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Abstract: To improve the ride quality and enhance the control
efficiency of cars’ semi-active air suspensions ( SASs) under
various surfaces of soft and rigid roads, a machine learning
(ML) method is proposed based on the optimized rules of the
fuzzy control ( FC) method and car dynamic model for
application in SASs. The root-mean-square ( RMS )
acceleration of the driver’s seat and car’s pitch angle are
chosen as the objective functions. The results indicate that a
soft surface obviously ride quality,
particularly when it is traveling at a high-velocity range of
over 72 km/h. Using the ML method, the car’s ride quality is
improved as compared to those of FC and without control
under different simulation conditions. In particular, compared
with those cars without control, the RMS acceleration of the

influences a car’s

driver’s seat and car’s pitch angle using the ML method are
respectively reduced by 30.20% and 19.95% on the soft road
and 34.36% and 21.66% on the rigid road. In addition, to
optimize the ML efficiency, its learning data need to be
updated under all various operating conditions of cars.
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xisting studies show that the air suspension system
E using air springs improves cars’ ride quality better
than the traditional
springs'”'. Semi-active air suspensions ( SASs) use the
fuzzy control (FC) and H,, control methods"™ to amelio-
rate cars’ ride quality. Investigations indicated that SASs
controlled by the FC significantly ameliorated cars’ ride
quality when compared to the passive suspension system.
Moreover, the investigations showed that the efficiency of

suspension system using steel

the FC is greatly affected by its control rules, which is al-
so considered its disadvantage. To enhance the efficiency
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of the FC, its control rules were then optimized based on
the genetic algorithm (GA)"™ . The study results indi-
cated that the efficiency of an FC used with optimized
control rules is better than that of an FC without opti-
mized control rules. However, the harmonic excitation or
random excitation of rigid roads was mainly applied to
evaluate the efficiency of the FC and cars’ ride comfort in
the above studies.

The SAS efficiency controlled by an FC with its opti-
mized control rules under random surfaces of the ISO lev-
els A, B, C, D, and E of a rigid road"” was investiga-
ted™ ¥
control rules was only effective under each excitation of
the ISO level A, B, C, D, or E of a rigid road surface.
The control efficiency of an FC significantly decreased
when the vehicle was moving along random surfaces of a

The studies indicated that an FC with optimized

rigid road changed in a large range. In addition, with the
deformable surfaces of a soft road, its deformation was
also changed in a large range when the vehicle was mov-
ing on the soft road”™ . However, the influence of soft
roads on cars’ ride quality and SAS efficiency is less stud-
ied. Moreover, some studies on the elastic tire-soft road
interaction indicated that vibration sources under an elastic
tire are not only generated by a random surface but also
by the deformable terrain of a soft road. Therefore, cars’
ride quality is strongly influenced by the vibration sources

9, 11
of soft roads' "

. Hence, the FC efficiency and its con-
trol rule optimization can also be affected by soft road
surfaces. However, this issue has not yet been concerned
in existing studies.

A machine learning (ML) method is being investigated
and used in adaptive controls. Based on the desired input
data and output data of a machine system and an FC, a
self-learning algorithm program'"*™' could be developed
to control cars’ suspension systems under various simula-
tion conditions. This topic is currently of particular inter-
est to scholars. Thus, based on cars’ dynamic model and
the control rules of an FC optimized by a GA on soft and
rigid roads, an ML program was investigated and devel-
oped for optimizing SAS efficiency and cars’ ride quality.
The root-mean-square ( RMS) acceleration responses of
the driver’s seat (a,, ) and car’s pitch angle (a,,,) were
chosen as the objective functions. The goal of the study is
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to enhance cars’ ride quality under soft and rigid roads.
1 Mathematical Approaches

1.1 Car dynamic model

A car dynamic model with its suspension system used
by an SAS was established to control it via ML, as shown
in Fig. 1. In the figure, z; and m, are the vertical dis-
placements and masses of the driver’s seat, car body, and
axles, respectively; ¢, is the angular displacement of the
car body; ¢, ¢,,, and k, , are the damping and stiffness
values of the seat suspension and wheels; ¢, , are the ex-
citations at the front and rear wheels; [ : is the distances of
the car; and v, is the car’s moving velocity (i =1, 2, 3,
4; j=1, 2, 3).

