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Abstract: To predict the temperature of a motorized spindle
more accurately, a novel temperature prediction model based
on the back-propagation neural network optimized by adaptive
particle swarm optimization ( APSO-BPNN) is proposed.
First, on the basis of the PSO-BPNN algorithm, the adaptive
inertia weight is introduced to make the weight change with
the fitness of the particle, the adaptive learning factor is used
to obtain different search abilities in the early and later stages
of the algorithm, the mutation operator is incorporated to
increase the diversity of the population and avoid premature
and the APSO-BPNN model is constructed.
Then, the temperature of different measurement points of the
motorized spindle is forecasted by the BPNN, PSO-BPNN,
and APSO-BPNN models. The experimental results
demonstrate that the APSO-BPNN model has a significant
advantage over the other two methods regarding prediction

convergence,

precision and robustness. The presented algorithm can provide
a theoretical basis for intelligently controlling temperature and
developing an early warning system for high-speed motorized
spindles and machine tools.
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spindle;

igh-speed computer numerical control (CNC) ma-
H chine tools are the technical foundation of the equip-
ment manufacturing industry. As the core component of
CNC machine tools, the technology and performance of
the motorized spindle unit affect machine tool develop-
ment. As a highly integrated spindle, the power loss of
the motor and the friction heat of the bearing of a motor-
ized spindle are the main heat sources. The thermal char-
acter directly affects the machining accuracy and service
life of motorized spindles and machine tools'". Accord-
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ing to statistics, the error caused by the thermal deforma-
tion of machine tools accounts for 40% to 70% of the to-
The

temperature increase is an important index for evaluating
(351

tal manufacturing error in precision machining''.
the high-speed operation of motorized spindles
Therefore, developing motorized spindles inevitably re-
quires accurate prediction and control of the temperature
increase and thermal deformation to realize the automation

67
. However, be-

and intelligence of motorized spindles'
cause the thermal structure of spindles has complex
boundary conditions and joint surfaces, large errors are
obtained in the theoretical modeling and finite element
analysis of their thermal design'™ . Temperature prediction
is difficult because the temperature of the internal parts of
a motorized spindle is not easy to obtain directly, and the
temperature distribution of a motorized spindle is nonlin-
ear and complex, resulting in the low accuracy of the pre-
dicted temperature. Therefore, the temperature increase
characteristics of spindles must be obtained through a
thermal balance test, and the model parameters must be
checked. Zhang et al. " proposed a prediction model of
temperature increase in high-speed and precision motor-
ized spindles, which was combined with the calculated
results of the finite element model and test data to accu-
rately predict the temperature field of a motorized spindle
under different working conditions. A comprehensive pre-
diction model was applied to forecast the thermal-mechan-
ical behavior of a spindle-bearing system considering vari-

[10]

ous bearing surroundings Liu et al. """ introduced a

BP neural network for the thermal error prediction of a

. . .. . 12
five-axis machining center. Jian et al. '

predicted spin-
dle thermal deformation using the BPNN. Kumar et
al. """ presented a hybrid model based on particle swarm
optimization (PSO) and an emerging extreme learning
machine to forecast the temperature. The BP neural net-
work based on the PSO algorithm was applied to predict
the high-speed grinding temperature of titanium matrix
" Liet al. " established the spindle thermal

error prediction model based on the improved PSO (IP-

composites'

SO) -BP neural network, and IPSO was used to optimize
the parameters of the BPNN based on the genetic algo-
rithm (GA). An adaptive neuro-fuzzy inference system
was used to design two thermal prediction models for
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thermal error compensation in machine tools'®. These
models have high accuracy in predicting a temperature in-
crease or thermal error. However, the above mentioned
neuro network models still have deficiencies, such as a
lack of population diversity and an inadequate design of
learning factors, weights, and other parameters.

In this paper, a BP neural network model based on the
adaptive PSO ( APSO-BPNN) algorithm is presented to
forecast the temperature increase of a motorized spindle.
To improve the generalization ability and prediction accu-
racy of the APSO-BPNN algorithm, the key parameters
of the PSO algorithm, the inertia weight and learning fac-
tor, are optimized, and the mutation operator is integrat-
ed to enhance the diversity of the population and improve
the success rate of the optimization. Further, the predic-
tion performance of the BP model, PSO-BPNN model,
and APSO-BPNN model are compared, and the results
show that the APSO-BPNN model has the best prediction
accuracy and generalization ability.

