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Abstract: To numerically solve the initial-boundary value
problem of the Korteweg-de Vries equation, an equivalent
coupled system of nonlinear equations is obtained by the
method of reduction of order. Then, a difference scheme is
constructed for the system. The new variable introduced can
be separated from the difference scheme to obtain another
difference scheme containing only the original variable. The
energy method is applied to the theoretical analysis of the
difference scheme. Results show that the difference scheme is
uniquely solvable and satisfies the energy conservation law
corresponding to the original problem. Moreover, the
difference scheme converges when the step ratio satisfies a
constraint condition, and the temporal and spatial convergence
orders are both two. Numerical examples verify the
convergence order and the invariant of the difference scheme.
Furthermore, the step ratio constraint is unnecessary for the
convergence of the difference scheme. Compared with a
known two-level nonlinear difference scheme, the proposed
difference scheme has more advantages in numerical
calculation.
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he Korteweg-de Vries (KdV) equation was derived

by Korteweg and de Vries'' in 1895 and has a his-
tory of more than 130 years. The KdV equation is one of
the classical mathematical physics equations. The KdV
equation plays an important role in nonlinear dispersive
waves and has a wide range of applications. Many schol-
ars have investigated its solutions from the point of view
of analysis and numerical value. Moreover, the general
solutions of the KdV equation are difficult to obtain.
Therefore, many numerical methods, such as the finite
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, spec-

difference method*™® | finite element method'
tral method "™, and meshless method "™’
applied to solve the KdV equation. Among them, the fi-
nite difference method is simple and easy to implement on
computers. The finite difference method is an important
method for solving nonlinear evolution equations. Mean-
while, the theoretical analysis of the difference scheme is
relatively difficult, particularly for the initial-boundary
value problem. Consequently, we will use the finite
difference method to solve the initial-boundary value
problem of the KdV equation in this study.

When solving nonlinear evolution equations, we need
to consider the corresponding initial and boundary value
conditions. The three main types of problems are the ini-
tial, periodic boundary, and initial-boundary value prob-
lems. Currently, many studies on solving nonlinear evo-

, have been

lution equations using the finite difference method have
been conducted. Some of them analyzed the initial value
problems. For this class of problems, difference schemes
were conveniently established by adding homogeneous
boundary conditions to the boundary in the practical com-
putation, which is a Dirichlet boundary value problem. If
the highest order of the spatial derivative of the equation for
the space variable x is two, then the addition of homogene-
ous boundary conditions will not affect the construction and
analysis of difference schemes, such as Burgers’ equation;

u, +uu, =vu,
where v is a positive constant. The difference scheme has
the same form at all inner grid points. If the highest order
of the spatial derivatives is over two, then the difference
will be significant because of the presence of derivative
boundary conditions, such as the KdV equation;

u, +yuu, +u, =0

where 1y is a constant whose boundary conditions'”’ are

u(0,t) =u(L,t) =u (L,t) =0 =0

The boundary condition is asymmetric, which means
that the difference scheme will also be asymmetric.
Therefore, for the initial-boundary value problem of the
KdV equation, the construction and analysis of difference
schemes need to be more detailed. Studies of the periodic
boundary problems of the KdV equation using the finite
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difference method have also been conducted. However,
because of the existence of derivative boundary condi-
tions, similarly generalizing the method for the periodic
boundary value problems to the initial-boundary value
problems of the KdV equation is difficult.

Recently, we established two finite difference schemes
for the KdV equation with the initial-boundary value con-
ditions in Ref. [ 5]. One was a nonlinear difference
scheme and the other was a linearized difference scheme.
The nonlinear difference scheme was proven to be uncon-
ditionally convergent, whereas the linearized difference
scheme was conditionally convergent.
these two finite difference schemes was the first order in
space. Subsequently, in Ref. [6], we established a non-
linear difference scheme and proved that its spatial con-
vergence order was two. In the numerical examples, we

The accuracy of

solved the nonlinear difference scheme using the Newton
iterative method, which increased the computational cost
To improve computational efficiency
and keep the convergence order unchanged, we consider
establishing a linearized difference scheme for solving the
initial-boundary problem of the KdV equation.

