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Abstract: Considering the range anxiety issue caused by the
limited driving range and the scarcity of battery charging
stations, the conventional multinomial logit ( MNL) model
with the overlapping path issue was used in route choice
modeling to describe the route choice behavior of travelers
effectively. Furthermore, the generalized nested logit-based
stochastic user equilibrium ( GNL-SUE) model with the
constraints of multiple user classes and distance limits was
proposed. A mathematical model was developed and solved by
the method of successive averages. The mathematical model
was proven to be analytically equivalent to the modified GNL-
SUE model, and the uniqueness of the solution was also
confirmed. The proposed mathematical model was tested and
compared with the GNL-SUE model without a distance limit
and the MNL-SUE model with a distance limit. Results show
that the proposed mathematical model can effectively handle
the range anxiety and overlapping path challenges.

Key words: traffic engineering; stochastic user equilibrium;
generalized nested logit; multinomial logit; method of
successive averages; distance limit

DOI: 10. 3969/j. issn. 1003 —7985.2022.02.011

oad traffic is one of the main sources of energy con-
Rsumption and environmental pollution because vehi-
cles on the road are dependent on oil-derived fuels in con-
ventional gasoline vehicles (GVs). These fuels accelerate
energy consumption and generate large amounts of
tailpipe emissions of pollutants, such as NO_  and
VOCs'". Instead of gasoline-powered automobiles, auto-
motive manufacturers and research institutes are striving
to look for new types of vehicles, such as electric vehi-
cles (EVs), to cope with these problems'. Compared
with conventional GVs, EVs, especially battery EVs
(BEVs), can significantly reduce greenhouse emissions
and mitigate excessive consumption of fossil fuels’ ™.
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BEVs are also known to rely entirely on electricity. The
electricity consumption of BEVs is generally proportional
to the driving distance, and the driving range of BEVs is
limited by the battery capacity. BEVs cannot be driven
any farther longer once their driving distance is larger
than their driving distance limitation because the battery
storage of BEVs has been exhausted, and public electrici-
ty-charging stations of BEVs are insufficient'®. In this
case, the fear of running out of batteries while traveling
has led to the so-called range anxiety issue. Battery stor-
age and charging technologies have experienced signifi-
cant progress, and the number of new public charging sta-
tions is also increasing. However, range anxiety remains
to be one of the main barriers hindering the widespread
acceptance and adoption of BEVs'"'. A general belief is
that range anxiety might not be completely eliminated in
%1 " Range anxiety will continue to affect
the travel choices of BEV drivers. Therefore, the range
anxiety issue must be properly addressed in the process of
traffic assignment modeling, particularly for regions
where BEVs are expected to grow rapidly.

the near future

Studies on incorporating range anxiety issues into the
traffic assignment model have been conducted in the liter-
ature. Jiang et al. ™™ proposed a user equilibrium ( UE)
model with a distance limit, which is described by setting
the path flow to zero when the path length exceeds the
driving range limit. Jiang et al. """ further extended the
model to investigate the coexistence of GVs and BEVs,
as well as their combined choices of destination, route,
and parking, which are affected by the distance limit.
Jiang et al. ' formulated a network equilibrium problem
regarding the selection of modes and routes based on
travelers who own GVs and BEVs and analyzed the
effects of operation costs and distance limits on vehicle
and route choices of these travelers. However, these stud-
ies did not consider the behaviors of BEV users at the
charging stations. To this end, He et al."” and Xie et
al. """ considered the time required for recharging and in-
corporated the relay requirement of EVs in their long-haul
trips, which is typically beyond the distance limit. Xu et
al. " developed a mathematical model for the UE prob-
lems by considering battery swapping stations and road

