residual stress, and welding
deformation over a period of time.

Total distortion/mm :

-

Total distortion/mm :

e

Total distortion/mm

Hlm
(¢)

1.68
Fig. 8
sponding to Fig.7 (c¢). (a) Deformation nephogram for sequential
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The deformation nephogram at different time corre-

welding at the 90th s; (b) Deformation nephogram for simultaneous
welding at the 240th s; (c¢) Deformation nephogram for sequential weld-
ing at the 480th s

2 Prediction of Welding Assembly Characteris-
tics for Thin-Walled Parts with Machine
Learning Algorithms

In this work, in order to effectively and accurately pre-
dict the welding deformation, the change of temperature
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distribution, and residual stress for thin-walled parts, the
machine learning algorithms of GRNN, WNN, and FNN
are adopted. In addition, the obtained welding deforma-
tion, residual stress value, and temperature value for key
points on the thin-walled parts through FE simulation are
taken as the training data and testing data of the neural
network.

When these machine learning algorithms are designed,
they are all divided into the input layer and output layer.
Different neural networks also have hidden layers, model
layers, summation layers, and fuzzification layers. The
input layers are respectively the welding deformation val-
ue, temperature value, and residual stress value of the
key points on the thin-walled part, and the output layers
are the welding deformation prediction value, temperature
prediction value, and prediction value of residual stress
for key points. The deformation, temperature, and resid-
ual stress data of welding simulation are also divided into
training data and testing data. Three different neural net-
works mentioned above are used to predict them in order
to verify the prediction effectiveness of the machine learn-
ing algorithms.

The GRNN algorithm is a kind of probabilistic neural
network approach with a forward neural network method,
and it can evaluate the response based on the output re-
sponse and the input parameters' "', Its theoretical basis
is nonlinear regression analysis; if the joint probability
density function of the random variables x and y is f( x,
y), and the observation value of x is X, then the regres-
sion of y relative to X, namely, the conditional mean val-
ue is

’ Y(X,y)dy
Y =E(yX) =~ (1)
fﬁxf(X,wdy

where ¥ is the prediction output under the condition of in-
put X.

Simultaneously, the nonparametric estimation method
is used to estimate the density function f(X,y).

L e (X)X -X)
X T e— - [ ’
f( ’y) n(z,ﬂ_)zo_p*-lzl‘exp[ 20’2
(X -1)°
exp[ _T] (2)

where X, and Y, are respectively the sample observation
value of random variables x and y, and it is the sample of
(X,Y); nis the sample size; p is the dimension of ran-
dom variable x; and o denotes the smooth factor.

By replacing (X,y) with f(X,y), Eq. (2) is substituted

to Eq. (1). The prediction value is obtained as follows "™ ;

3, Vx| - KX X=)

!_” (X_Xi)T(X_Xi>]

; exp[ - 2

Y(Xx) =

(3)

Hereby, the loss function of GRNN is the following
mean square error function.

(v, =9.)° (4)

oo L
n =
where y, is the desired output, and J, is the network pre-
diction output result.

In this study, the cross validation method is used to
train this neural network, which can accurately find the
best expansion factor SPREAD of radial basis function.
Through the method of cyclic training, a better prediction
effect is achieved for welding assembly characteristics.
Meanwhile, the dimensions of the input layer and output
layer are 3 and 1, respectively; the cross-validation fold
for the training data is 4 in this work.

For the WNN algorithm, it is a novel neural network
combining wavelet theory and backpropagation neural net-
work, and the wavelet basis function is taken as the trans-

8] Tt can make full

fer function of hidden layer nodes'"”
use of the localization property of wavelet transform and
the self-learning ability of the neural network. Mean-
while, it has a stronger fault-tolerant ability, fast conver-
gence speed, and good prediction accuracy. According to
Refs. [ 17 — 18], in this work, the Morlet function is

taken as the wavelet basis function, and its equation is
y=e’mcos(1.75x) (5)

In addition, the calculated network prediction error
equation of the WNN method is'"”’

e = éym(ld (k) (6)

where y, (k)is the desired output result, y(k) is the pre-
diction output result. The network prediction error equa-
tion can judge the prediction effect of WNN.

In this work, the number of hidden layer nodes for
WNN is 6, and the number of the input layer and output
layer is also 3 and 1, respectively. Furthermore, the iter-
ation number is 100. When the weight parameter is upda-
ted, for the random initialization of the network connec-
tion weight, the learning rate is 0. 01 ; for the random ini-
tialization of the expansion factor and translation factor of
the wavelet function, its learning rate is 0. 001 in this
work.

The FNN algorithm is a T-S fuzzy neural network pres-
ented by Takagi and Sugeno; this algorithm can describe
the input-output mapping relationship with fuzzy if-then
rules and has a stronger nonlinear approximation capabili-
ty[lg—zoj

: i
X, 18 Fy, -+

, and its fuzzy rules are as follows: R':if x, is F|,
, x,is F., then y, = g, + ¢\x, + - + ¢.x,.

The final output value of the fuzzy model using fuzzy cal-
culation is as follows:
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n
Y w'(qy +q,x + +4,x,)
i=1

n
i

o

i=1

where Fj‘: denotes the fuzzy set; q; is the parameters of the

Y =

(7)

fuzzy system;ew' is the multiplication operator.

In addition, the loss function of FNN is as the follow-
Lo [20]
ing™ .

E [y, (k) =y(k) ] (8)

19
2 k=1
where y, (k) is the desired output result.

According to the input and output dimensions of the
training samples, the number of input and output nodes is
also determined. In this work, the dimension of the input
data is 3; that is, three groups of original simulation data
of welding deformation, temperature, and residual stress
are selected and used as the input data. And the dimen-
sion of output data is 1, and the number of input and out-
put layer nodes are 3 and 1. Moreover, the number of the
fuzzy membership functions is set to 6; therefore, the
network structure for FNN is 3-6-1, and the number of
network training is 100 in this work.