In this study, we construct a three-level linearized

at each time level.

difference scheme for the following problem :

O0<x<L,0<t<T (la)
(1b)
0<t<T (lc)

u, +yuu +u, =0
u(x,0) =¢(x)
u(0,t) =u(L,t) =u (L,t) =0

O0<x<L

where ¢(0) =@ (L) =¢'(L) =0, y is a constant. We
also establish the difference scheme and illustrate the trun-
cation errors in detail. Then, we will present its conser-
vation law, prove its unique solvability and conditional
convergence, and provide some numerical simulations to
verify our theoretical results and compare them with those
of the nonlinear difference scheme in Ref. [6].

1 Difference Scheme

In this section, we will use the method of reduction of
order to establish the difference scheme for Problem (1)
and illustrate the truncation errors in detail.

1.1 Notation

Before presenting the difference scheme, we introduce
the notations used.
We take two positive integers m and n. Then, we let &

=L/m, x;=jh, 0<sjsm; 7r=T/n, 1, =kr, 0<k=n;
0,=1{x l0<j<m}. Q ={t,|0<k<n|. Moreover,
we let

U,=1{v|v= {v;17, be the grid function of (2, | ,

V,=1{v|veU,and v, =v, =0/

h

For any u,ve U,, we introduce the following notations:

‘vajn/z 27(‘},41 - Vj)

v, :%(vm

= —2vj+vj_,)

1

Axvj :ﬁ(‘}jn _ijl)

1
(=30, 30 - )

3
O Viin =

y(u,v), = [MA v, +A (u),]

(u,v) —h( —uyv, + ZMJV +fu v)

m

(axu’axv> =h z (8xuj—l/2) (axvj—l/Z)
=

v (u,u), \u\le/(é’vu,(qu)

ull =
Then, we let
S.={w|w={wl_ be the grid function of (2 |

For any w € §_, we introduce the following nota-

tions ;
k+1/2 k k+1 k 1 k+1 k-1
w =—(w +w'), w =—W" +w )
2 2
k+1/2 _]7 k+1 k _17 k+1 k-1
S,w =—w" =w), Aw =—(w" -w)
T 27
It is easy to know that
aivj+l/2 =5)2;<5xvj+1/2)
A k _ 1 k+1/2 k-1/2
W —7(8,W +8w )

1.2 Derivation of the difference scheme

We construct the difference scheme using the method
of reduction of order.
Let

v=u

X

Then Problem (1) is equal to the following problem of
coupled equations;

u, +yuu, +v, =0 O<x<L,0<t<T (2a)

v=u, O<x<L,0<t<T (2b)
u(x,0) =¢(x) 0<sx<L (2¢)
u(0,t) =u(L,t) =0 0<t<T (2d)
v(L,t) =0 0<t<T (2e)

Then, we denote
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l]f = u(-ijtk) ) v? = V('xi’tk)

0<j<sm, 0<k<n
Considering Eq. (2a) at points (x;,t,,) and (x;,?,)
and using the Taylor expansion, we obtain

U +yp (U, U?), +8V/ =P)
I<jsm-1 (3)

and

AU +yp (U U, +8V) =P!
I<jsm-1, 1<k<n-1 (4)

The constant ¢, >0 exists, such that

[P <c (r+h7), |P/|<c (7 +1)
I<jsm-1, 1<k<n-1 (5)

We consider Eq. (2b) at points (x;,,,,t,) and use the

J
Taylor expansion to obtain

Vi, =8U,,+0 O0<jsm-1,0<k<n (6)

For the discrete error Ql’.‘ in Eq. (6), we obtain the
following results.

Lemma 1! We denote

m=1
S;( = z (- 1)’_1_'/5fo-1/2

I=j+1
0<sjsm-2,0<k<n

The constant ¢, >0 exists, such that

|0/ | <c,h 0<j<sm-1,0<k<n

k 3
| St I <ch O<ks<n

| S <c,h 0<j<m-2,0<k<n

18.88,,, | <,k 0<j<m-3,0<k<n

’

Considering the initial and boundary value conditions
expressed in Egs. (2c) to (2e), we obtain

U=¢(x) O0<j<m (7)
Uy =0, U =0 I<k<n (8)
Vi=0  0<k<n (9)

By omitting the small terms in Eqs. (3), (4), and
(6) and combining them with Eqs. (7) to (9), we con-
struct a three-level linearized difference scheme for Prob-
lem (2), as follows:

Ilsjsm-1

(10a)

172 0 172 2172
Su” +yp(u ,u’”); +6v,” =0

A,uf +7zp(uk,uk)j +5in =0

I<jsm-1, l<ksn-1

(10b)

k

Vi, =8, 0<sjsm-1,0<k<n (10c)

u;’=¢(xj) 0o<sj<sm (10d)
uy =0, u' =0 l<k<n (10e)
vh =0 O<k<n (10f)

1.3 Calculation of the difference scheme

For ease of calculation, we separate the variables for
Eq. (10).