1 [13]

grade constraints. On this basis, Liu et a presented

the UE conditions to describe the route choice behaviors
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of BEV drivers considering flow-dependent electricity
consumption. Tran et al. "' developed a bi-level optimi-
zation framework to determine the optimal location of
public fast-charging stations. Notably,
tioned traffic assignment models are mainly in the UE
context. In this regard, Jing et al. """ formulated a gener-
al MNL-based SUE model with a distance limit to extend
the UE model. Riemann et al. " proposed a mixed-inte-
ger nonlinear model to determine the optimal location of
wireless charging facilities for EVs. The model considers
the interaction between the facility location and the traffic
flow pattern captured by the MNL-based SUE model.
Yang et al. """ proposed a stochastic UE model for EVs
by considering travel time, energy consumption,
charging service time. Huan et al. "' proposed a dynamic
traffic flow assignment model considering the en-route
fast-charging behavior of users. Gao et al. """ proposed a
bilevel model to investigate the interaction between traffic
flow distribution and the location of charging stations in a
hybrid network of EVs and traditional GVs.

Traffic assignment is a fundamental technique for trans-
portation management. The stochastic user equilibrium
(SUE) -based traffic assignment model has been widely

the abovemen-

and

adopted to deal with various perceptions of travelers.
Most SUE models in the literature use the multinomial
logit (MNL) route choice model. However, the assign-
ment results are generally inadequate or impossible to ac-
count for similarities between different paths, that is, the
overlapping path issue, due to the well-known IIA prop-
erty of the MNL model™, Daganzo et al. *' proposed
the multinomial probit (MNP) model, which has an ad-
vantage that the similarity between alternatives can be
considered. However, the MNP model is computationally
unattractive because its probability function is not a closed
form. In addition, other discrete choice models that can
capture similarity among various routes have been exten-
sively studied. The first category is modifications to
MNL, 221 and path-size logit™"™",
which capture similarities through additional terms in the
systematic utilities of the various routes. The second cate-
gory is the generalized extreme value theory, such as the
paired combinatorial logit (PCL) model™"
ted logit (CNL) model™™", and generalized nested logit
(GNL) model™", which capture similarities by allowing
additional general correlation structures. Notably, the
PCL and CNL models are special cases of the GNL mod-
el. Furthermore, some researchers have adopted the
GNL-based route choice model in the SUE modeling
process. Bekhor et al. *'"' proposed a mathematical formu-
lation of the SUE model with GNL by adding an entropy
term to the objective function. Li et al. " extended the
model in Ref. [31] to formulate a GNL-based multiclass
multicriteria SUE model. From a different perspective,

such as C-logit

, Cross-nes-

Koppelman et al. "**! proposed a heterogeneous GNL mod-

el that allows for heterogeneity in error variance and co-
variance structure to represent the complex behavioral
processes involved in choice decision-making.

The range anxiety and overlapping path issues are es-
sential or critical for traffic assignment with motor vehi-
cles involving BEVs. Numerous studies were proposed to
address the overlapping path and the range anxiety issues
in traffic assignment. However, none of these models ad-
dressed the two issues together. Thus, this paper aims to
develop and evaluate a framework addressing the two is-
sues simultaneously. Hence, a generalized nested logit-
based SUE (GNL-SUE) model with multiple user classes
(i.e., GV and BEV users) and distance limits was de-
signed. In addition, the analytical solution was proposed
to solve this modified GNL-SUE model.

1 Generalized Nested Logit Model Review

The GNL model is described as a two-level nesting
structure. Specifically, the upper layer comprises all links
(nests) in the network, and the lower layer includes all
paths ( alternatives) in the path set. Assuming that this
structure is adopted, the probability of choosing path k for
user class i between O-D pair w is then given by

S [laexpeoen ™ (3 (atews (-0 ) ™) ]

wo_

ki — v
Y Canexp (=6,c))" |
kek,

Yw,ik (1)
where c,; is the travel cost of user class i on path k be-
tween OD pair w; 6, is the dispersion parameter that char-

|

acterizes the familiarity of user class i with the road net-
work; «,, is the inclusion coefficient, which indicates
that the portion of alternative k is assigned to nest m be-
tween O-D pair w. Prashker et al. "™ indicated that ", is
computed as a, = (L"/ L})"8",, where L is the length
of link m between O-D pair w, L]’ is the length of path k
between O-D pair w, y is a parameter that characterizes
the driver’s perception of the similarities between different
and &),

routes, y =1, ", 1s a binary variable that indicates

whether a path contains a link: &), is equal to 1 if link m
is on path k between O-D pair w and 0 otherwise; u. is
the nesting coefficient for each nest m between O-D pair
1
K,

m

all alternatives included in nest m. The nesting coefficient

w solved asu, =1 z o, , where K is the set of
k

. satisfies 0 <. <1. In particular, u, =1 indicates the
absence of a common link between the two paths, in
which case the GNL model collapses to the MNL model.