According to the above three machine learning algo-
rithms, in this work, the prediction results are carried out
through MATLAB programs. In addition, the welding
characteristics data of the key points 6 and 36 on the thin-
walled parts are chosen to be taken as original data,
which is being used for training data and testing data to

predict these welding assembly characteristics. Through
1.0

comparing with the original change results, the contrast
curve of prediction results for welding deformation, tem-
perature, and residual stress of key points 6 and 36 are
shown in Fig.9.

In Fig. 9, PT-6 and PT-36 represent the original data of
welding assembly characteristics which are obtained by
FE simulation. Meanwhile, PT-6-GRNN, PT-6-WNN,
and PT-6-FNN denote the prediction values of welding as-
sembly characteristics through GRNN, WNN, and FNN,
respectively. In Figs.9(a) to (c), the welding deforma-
tion, temperature, and residual stress of key point 6 on
the web plate are predicted with GRNN, WNN, and
FNN. Key point 36 on the base plate is also so, as shown
in Figs. 9(d) to (f). As illustrated in the comparison
curve, the prediction curves obtained by three different
machine learning algorithms were close to the original da-
ta curves, and their changing trend was greatly similar to
the original variation trend for all the three characteristics
of the key points on the thin-walled parts. In addition,
the prediction variation curves also mirrored the mapping
relationship among welding deformation, temperature,
and residual stress of thin-walled parts to a great extent.
These results indicated that the employed machine learn-
ing algorithms are feasible and effective for predicting the
welding assembly properties of thin-walled parts.

Key point 6 was taken as an example to illustrate the
variety of different to intuitively understand the errors be-
tween original simulation and prediction values for weld-
ing assembly properties. The error area diagrams between
original values and prediction values from different mach-

0.8} 90 i
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Fig.9 Comparison curve between prediction value and original value for key points. (a) Deformation comparison curve of key point 6;
(b) Temperature comparison curve of key point 6; (c) Residual stress comparison curve of key point 6; (d) Deformation comparison curve of key

point 36; (e) Temperature comparison curve of key point 36; (f) Residual stress comparison curve of key point 36
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ine learning algorithms are shown in Fig. 10. These dia-
grams can reflect the changing patterns of the errors. The
errors between the original value and prediction value
were not large. Especially, those for deformation were
relatively minor, regardless of the algorithm used for pre-
diction. This result further verified the prediction effec-
tiveness of the machine learning algorithms.
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Fig. 10  Error area diagrams between the original value and
prediction value for key point 6 with different machine learning
algorithms. (a) Deformation error area diagram; (b) Temperature er-
ror area diagram; (c) Residual stress error area diagram

The mean of relative errors of the prediction values was
obtained using three different machine learning algorithms
(see Tab.2) to quantify and compare the prediction of
the welding characteristics of different key points on the
thin-walled parts. A comparison of the mean relative er-

ror for the predicted values of welding deformation, tem-
perature, and residual stress for key point 6 revealed that
the employed FNN method had the best prediction effect.
Its mean value of relative error was less than 3% , which
was better than those of the other two methods. Moreo-
ver, the GRNN prediction results were relatively better
than those from WNN. According to the mean relative er-
ror for another key point in Tab. 2, the employed FNN
method had the best effect, and the maximum mean rela-
tive error was no greater than 4. 8% . In addition, the
prediction effect of the GRNN method was also relatively
better. However, from an overall perspective, the mean
relative error for predicting welding deformation was rela-
tively larger than that for the other parameters. In addi-
tion, the mean relative error for predicting the welding
assembly of different key points on the thin-walled parts
using the three prediction methods was less than 9% ,
thus further verifying their prediction effectiveness. A-
mong all the prediction methods, the employed FNN
method was proven to be the best.

Tab.2 Prediction results of the welding characteristics with

machine learning algorithms %
Mean value  Mean value Mean value
Key Prediction of relative of relative of relative
points method error for error for error for
deformation  temperature  residual stress
GRNN 3.6212 1.1380 2.141 6
6 WNN 5.9915 2.6233 4.296 6
FNN 2.1459 0.267 1 0.507 2
GRNN 3.1299 1.3827 2.826 8
16 WNN 6.734 8 3.673 7 4.9305
FNN 3.406 2 0.307 1 1.6125
GRNN 2.7322 1.1399 1.9313
26 WNN 6.157 2 5.0325 3.6214
FNN 1.183 0 0.364 6 0.945 1
GRNN 4.0137 1.856 3 3.850 2
36 WNN 8.458 3 5.8273 8.827 8
FNN 4.547 6 0.813 8 3.944 1
GRNN 4.830 1 1.968 2 6.940 8
69 WNN 5.463 0 3.163 8 8.008 7
FNN 4.073 1 1.3157 4.3399
GRNN 7.8392 2.21217 2.792 0
91 WNN 7.446 9 4.2832 6.461 8
FNN 4.747 5 0.3187 2.674 8

3 Conclusions

1) The employed FE method can effectively simulate
and analyze the effect of various factors and conditions on
welding assembly characteristics. A certain mapping rela-
tionship occurs between temperature, residual stress, and
welding deformation to some extent over a period of
time.

2) The prediction results of the multiple properties for
the welding assembly of thin-walled parts are well in
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agreement with the FE simulation results as confirmed by
different machine learning algorithms, including GRNN,
WNN, and FNN. Moreover, the mean value of relative
error for prediction with different machine learning algo-
rithms is within 9% .

3) The employed FNN algorithm is the best prediction

method from the perspective of quantitative analysis. This
result distinctly verified the effectiveness of the employed
machine learning algorithms.
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