Theorem 1 The difference scheme expressed in Eq.

(10) is equivalent to the following system of equations:

5;“_,1-121/2 +l[l,lf(uo,ul/2)j +1,/f(“0,u]/2),+1:| +8u”? =0

2 xj+1/2

1<j<m-2 (11a)

Bxuiﬁl +'yl/’(u0’ul/2)mf1 +h2’72(5xu11n/%3/2 _35)(“;/%1/2 =0
(11b)

Azufn/z +%[¢(uk,u})1 +l7[/(“k,u})j+1j +51uf+1/2 =0

I<sjsm-2, l<ksn-1

(11c)

Atufn—l +‘ylﬁ(uk’uk)m—l +%(61ui1—3/2 _36)(”:;—1/2) :O

l<k<n-1 (11d)
u?:go(xj) o<sjsm (11e)
uy =u' =0 I<k<n (11f)
and

Vi =0 O0<k<n (12a)

v;‘=28xuf+]/2 —vj]f”
j=m-1,m=-2--0; 0<k<n (12b)
Proof [ ) Based on Eqs. (10) to (12), first, we

determine that Eqs. (10d) and (10e) are equivalent to
Egs. (1le) and (11f), respectively, and Eq. (10f) is
equivalent to Eq. (12a). Moreover, Eq. (10c) is
equivalent to Eq. (12b), and Eq. (10a) is equivalent to

5;"‘.;'121/2 +%[¢<M0’ul/2)j +’l’<uovul/2),‘+1] +

l./2 !/2
53%:0 I<j<sm-2 (13a)
Sty +yp(u’u), L +8v,% =0 (13b)
Based on Eq. (10c), we derive
V;/+21/2 = 6)(”}?1/2 Osjsm-1 (14)

By substituting Eq. (14) into Eq. (13a), we derive
Eq. (11a).
Similarly ,based on Eq. (10f), we derive

1/2
v’ =0

m
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Then, we obtain

1 12 12
7( Va2 ~ 2y -1

m

172

2 12 _ 172 _l 172
o.v TV ) - hz (Vm—S/Z _3mel/2

x m-1 " hZ

By substituting the obtained equality into Eq. (13b)
and using Eq. (14), we derive Eq. (11b).

Similarly, we obtain Eqs. (1lc) and (11d) from
Egs. (10b), (10c), and (10f).

Il ) Based on Eqs. (10) to (12), we determine that
Egs. (1le) and (11f) are equivalent to Eqs. (10d) and
(10e) , respectively, and Eq. (12a) is equivalent to Eq.
(10f). Based on Eq. (12), we derive Eq. (10c) and

1/2
v’ =0

m

(15a)

172

12 .
Viiin —ax“/n/z O<sj=m-1

(15b)

Based on Eq. (15), we obtain

2 12 12 2, . 12
hT( O, s, —30,U,",,) = ?( Vi =3Valin) =

Ol =3 =
By substituting the obtained equation into Eq. (11b) ,
we derive

5 ul/2

t7m-1

+yp(u’u?),  +6v)2 =0

x m-1

(16)

which is Eq. (10a) with j =m — 1. By substituting Eq.
(15b) into Eq. (1la), we obtain

172

S, +JZ~[¢/(u0,um)j +1,l;(u0,u1/2)/.+,] +

vl/Z +vl/2
that is
L 172 0 172 2 172
2 [Sfuj+1 +’ydj(u ,M )j+1 +8xvj+l:| +

Do e W) 48] =0 I<jsm -2
By combining the obtained equation with Eq. (16),
we derive

ﬁ,u;/z +yzp(u0,ul/2), +62xvjl./2 =0 j=m-2,m-3,-,1

which is Eq. (10a) with 1 <j<m -2.