Eq. (1) can be further decomposed into marginal and
conditional probabilities, and the expression may be re-
written as

pu = Y P (m)P!(k|m) Vw ik (2
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The marginal probability can be described as

( 3 (alexp (= 6,c)) )™ )#::,

Pr(m) ) (- o\ B
Z ( z (Ott,';kexp (- 9,‘01:; )) 1l )
m kek,

Yw,i,m (3)

and the conditional probability may be given by the fol-
lowing equation:

w -0 ‘.V» Vg
Pl (k ‘ m) = (alnkéxp( ,CA,)? —_ Vow, i, m, k (4)
D, Caneexp( = 6,c5)) ™
KeK,

2 Proposed Mathematical Model for the Modi-
fied GNL-SUE Model

2.1 Modified GNL-SUE model

The conventional GNL-SUE model is modified in this
paper by incorporating the constraints of multiple user
classes of GVs and BEVs and the distance limit of BEVs
to handle the range anxiety and overlapping path issues
jointly. To simplify the complexity of the modified GNL-
SUE model, a series of assumptions are proposed:

1) The travel demand population includes only GV and
BEV users.

2) The total travel demand for each type of vehicle at
each origin is predetermined.

3) GV and BEV users have the same travel time on the
same path.

4) Without loss of generality, all EVs are fully charged
at their origins.

2.2 Proposed mathematical model

The objective function of the modified GNL-SUE mod-
el with multiple user classes and distance limits can be de-
composed into UE mathematical formulation and two en-
tropy terms.
zes the deterministic UE formulation. The second term
(Z,) is similar to the MNL-SUE model in the formulation
of Fisk'' but is modified to contain inclusion and nesting
coefficients. The third term (Z,) shows that the flow ).
is aggregated by all paths. The modified GNL-SUE mod-
el with multiple user classes and distance limits can be ex-
pressed as the mathematical model shown below based on
the above analyses:

Specifically, the first term (Z,) characteri-

min Z=72, +Z, + Z,

)) (fza(w)dw)
=TS E S

_ 0—; S5 (1 -p) (zf,;k,)ln( Zﬁzm)
(5)

where

Z =

S. t
D 2w =a Ywi (6)
(D, zL;’k)f;m,. =0  Vwimk (7)
= Z Z ;f,‘;,kiﬁf; Ya,i (8)
=>x, Va (9)
fui =0 | Yw,i,mk (10)

where [ . is the flow on path k belonging to nest m for us-
er class i between O-D pair w; ¢ is the total demand of
user class i between O-D pair w; x, is the flow on link a;
x,,; is the flow on link a for user class i; D, is the distance
limit of user class i; L, is the length of path k between O-
D pair w.

Eq. (6) represents the flow conservation constraints;
that is, the flow on all paths connecting each O-D pair
must be equal to the O-D trip demand for user class i. Eq.
(7) indicates that if the path length is less than or equal to
the distance limit for a given user class i, then the flow
on that path is positive; otherwise, the path flow should
be equal to zero. Eq. (8) denotes the incidence relation-
ship between link-path flows. Eq. (9) is a summation of
the link flows of the user class i, while Eq. (10) is the
flow of nonnegativity constraint.

2.3 Equivalence and uniqueness conditions

Proposition 1  The proposed mathematical model is
equivalent to the modified GNL-SUE model with multiple
user classes and distance limits.