1 Modeling Methods for Temperature Predic-
tion of a Motorized Spindle

1.1 Basic BP neural network model

BPNNS are trained according to the error back-propaga-
tion algorithm, and they have been applied in many fields
because of their parallel processing ability, fault tolerance
ability, nonlinear  mapping.
Kolmogorov’s theorem!”’, a three-layer BPNN can ap-
proach any nonlinear function in theory. The main char-
acteristics of a BP network are signal forward transmission
and error back-propagation. Therefore, a BPNN can be
used to establish the nonlinear mapping relationship be-
tween the temperature of motorized spindle parts and

and According  to

time, ambient temperature, and coolant temperature, and
the node of the output layer is the temperature of the front
bearing outer ring, the temperature of the rear bearing
seat, and the temperature of the stator end.

The node number in hidden layer neurons is determined
by

[=vm' +n' +a’ (1)
where m’ and n' are the numbers of nodes in the input
and output layers, respectively, and a’ is a constant with-
in [1, 10].

According to Eq. (1), the node number in a hidden
layer is determined to be 8 by experiments in this paper.
The number of iterations is 100, the learning rate is 0. 1,
and the target error value is 1. 0 x 107,
functions of the hidden layer and the output layer neurons
are tangent S-type transfer functions ( Tansig) and linear
transfer functions ( purelin), respectively. Trainlm is
used for network training. Therefore, the structure of the

The transfer

BP network is determined as 3-8-1.

1.2 BP model based on the particle swarm optimiza-
tion algorithm

Although the steepest descent method is adopted in the
BP network algorithm, it has problems such as a slow
convergence speed and low calculation accuracy, and it
easily falls into a local minimum value. However, the
PSO algorithm is a swarm intelligence algorithm based on
population. It can realize the optimization search through
the cooperation and competition between particles to
avoid falling into a local optimum. PSO has a higher con-
vergence speed and global optimization ability. There-
fore, the PSO algorithm is adopted in this paper to opti-
mize the weights and thresholds of the BP network.

In the PSO algorithm, the particles search in the solu-
tion space by following the current optimal particle. The
PSO data are initialized as a group of random particles,
and then the optimal solution is found through an iteration
method. In each iteration, the particle velocity is adjusted
based on individual and global extrema, which are com-
posed of an inertial part, cognitive part, and social part.
When each particle finds an optimal value, it updates its
own speed and position using the following equations'™ :

t+1

Via =wV;d + 6,7 (Presiia _p:d) + 6,75 (8resiia _P;d) (2)

t+1

P =P +V:d+l (3)
where v,, and p,, are the velocity and position of the i-th
particle in the d-th generation, respectively; ¢ is the num-
ber of iterations; w is the inertia weight; c, is called the
cognitive learning factor; ¢, is the social learning factor;
r, and r, are two uniformly distributed random numbers
independently generated within [0, 11", and Presiia and
8uesia are the individual and the swarm historical best so-
lutions at the d-th generation.

1.3 BP model based on the adaptive particle swarm
optimization algorithm

The BP algorithm optimized by PSO still has disadvan-
tages, such as low search accuracy and easy premature
convergence, which reduces the predictive accuracy. This
result is mainly due to the phenomenon of particle conver-
gence and the decrease in population diversity. There-
fore, a BP neural network based on the adaptive particle
swarm optimization ( APSO-BPNN) algorithm is pro-
posed, which improves the inertia weight and learning
factor of the PSO-BP algorithm and integrates the muta-
tion operator of the GA to improve the prediction preci-
sion.