Similarly, we obtain Eq. (10b) from Egs. (1lc),
(11d), and (12).

The proof is completed.

The difference scheme expressed in Eq. (11) contains
only the unknown quantity {u,|. Thus, calculating u
from Eq. (11) is easier than that from Eq. (10). Next,
we describe in detail how to solve the difference scheme
expressed in Eq. (11).

We denote

Based on Eq. (1le), we obtain «’. Then, we com-
pute u' using Egs. (11a), (11b), and (11f). We let w
=u'?. If we determine w, then we can obtain u' using

the following expression :

u' =2w-u’
Based on Egs. (11a), (11b), and (11f), we can

obtain the system of equations for w, as follows:

2

T(an/z _M?n/z) +%[¢(u0’w),‘ +l/’(”0’w)j+1:| +
S, =0  I<jsm-2

2 0 0

7(Wm—] _umfl> +'}’d’(” ’W>m—] +

2
ﬁ( W, 3, =36W, ,,) =0

w, =0, w, =0

The value of w can be obtained by solving the afore-
mentioned system of quatic diagonal linear equations
using the double-sweep method.

Assuming that we already know u* and ', we solve
1 We let w = u*. If we determine w,
k+1 . . .

using the following expression ;

the value of u
then we can obtain u

k+1 k-1
uw =2w-u

Based on Egs. (llc), (11d), and (11f), we can
obtain the system of equations for w, as follows:

2

7(Wj+l/2 _u;'(+l/2) +4‘2L[¢(uk’w),' +l/l(ukyw)j+1] +
6iwj+l/2 =0 l<sjsm-2

2 k k

7(Wm—l U, ) +yp(u W), |+

w, =0, w,=0

;72(8me73/2 -36,w,_1,,) =0 m
The value of w can be obtained by solving the afore-
mentioned system of quadratic diagonal linear equations
using the sweep method.
Furthermore , Theorem 1 illustrates that analyzing Eq.
(10) is equivalent to analyzing Eq. (11).

2 Theoretical Analysis

In this section, we will analyze the conservation,
unique solvability, and convergence of the difference
scheme expressed in Eq. (10).

2.1 Conservation and Unique solvability

First, we provide several lemmas, which will be subse-
quently used.

Lemma 2'™  For Yue U, and veV,, we have

(¢(u,v),v) =0
Lemma 3'°  We let ve U, and u e V, satisfy

v, =0, Vi =01, O0sjsm-1
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Then, we derive

(8v.0) =5-(%)°
(1),

For the continuous problem expressed in Eq.
conservation exists.
Theorem 2"’

to Problem (1), we denote

Supposing that u(x,#) is the solution

E(t) = jLu2(x,t)dx+fui(0,s)ds

Then, we derive

E(t) =E(0) 0<t<T

Similarly , the difference scheme expressed in Eq. (10)
has an invariant.

Theorem 3  Supposing that { ujk , v]l.‘ l0<j<m,0<k<
n} is the solution to Eq. (10), we denote

k ” u' ”2 + H u'” ” ’ 1/2 2
E' = 5 +T[2<O> )’
l<sk<sn

Then, we derive
E'=u|? I<k<n
Proof | ) Taking the inner product of Eq. (10a)
with u"*, we obtain

(5,14'2 ]/2) +’y(¢’(u ul/Z)’uI/Z) +(8ivl/2,l/ll/2) :0
Together with Lemmas 2 and 3, we derive

LHMIHZ_HMOHz ( 17212

T 2
That is,

ul 2 + MO 2

L i A P

Il ) Taking the inner product of Eq. (10b) with 2u",
we obtain

2(A,uk,uk) +2y(zp(uk,u") ut) +2(8ka,uk =0
Il<k<sn-1

Together with Lemmas 2 and 3, we derive

kel || 2 k|2 k|2 k-1 |2
| I 1+

L s et 1
T( 2 - 2 + ()" =
I<ksn-1

That is,
k+1 2 k 2 k 1 2 0 2
7 7 erY ()7 = (7
2 £~ 2

l<sk<sn-1

By adding the equality expressed in Eq. (17) to the
obtained equality, we derive

7 3 7

5 [§;<9 r—

O<sk<sn-1

W)=l |

This completes the proof.

Then, we prove the unique solvability.