Proof Any flow pattern obtained by solving Egs. (5)
to (10) is generally acknowledged to satisfy the SUE con-
dition. The Lagrangian of the proposed mathematical
model can be formulated as

L) =Z+ 3 ZT;'*(q;' -y sz) _
XX X XD - LD (11)

m

where 7; and A}, are dual variables associated with the
flow conservation constraint.

The first-order conditions of the proposed mathematical
model are equivalent to the first-order conditions of La-
the following conditions must hold
at the stationary point of the Lagrangian considering the
path-flow variable, that is,

. IL(fips A) _

mki

grangian. Therefore,

OL(f, e, A) - .
) » =0 Vw,i,mk(12)
i i

The partial derivatives of L(f, u, A) considering the
path-flow variable is then given by

aL(f,E ,A) - 2 tﬂ(‘xa)gzr‘k + @1 fmkil/ S Iu’m +
af:zki a 0, (a;vzk) - 0;
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Mlﬂ w w
( zf:ﬂkl) - )\mkl(Di _Lk) (13)
L(f, m, A) must be minimized considering nonnegative
path flows. Thus, the expression can be rewritten as

/"Lm f:;ki I‘Lm I*Lm
Z‘ z, (.X )6@"‘;1 ( :;k)l/,;,;, 9,' ( Zﬁnl\: )
1 _Mm w w
0 -7 = Au(D, -L) =0 (14)

Assume that the composite path cost for user class i in-
cludes the path travel time and A,(L; — D,). In particu-
lar, A}, (L — D,) is the path out-of-range cost incurred

when the path length exceeds the distance limit of the user
class i.

mki

The equation of path cost is defined as

mla Zt ('x )Suk + /\mla(L: _D,) (15)

Submitting Eq. (15) into Eq. (14) and multiplying
both sides by 6,, the following is obtained:
o

(a:;k)

paln P+ (L) n () O+ =6 =0

(16)

Dividing both sides by u. and taking the logarithm of
exp as the base, Eq.(16) can be rewritten as

P (X Ao

) (1) /s,

o7 -1 N -0.H,
eXp ( 17-, - )(a:,k) V”“‘exp ( tw mki ) (17)
m Mo
Summing the above expression by path k, the follow-
ing is obtained:
NG o7 . 6.H),
(Sr) " =exn (P 5 ca e (<0 )
k m m
(18)
Elevating both sides to u.,
Zf:;k.- = [exp( 61'7-?‘ - D] [ z (a:;k)l/#:‘ °
k k
—9.H" \ 1m
exp (7k) ] (19)
/'L)Yl

Summing Eq. (19) by link (nest) m,
> = lexp0r) =113 [ 3 Can)™ -
m = -
-6,H.. \ 1~
exp (7H ) ]
Mlﬂ

Dividing Eq. (19) by Eq. (20),
that nest m will be chosen is obtained as shown below.

Z o
Z mek,

(20)

the marginal probability

P,(m) =

Mo
0 H:II\!)/M:V/I ] }

(5 careomn 1~
5 {3 e 1

m

@D

0,/ 1 |

Dividing Eq. (18) by Eq. (19),

S _ (00 1/M:Yexp [(-6.H,)/u, ]
Sl z Cap)exp [(=0,H,,)/p, ]
T

(22)

Pi(k‘m) =

Thus,
sen in nest m.

Therefore, Eqs. (21) and (22) correspond to Eqgs. (3)
and (4), respectively. Notably, the path costs in Egs.
(1), (3), and (4) are denoted by H.,, because the path
out-of-range cost when the path length exceeds the dis-
tance limit is included. Thus, the mathematical formula-
tion presented in Eq. (5) corresponds to the GNL-SUE
model with a distance limit.

Proposition 2 The proposed mathematical model has
a unique solution.