1.3.1 Adaptive inertia weight

The inertia weight of a particle describes its ability to
maintain the previous motion state. In the early experi-
ments, it was set to a fixed value within [0.2, 1.2]. In
fact, the inertia weight decreases not only with increasing
iteration times but also with decreasing distance from the
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global optimum. When the inertia weight is reduced, the
local optimization ability of the algorithm can be en-
hanced. When the inertia weight is increased, the global
search ability of the algorithm can be increased. There-
fore, the adaptive nonlinear dynamic inertia weight can
avoid the algorithm falling into a local optimum and im-
prove the search efficiency. When the fitness value of a
particle is dispersed, the inertia weight decreases. When
the fitness value is near the local optimal solution, the in-
ertia weight increases. The calculation formula is shown
as follows:

(wmax B wmin) (,f—fmin)

O i — <f
w = e favg _fmin e (4)
@ e >
where o, and w,;, are the maximum and minimum val-

ues of the inertia weight, respectively; fis the fitness val-
ue of the particle; f, , is the average fitness value; f,

av min 18
the minimum fitness i/alue.
1.3.2 Adaptive learning factor

Generally, the learning factors ¢, and c, are set as fixed
values in the PSO algorithm, and the self-learning ability
and social learning ability of particles are considered e-
qual. However, the search ability of particles in the early
and later stages is easily affected by ¢, and c¢,. Therefore,
to search in global space, an adaptive learning factor for-
mula is proposed in this paper.

In the initial search stage of the PSO algorithm, c, is
set to a larger value and ¢, is set to a smaller value,
which makes the particles learn toward the optimal value,
promotes the particles to obtain the best position in their
history, and improves the local search ability of particles.
In the later stage of the PSO algorithm, c, takes a smaller
value and c, takes a larger value so that the particles tend
to the global optimum to enhance the global search ability
and the convergence speed. The improved formulas of c,
and c, are presented as follows:

€1 =0.95C 1 + (€ = Cp) o (5)
€2 =0.95C 0 + (Copp = Cp) o (6)

where ¢ and c,, are the maximum and minimum learn-
ing factors, respectively; g is the current iteration num-
ber; G
1.3.3 Adaptive mutation operator

The GA is a computational model used to simulate the
biological evolutionary mechanism of nature proposed by
Holland™ . The mutation operator can increase local ran-
dom search ability and accelerate the convergence speed of
the algorithm to the optimal solution. In addition, it can
effectively increase the diversity of the population and pre-
vent premature convergence. Therefore, the mutation op-
erator is introduced into the PSO-BPNN algorithm. When

is the maximum number of evolutions.

max

the mutation operator is used, particles are reinitialized
with a certain probability after each update to increase the
disturbance of the algorithm and prevent it from falling in-
to a local minimum. At the same time, the mutation oper-
ator is embedded in the PSO-BPNN algorithm to expand
the population space reduced in the iterative process and
search in a larger space to realize the adaptive adjustment
of the operator and improve the accuracy of prediction.
The j-th gene of the i-th individual is mutated as'"

a; +(a; -a,, )8 r>0.5
a; = { ' ' (7)
‘ a; +(amin _aij)f(g) r<0.5
where a,, and a,, are the maximum and minimum

bounds of gene a,; r is a random number within [0, 1].

2
oy =r(1-5-) (8)

where r, is a random number.
1.3.4 Calculation process of the back-propagation
neural network optimized by adaptive parti-
cle swarm optimization model

On the basis of the PSO-BPNN algorithm, the adaptive
inertia weight, adaptive learning factor, and adaptive mu-
tation operator are introduced in the APSO-BPNN algo-
rithm. The detailed procedure of the APSO-BPNN model
is summarized as follows:

Step 1
including the number of iterations, population size, maxi-

Initialize the parameters of the particle swarm,

mum and minimum velocities, and maximum and mini-
mum positions. In this paper, ¢ is initialized to 100, the
population size is 30, v is within [ -5, 5], p is within
[ -10,10], c, is within [0.8,2.4], ¢, is within [2. 4,
0.8], and w is within [0.4,0.9].

Step 2 Substitute the initial weights and thresholds of
the BP neural network into the PSO algorithm to initialize
the particle velocities and positions and calculate the fit-
ness value of the particle using

n

f=k] 3 absty -0 ] )

i=1

where k' is a coefficient; n is the training sample number
of the BP neural network; y, is the actual output of the
i-th node; o, is the predicted output of the i-th node.