Theorem 4 The difference scheme expressed in Eq.
(10) has a unique solution.

Proof We obtain «” using Eq. (10d) and v’ using
Egs. (10c) and (10f).
(10a), (10c), (10e), and (10f),
Considering the system of homoge-

Based on Egs.

. 1 1

we derive 4 and v .
neous equations, we obtain

lu +y¢(u u) _,_752‘,1_0 I<sjsm-1
.

(18a)

Vip =81, O0<jsm-1 (18b)
=0, u,=0 (18¢)

vl =0 (184)

Taking the inner product of Eq. (18a) with u', we
derive
P Ly )+ (8t =0

1
—llu
.

Together with Lemmas 2 and 3, we obtain

1 1
L 12 )7 =0
Then, we have
lu" 1 =0
which follows
ujl =0 O<sjsm

From Eq. (18b) and Eq. (18d), we can get
v} =0

O<sj=sm

That is, Egs. (10a), (10c¢),
unique solutions u' and v'.

(10e) and(10f) have the

k-1 -1

We suppose that u*, «"~' and v, v*"' are known.
(10b), (10c), (10e) and (10f), we
**!. Considering the system of hom-
we obtain

Based on Egs.

k+1

determine u"~ and v

ogeneous equations,

1 + + 1 +
qu : 7¢(u u l)].+?6f,vjl.‘ '=0

27
Isjsm-1 (19a)
Vil =8,  0<jsm-1 (19b)
=0, W =0 (19¢)
Vil =0 (19d)
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Taking an inner product of Eq. (19a) with 2u**", we U2 (el — ot
get z / /+1 - j 1)
m-1
L” Nk +‘y(¢(uk’uk+l) Y 1 (8 LW =0 3 2 (A, U) ee; +*Z (5xU]+1/z)€,+| .
T -2
k+1/2 k+1 Kk k 1\+]
Using Lemmas 2 and 3, we obtain 12 Z [(U7 - U7 (e e e —ee) +
1\ 172 k kl k 1 Kk
L”Mkﬂ HZ"'L V2 2 (U/’ U ) (e €€ 7€ Cn ]
T 2 -

Lemma 5 From the proof of Theorem 4.1 in Ref.

Then, we have [6], it follows that the following equality holds:

Il =0 (8¢ (f) ~ 505 + HfySh -
h. h f ]] m=2
Whieh ToTows 2hz S'QF +2h 2 es.st,, —2e Sk,
u;.”l =0 osj<sm
We denote
Based on Egs. (19b) and (19d), we obtain
Vo0 0<jem 0= B o 0 1 T 1
That is, Eqs. (10b), Eq. (10c), Eq. (10e), and Eg. Theorem 5 We let
(IOf). have the unique solutions u“*' and v**'. LG Iy lr o Ly lc, +6
This completes the proof. 3 0 ST 2(1-0)
2.2 Convergence (3 csT)
exp| ——
Assuming that {u(x,1),v(x,1) | (x,1) € [0 L] x o = 2
4 = 2 2 2 2 2
[0,T]} is the solution to Problem (2) and {u;,v] velo<j 4eiL+8c, (1 +3L) ;L +2¢, +8¢,L
<m,0<k<n} is the solution to the difference scheme 1-A (1 =1)
expressed in Eq. (10), we denote If A <1, then we have
k_ ok C _ ‘ _
ef_”(xf’t"), upy fy=v(xst) v e || <e, (s> +1*)  O<k<n
0<j<m, 0<k<n
Proof It foll fi Eq. (20d) that
By subtracting Scheme (10) from Egs. (3), (4), roof 1) ollows from Eq. ( ) tha
and (6) to (9), we derive the following system of error el =0 (21)
equations ; i
Taking the inner product of Eq. (20a) with 2¢’", we
'/2+7z/;(u el/z) +8)f/2_ P 1<j<m-1 derive
20
( a) 2(8161/2 ,61/2) +2’y(¢(u()’el/2> ,61/2) +2(52 /2,61/2) =2(P0,el/2)
Al +yly(UUY), g (uu), ] +8f; =P] That s,
Isjsm-1 (20b)
1 2 2 A4/2 ]/2 0 1
ff+1/2=5x€f+1/z+Qf Osjsm-1,0<k<n He I*+2(5, =(F,e) (22)
(20c¢)
It follows from Lemma 5 that
el =0 osjsm (20d) )
. /2 172 1 /2\2 /2 A1/2 1/7 -~ 172 A1/2
¢h=0, ¢t =0 l<k<n (20e) (O 7.€7) =5 () =170 +1f”S ths Q"+
m-=2
fi=0 0<k<n (20f) 2h 2 eVZSXS/mm —2e2.87 =