Proof Demonstrating that the Hessian matrix of the
objective function of the proposed mathematical model is
positive definite is sufficient to prove the uniqueness of
the solution. The feasible region of Z, is the same as
Fisk’s formulation; thus,

the conditional probability of path k will be cho-

it is convex. The second deriv-
ative of Z, and Z, can be calculated as follows:

o
9z k=1
af" a}‘” = al'f:nki (23)

mki OF mii 0 otherwise

azz 1 W

u 3 - l’l‘nvl (24)

A i O i 0, z Foi
%

Obviously, the Hessian matrices of Z, and Z, are posi-
tive definite and positive semidefinite, respectively,
which ensures the convexity of the objective function.
Thus, the solution to the proposed mathematical model is
unique considering the path-flow variable f,..

2.4 MSA-based solution to the proposed mathemati-
cal model

The method of successive average (MSA)is adopted to
solve the proposed mathematical model. The application
steps of the MSA algorithm to solve the proposed mathe-
matical model are presented below.

Step 1 Parameter settings. Determine a feasible path
set. Meanwhile, set the distance limit D and the conver-
gence tolerance &.

Step 2 Initialization. Calculate inclusion coefficients
« and nesting coefficients . Find an initial path flow
f". Set iteration counter n =1.

Step 3 Update. Calculate the link flow x'” based on

n)

the current path flow f”. Update the link travel time
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c(x") and path travel time T". Tab.1 Link characteristics of the small network
Step 4 Direction finding. Perform a stochastic net- No. Link £ ¢,

work loading based on the current set of path travel time 1 12 5 600

T, vyielding an auxiliary solution Y. 2 1-3 6 500
Step 5 Move. Set f"*" =f" + (1/n) (Y" - f"). 3 23 7 600

Notably, the step size is the reciprocal of the number of 4 24 8 500

iterations. > S 3 700
Step 6 Convergence test. If || f""" =f" ||/ | f" | Tab.2 Path composition and path length

<g, then stop; else, set n=n+1 and go to Step 3. 0-D Path Node sequence Path length

3 Numerical Examples 14 ; 1122: 4 i
Two road networks are selected in this section for tes- 3 134 9

ting the purpose of this paper. Specifically, a small net- 3000

work containing overlapping and nonoverlapping paths is 1 GNL-SUE model with distance limit

first selected to show the performance of the proposed AZSO-&%{i%%gﬁﬂ%ﬁﬁi@fﬁ? b

mathematical model handling the overlapping path issue. =

The result indicates that the distance limit has an impor- s 2008 M =

tant impact on the path and link flows at equilibrium. The :;/ T

well-known Nguyen-Dupuis network is selected to dem- =

onstrate the performance of the proposed mathematical g 100

model handling the range anxiety issue by analyzing the 5

effect of changes in distance limits on the path flows of Uy

GV and BEV. 0

2
Path number

(a)

3.1 Small network: Performance for overlapping path

issue
600 r——J GNL-SUE model with distance limit
The small network comprises 1 O-D pair, 5 links, and 3 == GNL-SUE model without distance limit
. . . | E=2 MNL-SUE model with distance limit —
paths, as shown in Fig. 1. The total demand is equal to =500
1000. In addition, the BPR function is used to calculate .
. . : . . 5 400
link travel time, in which its coefficients are set to o = 2
0.15 and B8 =4. The distance limit of BEVs is set to 10 Z 3000
herein, and the distance limit of GVs is unlimited. The g
market share for GVs and BEVs is defined as 0.5 and 0. 5, - 2001
respectively. The dispersion parameters of GV and BEV = T
users are respectively set to 0.3 and 0.5. The iteration ac- H
curacy of the MSA-based solution algorithm is defined as & 0 i I;‘ B
=0.000 1. The free-flow travel time and capacity for each Path number
link on this small network are shown in Tab. 1, and the (b)
path composition and length are exhibited in Tab. 2. The 400 o o
values in Tabs. 1 and 2 are adopted from Li et al'™”. Sﬁtgﬁg ﬂgﬁ'ﬁ{ Xiﬂq‘fl}f‘ﬁﬂfﬁ,fg fitmit <
The path and link flows calculated by the proposed 3 00_ L LIEY S Ry e s o
mathematical model (i.e., the GNL-SUE model with a T_: N
distance limit), the GNL-SUE model without a distance ﬁ =
limit, and the MNL-SUE model with a distance limit are % 2001 : -
also shown in Figs.2 (a), (b), and (c), respectively. = N
A B :
= 100f :;; ¥
§
§
0 . A5
1 2 . 3 4 5
Link number
() Origin node €9)
O Destination node Fig.2  Comparison of path flows and link flows at equilibri-
(O Ordinary node

um. (a) Comparison of GV path flows; (b) Comparison of BEV path
Fig.1 Small network flows; (c¢) Comparison of link flows