Step 3  Compare the individual extremum p, and
global extremum g, with the fitness value. If f>p,, p,
will be replaced by f; if f> g, g, Will be replaced by f.

Step 4 Solve the adaptive inertia weight according to
Eq. (4).

Step 5 Solve the adaptive learning factors according
to Egs. (5) and (6).

Step 6  Substitute the results of Steps 4 and 5 into
Egs. (2) and (3) and update the velocities and positions
of the particles according to Eqs. (2) and (3), then up-
date the fitness value of the particle.
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Step 7 Carry out the mutation operation on the parti-
cles according to Eqs. (7) and (8) and update the indi-
vidual and global extremum of the particle.

Step 8
reached. If so, the optimized weight and threshold are

Judge whether the termination condition is

substituted into BP neural network training. Otherwise,
return to Step 4 to continue iterating.

Step 9 Judge whether the error between the predicted
value and the actual value after training meets the termi-
nation condition. If so, the iteration will be suspended,
and the prediction result will be outputted. Otherwise, re-
turn to Step 8 to retrain until the result outputs.

2 Temperature Experiments

On the basis of the test rig of a motorized spindle built
by the research team, the thermocouple was embedded in
the motorized spindle, and the temperatures of the front
bearing outer ring, the rear bearing seat, and the stator
end were measured. The temperature measuring points of
the motorized spindle are shown in Fig. 1.

Measuring rear bearing seat Measuring front bearing outer ring

Measuring stator end
Fig.1 Temperature measurement points of a motorized spindle

The temperature values at three test points, the ambient
temperature, and the coolant temperature of the motorized
spindle at 12 000 r/min were measured. A set of data was
collected every 15 s to ensure that the temperature of the
motorized spindle could be recorded in detail until its run-
ning reached a steady state at this speed. A total of 340
groups of data samples were obtained after the preliminary
The temperature
curves at this speed are drawn, as shown in Fig. 2. Fig.
2 shows that the motorized spindle reaches thermal bal-
ance at approximately 5 100 s. A nonlinear relationship

processing of the experimental data.

between temperature and time is also apparent at the three

45
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Fig.2 Temperature values of measuring points at 12 000 r/min

measuring points. Therefore, using BPNN to establish
the relationship between spindle temperature and time,
coolant temperature, and ambient temperature is reasona-
ble.

3 Temperature Prediction of a Motorized Spin-
dle

When the motorized spindle rotates at high speed, the
change in its internal temperature has strong nonlinear
characteristics, and an excessive temperature increase will
affect the machining accuracy of the spindle and the ma-
chine tool. The temperature prediction of the spindle is of
great significance for exploring the trend of temperature
increase and providing effective control decisions. There-
fore, the BPNN, PSO-BPNN, and APSO-BPNN algo-
rithms are applied to the temperature prediction of the
motorized spindle in this paper. All the experiments are
carried out on the same machine with a 2. 10 GHz Core 2
Duo CPU, 64 GB memory, and Windows 10 operating
system.

3.1 Data processing

The 340 groups of experimental data are divided into
two parts. First, the data are numbered; then, according
to the method of sequential extraction, 1 group is taken
out from every 5 groups, and 68 groups are obtained and
considered testing samples. Second, the remaining data
are arranged in order to form 272 groups for training sam-
ples. To eliminate the difference in the order of magni-
tude among all dimensional data, the data are processed
using the data normalization method and transformed into
a number within [0, 1]. The maximum/minimum method
is adopted in this paper. The formula is"**!

T/ — Tk B Tmin

g Tmax - Tmin ( 10)

where T . and T

min max

ues in the data sequence, respectively; and 7, is the tem-
perature value at time k.

are the minimum and maximum val-

3.2 Temperature prediction and discussion

On the basis of the BPNN, PSO-BPNN, and APSO-
BPNN models, the temperature increase in the three
measurement points of the motorized spindle is predicted.
The temperature increase of the front bearing is analyzed
in detail, and the result is shown in Fig. 3.