Before obtaining the convergence result, we present the A , =
7(](({)/2) _f[i)/ Q[l)/ +hf[i)/ S(l)/2 _2]’[2 Sjl/ Q}/2 +
=0

following two lemmas.
Lemma 4 From the proof of Theorem 4. 3 in Ref.

172 l 1/2
[5], it follows that the following equality holds: h z €8.5, 12 = S
(Y(U U —y(ut ') ) = By substituting the previously derived equality into Eq.
L[S, 2, el i c kel (22) and combining it with Lemma 1, Lemma 5, and
ST U, - ee) - . . |
12 S o the truncation error expressed in (5), we obtain
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1
L+ oy =

m-2

(PO’el) + zf:)/ZQ(l)& _Zhﬂ)/ZS(l)/Z +4hz S}/ZQ}/Z _
Jj=0
m=2
ZhZ €; 63(5]]/2[/2 + 2em 1 1111/22 =
j=1
iHP°||2+f||e‘ ||2+f TH2AQT) + (f”) +

m=2
21 (8)%)? +4h2 s | +—2(e) +

m=2

23 (8,510 + 5 (el + %( Si)?

7cL(7-+h) *5e H P+ Hel 1+ ()" +
m=2

200h" +205h° + 4c2Lh +2h Y cih“ +20 1
j=1

That is,
(1 —T) le' I’<clL(7> +h*)* +4c: (1 +3L) i’

When r<— 2 , we obtain
lle' > <2 L(7* +1*)* +4c3 (1 +3L)R' <

(2L +4c (1 +3L) [ (7 +h*)*® (23)

Il ) Taking the inner product of Eq. (20b) with 2e £ ,
we derive

2(A,ek,ek) +27(z//(U",U") —w(uk,ek) ,e) +
2(8f,e") =2(P' ") l<k<n-1

That is,
k+1 2 k]2 k|| 2 k-1 2 B B
I R R PR
T 2 2 ’
2(Pk9ek) _27(l//(Uk,Uk) _(ﬁ(ukaek)aek)
I <k<n-1 (24)

It follows from Lemma 5 that

m-2

—foQy + 1fsSy —2h Y, S0 +

j=0

(8¢ = 5 ()

m=2

k k k k
2h z ej(s.ij—l/Z - 2em—lSm—Z
iz

By substituting the previously derived equality into Eq.
(24) and combining it with Lemmas 4 and 1, we obtain

m=2
k=1 k

k172 _ YT k=172 ¢k k-1 -1k
G z U (ej 1 T € €

Then, we derive

Lol 2 + e 17| e
T [( 2 +G )
e 12+l 11* | e ) _
( 2 +G )] ()" =
2(P",e") _Y{L’”j (AU e +
’ 3 “ x> i

h m=2
?2 (6x /+1/2)e/+1e/ +
i=1
m=2
3 LU U (e - el +
ji=1
(U™ = U) (elels - ef*‘e,ﬁl)]} +2/,0} -

m=2

2hfiSk +4hZSQ —4h2e5tS, L +del SE <

j=0

P+ e 17+ Ty | Ceg lle I lTe® I +

T k+1 k T k k-1

el I+ e, et Il e ) +
1,4 ‘

—(ﬁ))z +2(0)° +—(fo)2 +2h°(S5)* +
m=2

4h2 N +h2(e) +

4h2 (arS; 1/2) +h(e,,, 1) +7(Sm 2)

Using the truncation error expressed in Eq. (5), we ob-
tain

Tl
"

(IIe +||e
2

K+l [| 2 k|2
I +||e I

£ G2 ) _

+ G"’”z) ] +(f)?