Generalized nested logit-based stochasticuser equilibrium model with distance constraint of electric vehicles 191

Fig. 2 shows that the path and link flows assigned by
the proposed mathematical model are different from the
GNL-SUE model without a distance limit and the MNL-
SUE model with a distance limit. This difference is due
to the consideration of the distance limit of the BEVs and
the similarities between paths by the proposed model.
More specifically, Figs.2(a) and (b) reveal the results
of path flows assigned by the proposed mathematical
model and the GNL-SUE model without a distance limit,
wherein GV flow is assigned to paths 1, 2, and 3, while
BEV flow is not assigned to paths 1 and 2. GV users are
unaffected by the distance limit, while the length of paths
1 and 2 are greater than the distance limit of BEVs.
Therefore, no BEV users travel on the two paths.

Additionally, Fig. 2(c) shows that the link flows as-
signed by the proposed mathematical model on links 1
and 5 are smaller than those of the MNL-SUE model with
a distance limit. Meanwhile, the link flows assigned by
the proposed mathematical model on links 2 and 4 are lar-
ger than those of the MNL-SUE model with a distance
limit. This finding is due to the MNL-SUE model with a
distance limit, which does not consider the similarities
between the paths. Therefore, the flows of the overlap-
ping links are overestimated. By contrast, the proposed
mathematical model overcomes the IIA drawback of the
MNL-SUE model with a distance limit by considering the
similarity among various paths. Therefore, the links with
multiple overlapping paths are assigned fewer flows than
the MNL-SUE model with a distance limit.

3.2 Nguyen-Dupuisnet work: Performance for range
anxiety issues

The Nguyen-Dupuis network is selected to analyze the
effect of the distance limit parameter on the path flows of
GVs and BEVs. This network includes 4 O-D pairs, 13
nodes, 19 links, and 25 paths, as shown in Fig. 3. The
total demand for each O-D pair is ¢, _, =660, g, _, =495,
q, , =412.5, and g, , =495. Other corresponding pa-
rameters are the same as those set in the small network.
The free-flow travel time and capacity for each link on the
Nguyen-Dupuis network are shown in Tab. 3. The values

1" The path compo-

in Tab. 3 are adopted from Xu et a
sition and length are exhibited in Tab. 4. The values in

Tab. 4 are adopted from Jiang et al'®.

O Origin node
O Destination node
O Ordinary node

Fig.3 Nguyen-Dupuis network

Tab.3 Link characteristics

No. Link I c, No.  Link I c,
1 1-5 7 300 11 8-2 9 500
2 1-12 9 200 12 9-10 10 550
3 45 9 200 13 913 9 200
4 49 12 200 14 10-11 6 400
5 5-6 3 350 15 112 9 300
6 59 9 400 16 113 8 300
7 6-7 5 500 17 12-6 7 200
8 6-10 13 250 18 12-8 14 300
9 7-8 5 250 19 133 11 200
10 7-11 9 300

Tab.4 Path composition and path length
O-D Path Node sequence Path length
1 1-12-8-2 32
2 1-56-7-8-2 29
3 15-6-7-11-2 33
4 1-5-6-10-11-2 38
12 5 1-59-10-11-2 41
6 1-12-6-7-8-2 35
7 1-12-6-7-11-2 39
8 1-12-6-10-11-2 44
9 1-59-133 36
10 156-7-11-3 32
11 1-5-6-10-11-3 37
13 12 1-59-10-11-3 40
13 1-126-7-11-3 38
14 1-12-6-10-11-3 43
15 49-10-11-2 37
16 456782 31
17 4-56-7-11-2 35
42 18 4-5-6-10-11-2 40
19 4-59-10-11-2 43
25 459-10-11-3 42
20 49-13-3 32
21 49-10-11-3 36
43 22 459133 38
23 4-56-7-11-3 34
24 4-5-6-10-11-3 39

The variation of the path flows of GV and BEV with
distance limits is depicted in Fig. 4 to examine the im-
pacts of the distance limit on the path flows of GV and
BEV in each O-D pair.