Figs. 3 (a), (c¢) and (e) show that the predicted val-
ues of the APSO-BPNN model for the front bearing outer
ring are in the best agreement with the actual values, and
the temperature fluctuation is also finely predicted. From
Figs. 3 (b), (d) and (f), the temperature prediction er-
rors based on the BPNN model, the PSO-BPNN model,
and the APSO-BPNN model are distributed from -0.43
00.49 C, -0.15100.32 C, and -0.18 t00.15 C,
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Fig.3 Prediction temperature and prediction errors of the outer ring of the front bearing by three algorithms. (a) Predicted value
based on the BP algorithm; (b) Prediction error based on the BP algorithm; (c¢) Predicted value based on the PSO-BP algorithm; (d) Prediction error
based on the PSO-BP algorithm; (e) Predicted value based on the APSO-BP algorithm; (f) Prediction error based on the APSO-BP algorithm

respectively. The APSO-BPNN model has the smallest
errors and the highest prediction accuracy among the three
models.

With the same approach, the prediction temperature
and prediction error of the rear bearing seat are calculated
using the three models. The temperature prediction errors
based on the BP model, PSO-BP model, and APSO-BP
model are distributed from -0.3 to 0.5 C, -0.2 to
0.25 C, and -0.1t0 0.2 C, respectively. Additional-
ly, the prediction temperature and prediction error of the
stator end by the three models are also calculated. The
temperature prediction errors based on the three models
are distributed from -0.4t00.6 C, -0.3t00.4 C,
and -0.25 t0 0.2 C, respectively. Therefore, it can be
concluded that the prediction errors of the three tempera-
ture points forecasted by APSO-BPNN are the smallest,
which proves that the APSO-BPNN model has a stronger

generalization ability and higher predictive precision than
the comparison algorithms.

To evaluate the prediction results more intuitively, the
mean square error (MSE) function, mean absolute error
(MAE) function, and R-squared are introduced. The
MSE between the experimental data and prediction data is
used to evaluate the change degree of data. The smaller
the MSE value is, the higher the prediction accuracy of
the model is. The MAE is used to reflect the actual situa-
tion of the prediction error. R is used to reflect the fitting
effect of the model. The larger the value of R’, the better
the fitting effect of the model. The calculation formulas
are shown as'™!

_15 .
MSE = N;w,- 0) (11)

MAE = %Z ‘(y, _Oi)‘ (12)
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Z (¥, - Oi)2

Zf (y, -y’

The values of MSE, MAE, and R’ by using the BP-
NN, PSO-BPNN, and APSO-BPNN algorithms are cal-
culated. The calculation results are shown in Tab. 1.

Tab. 1 shows that the MSE and MAE values of the
APSO-BPNN model are the smallest among the three
models, while the R value of the APSO-BPNN model is
the highest, which indicates that the APSO-BPNN model
has the highest prediction accuracy and the best fitting
effect.

R =1 (13)

Tab.1 Evaluation of prediction models

Evaluating Prediction Front bearing Rear bearing Stator
indicator model outer ring seat end

BPNN 0.018 6 0.0199 0.016 5

MSE PSO-BPNN 0.0113 0.010 6 0.0119

APSO-BPNN 0.006 4 0.005 7 0.007 2

BPNN 0.091 9 0.108 7 0.081 5

MAE PSO-BPNN 0.071 3 0.059 0 0.066 7

APSO-BPNN 0.050 3 0.0519 0.057 9

BPNN 0.9959 0.998 2 0.998 5

R? POS-BPNN 0.998 6 0.999 1 0.999 3

APSO-BPNN 0.999 4 0.999 5 0.999 6

4 Conclusions

1) The proposed temperature prediction model for a
motorized spindle based on APSO-BPNN has a better pre-
diction precision and generalization ability than those of
the BPNN and PSO-BPNN models.

2) The adaptive inertia weight, the adaptive learning
factor, and the mutation operator are integrated into the
presented method, which improves the predictive accura-
cy of the method.

3) The proposed model has high prediction accuracy.
However, how to feed back the prediction value to the
existing control system for adjusting the parameters of the
cooling and lubrication systems or early warning is future
research work.
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