leZ

_ oyl .
GL(r* +1)* +2][e" |* +%< Fet 7 +1le %) +

CO"Y‘T kel |2 L2 k2 k-1 ]| 2
e e IEwllet 17w llet 7+ lle™ 1) +

m-2
(fo)? +2ch" +26h° +4RY oh' +
j=0

m=2

4nY Eh +4CH < ( 2‘ L5 ”).
j=1
Le™ 1>+l 1* e[ + 1 Hz) )2
( + + ()7 +
2 2
(L +2¢ +8cL) (72 +1)*? l<sk<sn-1
(25)
We let
Ef = Hek H2 ” ! H2 LG
2
It follows that
k-1/2 Hek ||2+ ”ek_l ”2
|G | < 5
If A <1, then we derive
k|2 k-1 2
aon el 1
ek 2+ ek*l 2 B
(1+/\)H || 2” || sHek”Z_I_Hek]”Z

It follows from inequality (25) that

1

—(E""' -E")<c,(E""' +E") +
;



210

Wang Xuping and Sun Zhizhong

(ciL+2c; +8cL) (7 +h*)® I<k<n-1
That is,

(1 —C3T)Ek+l$(1 +c37)Ek +

(L+2c +8aL)7(7 +h*)? Isksn-1

1 .
When C3TS?, we derive

3c¢iL
B < (1 43c,0) E +(CT‘ 3¢ +12c§L)T(TZ 1)
I1<k<sn-1

Using the Gronwall inequality, we obtain

E' <exp{3c,(k-1)7| [E1 +
clL ¢ 4cL
oz 2, T
(203 c, c,

)(72 +h)’ ] <
exp(3e,T) [ e 7+ e[ +

)(72+h2)2]

clL ¢ 4cL
( — I<k<n

—+—+
2¢, ¢ C,

By substituting Eqs. (21) and (23) into the previous-
ly derived inequality, we obtain

E'<exp(3¢,T) (2ch 142 (1 43L) +

j:+f+42L)(72+h2)2 I<k<n
It is easy to know that
HEk H2+2Hek_] ”2$%§(72+h2)2 1<k<n
Consequently ,
le" | <c,(7* +1*)  1<ksn

This completes the proof.
3 Numerical Examples

In this section, we present two numerical examples.
The numerical results illustrate the efficiency of the differ-
ence scheme expressed in Eq. (11).

In Ref. [ 6], we presented the following two-level non-
linear difference scheme:

6tu;{++11//22 +%[lﬁ(uk+l/z,uk+l/2)j+lp(uk+l/2,uk+l/2)j+l] i

3 k+1/2 .
Sutl?=0  1<jsm-2,0<k<n-1 (26a)
k+1/2 k+1/2 k+1/2
6lum—l +yll/(u U >m—l +

2ol =35l k) =0 o<ksn-1

(26b)
o<j<sm

uf:qp(xj) (26¢)

k k
uy, =0, u, =0 I<k<n

(26d)

and solved it using the Newton iterative method.
We make the numerical solution corresponding to the
step size h and 7 be {u;(h,7) l0<j<m, O0<k<n}|.
We denote the error as follows;

2

E(h,7) = E&thmZ: [u‘f(h,r) —uﬁ,(%,f)]

F(h,r) =

u'(h,r) —uz"(h,%) H

When 7 is sufficiently small, the spatial convergence
order is defined as follows:

=toe ()

When £ is sufficiently small, the temporal convergence
order is defined as follows

r_=log

r

| 1;(<hh’ ; TT>) )

Example 1 In Problem (1), wetake T=1, L=1, vy
= -6, p(x) =x(x-1)*(x =2x* +2). The exact solu-
tion is unknown.

The difference scheme expressed in Eq. (11) will be
employed to numerically solve this problem. The numeri-
cal accuracy of the difference scheme in space and time
will be verified.

By varying step size h with the sufficiently small step
size 7 =1/12 800 and varying step size 7 with the suffi-
ciently small step size # =1/12 800, the numerical errors
and convergence orders for Scheme (11) are listed in
Tabs. 1 and 2. From these tables, we determine that the
numerical convergence orders of Scheme (11 ) can
achieve O( 7> + 1) , which is consistent with Theorem 5.