Fig. 4 shows that only 2 to 4 paths in each OD pair are
available and carry BEV flows when D tightens. BEV
flows are assigned to additional paths due to the increase
in the number of paths available when D loosens, and the
BEV flows gradually tend to stabilize. By contrast, the
GV flows are assigned to each path in four O-D pairs be-
cause no distance limit exists. the GV and
BEV flows on some paths (e. g., paths 1, 10, 16, and
20) show opposite variations as D increases. This phe-
nomenon may be explained by the strong influence of dis-
tance limits on the route choice behavior of BEV users.
In other words, BEV users are not allowed to travel on

Moreover,
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=200 ——GVs on path 1
2150 ——GVs on path 2
S ——GVs on path 3
2100 ——GVs on path 4
> ——GVs on path 5
£ 50 ——GVson path 6
= ——GVs on path 7
EE ) —+—GVson path 8
£ 33 35 37 39 41 43 45
D
(a)
T 120p
A ——GVs on path 9
= ——GVs on path 10
S ——GVs on path 11
5 ——GVs on path 12
= ——GVs on path 13
2 ——GVs on path 14
= G 1 ] 1
E 33 35 37 39 41 43 45
D
(¢
= 1201
<=
- 90k ——GVson path 15
5 ——GVs on path 16
2 60 ——GVson path 17
= ——GVs on path 18
z 30F ——GVs on path 19
= —
= 0 1 1 1 1 1 ]
=
s 33 35 37 39 41 43 45
A D
(e)
7 100-
.80 —e—GVs on path 20
< ——GVs on path 21
2 60 ——GVs on path 22
> 40 —+—GVs on path 23
E3 ——GVs on path 24
3 204 ——GVs on path 25
< 0
g 33 35 37 39 41 43 45
D
(2
Fig. 4

7. 300 —-o--BEVs on path 1
< 250F - men —-»-BEVs on path 2
=200 T@==o-——06-—-0 _a . BEVson path 3
2150 —-o--BEVs on path 4
o —#-BEVs on path §
G S —-a-BEVs on path 6

—<-BEVs on path 7
—-=»-BEVs on path 8

-o--BEVs on path 9

-»-BEVs on path 10
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(h)

Variation of path flows of GV and BEV with the distance limit. (a) GV path flows in O-D pair (1, 2); (b)BEV path flows in O-

D pair (1, 2); (c¢) GV path flows in O-D pair (1, 3); (d) BEV path flows in O-D pair (1, 3); (e) GV path flows in O-D pair (4, 2); (f) BEV
path flows in O-D pair (4, 2); (g) GV path flows in O-D pair (4, 3); (h) BEV path flows in O-D pair(4, 3)

paths restricted by distance; thus, they tend to choose
short paths to complete their trips. These short paths will
then become oversaturated due to the entry of BEV users,
which causes a significant decline in the capacity of the
links contained in those paths and a substantial increase in
path travel time. Therefore, GV users prefer to use these
unsaturated paths to reduce their travel time.

4 Conclusions

1) A modified GNL-SUE model is proposed by incor-
porating the constraints of multiple user classes with dis-
tance limits on BEVs. An equivalent mathematical model
and associated solutions were also provided for the pro-
posed model.

2) The distance limit has an impact on the path and link
flows at equilibrium, and the proposed mathematical
model can overcome the IIA drawback of the MNL-SUE
model with distance limits by handling the overlapping
path issue.

3)Results using the Nguyen-Dupuis network show that
the proposed approach can handle the range anxiety issue

by selecting different distance limit parameters in traffic
assignment.
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