Tab.1 Errors and space convergence orders of Example 1 (7
=1/12 800)

Scheme (11) Scheme (26)

h CPU CPU

ECh,7) Th time/s ECh,7) T time/s

1780 8.250 x 107 0.14 8.249x1077 0.42
1/160 2.062x10°7 2.00 0.19 2.062x10°7 2.00 0.44
17320 5.156x10°7 2.00 0.28 5.156x10°% 2.00 0.63
1/640 1.289x10°% 2.00 0.48 1.289x10°% 2.00 1.06
1/1280 3.215x107° 2.00 0.94 3.210x10°° 2.01 8.40

Tab.2 Errors and time convergence orders of Example 1 (& =
1/12 800)
Scheme (11) Scheme (26)
T CPU CPU
F(h,7) " ime/s F(h,7) " fime/s
1780 1.410 x107? 0.09 4.445x1073 4.60
1/160 4.363x107% 1.69 0.16 1.030x10°% 2.11 9.11
1/320 1.005x1073% 2.12 0.32 2.508 x10~* 2.04 17.35
1/640 2.451 x10°* 2.04 0.63 7.133x10°> 1.81 32.65
1/1280 7.068 x10~> 1.80 1.24 1.843x107> 1.95 63.29




A second-order convergent and linearized difference scheme for the initial-boundary value problem of... 211

Furthermore, we observe that the difference scheme ex-
pressed in Eq. (11) is more computationally efficient
than the nonlinear difference scheme expressed in Eq.
(26).

Fig. 1 indicates that the energy of Scheme (11) is con-
served for Example 1.

We denote

H(h,7) = max | ' (h,7) |

and

" \NH(h,7) )" 7 *\ H(h,7)
29450

2944 §F === =========-=—-—-—-——————
2944 6 “",12’:}72‘8

- I —7=

2.:2.9444 G omUng
= 294421

[§3)

2944 0}

2943 81

2943 6|
23 5 6 7 8

Fig.1 Energy conservation law of Example 1

Example 2 We conduct a numerical experiment with

the exact solution of a solitary wave' ™! , as follows:

u(x,t) =4sech®(x —4r-4)
0=sx=<20, 0<r<l

The corresponding parameter is y =3.

Similarly, we compute the example using the differ-
ence scheme expressed in Eq. (11) and observe the con-
vergence. First, we fix the time step size as 1/3 200 and
calculate the errors and convergence orders in the space
directions, as shown in Tab. 3. Then, we fix the space
step size as 1/3 200 and calculate the errors and conver-
gence orders in the time directions, as shown in Tab. 4.

Tab.3 Errors and space convergence orders of Example 2

h T H(h,r) ry
1/10 1/3 200 1.073 x10 !
1/20 1/3 200 2.721 x10 2 1.98
1/40 1/3 200 6.855 x10 73 1.99
1/80 1/3 200 1.976 x 10 3 1.80

Tab.4 Errors and time convergence orders of Example 2

h T H(h,T) re
1/3 200 1/10 6.082 x10 !
1/3 200 1/20 1.643 x10 ! 1.89
1/3 200 1/40 4.196 x10 72 1.97
1/3 200 1/80 1.057 x10 72 1.99

Notably, the numerical results are consistent with the
theoretical analysis. In Fig. 2, the numerical and exact
solution curves are plotted for r =0.25,0.5,0.75,1. 0.

Fig. 2 shows that the numerical solutions are consistent
with the exact solutions.

45 45

4.0 ' 4.0

35 35

3.0 3.0

25 25
= 20 220

1.5 15

1.0 1.0

0.5 0.5

0 0
=15 20 035 10 15 20

X. X

(a) (b)
Fig.2 Curves of Example 2 (h=7=1/40). (a) Numerical so-

lution; (b) Exact solution

4 Conclusions

In this study, we consider the numerical solution to the
initial-boundary value problem of the KdV equation using
the finite difference method. With the use of the method
of reduction of order, we establish a three-level linearized
difference scheme and show that it is more computational-
ly efficient than the two-level nonlinear difference scheme
through numerical simulations while retaining the same
convergence orders. Using the energy analysis method,
we prove the conservation, unique solvability, and condi-
tional convergence of the difference scheme.

In Theorem 5, the convergence of the difference
scheme was proven under the constraint of the step size
This difference scheme may be unconditionally
convergent. Indeed, we found from Example 1 that the

ratio.

restriction of step size ratio is unnecessary for ensuring
that the convergence result holds. However, we have not
yet discovered a better method to prove the unconditional
convergence and will continue our research in future
work.
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