Fig.1 Lumped model of the car

To simplify the computation process of the car’s motion
equations, some assumptions are given as follows: 1)
The car body is absolutely stiff, and its angular deforma-
tion is very small and hence ignored. 2) The displace-
ments of the seat, car body, and axles around their equi-
librium position are very small. 3) The vibration excita-
tion is mainly in the vertical direction, and the longitudi-
nal and horizontal excitations are very small and hence ig-
nored. Based on the car’s dynamic model in Fig. 1 and
Newton’s second law of motion, the general dynamic dif-
ferential equation for the car is given by

m, z, = F,

my,: =F, +F, - F,

L, = Fl, - F,l, + F,L, (D)
myz, = F, - F,

mjz, = F, - F,
where F_is the vertical force of the driver’s seat suspen-
sion system, written as
Fo=c(z,-¢,l, ~2)) +k(z, - ¢,], - 2,) (2)

F, and F, are the vertical forces of the front and rear
SASs, respectively. F, and F, are the vertical forces of
the front and rear wheels, respectively.

1.2 Dynamic model of the SAS

To evaluate the ML efficiency in controlling the car’s
SAS, the SAS used by an airbag spring and an active

damper controlled by the FC were applied. The SAS sim-
ple structure includes a bag and reservoir connected by a
surge pipe, as described in Fig. 2(a), where V,, p,,
and A, are the volume, pressure, and effective area of the
airbag, respectively; A, m_, and [ are the cross-section-
al area, air mass, and length of the pipe, respectively;
V. and p, are the volume and pressure of the reservoir, re-
spectively; z is the deformation of the airbag; and v, is
the air displacement of the air in the pipe.

v, Le (1, m., 4) Pipe
(a) (b)

Airbag

Fig.2 SAS model. (a) SAS structure; (b) Dynamic model

Some assumptions of the SAS model are given as fol-
lows: 1) the friction of the airbag’s material is very
small; 2) the inertia force of the air mass in the SAS is
also very small and neglected; and 3) the vibration exci-
tation of the SAS model is mainly in the vertical direc-
tion.

The force balance between F and the restoring force of
the airbag in Fig. 2(a) is expressed as

F =A.(p, —-p) (3)

where p, is the atmospheric pressure.

Based on the correlation among the reservoir, pipe,
and airbag, p, is computed by the air mass flow rate into
the airbag as follows:

. d(V,p,) . .
m = _#: =PV =PV (4)

The relationship of p, and p, was calculated based on
the isentropic process in the airbag as follows'™ :

1/A

=(Po) p,
g (Po) P (5)

1/x -1

. 1 pb)
Po pb(/\RTo)(Po
where p,, is the air density at the initial state and is deter-

mined by p,, = p,/(RT,) and A is the polytropic con-
stant, A =1.4% %,
By combining Egs. (4) and (5), p,is calculated by
. ADy\ ; ART\(p
b= = ()= ()5
Vs Vs Po
1/ (6)
v

1-1/x

Po

b

|

The air mass flow rate into the reservoir is written as
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r'n _ d( Vrpr)
Todr

=V, (7

Based on the relationship between p, and p, in the reser-

voir, p, is determined by

1/x

P
prz(i) pOr
/2 -1 (8)
S 1 D.
pr _pr()\RTo)(po)

By combining Eqgs. (7) and (8), p, is calculated by

o _(ART) (P,
(2

V= (p—") v,
pr

1-1/A

The mass flow rate in the pipe is also expressed as

m=pAuv, (10)

In addition, the mass flow rate of the air in the pipe was
affected by A_, p,, and p, of the air suspension system'”’.
Thus, the moving air mass in the pipe is written as'"”
mp, +0.475p A vlsign(v,) +A(p, -p,) =0 (1
mS :pSlSAS }

By combining Eqs. (10) and (11), the mass flow rate
in the pipe is expressed as

,0-475
pLA,

. . A
i m’sign(m) +(p, =p) =0 (12)
By combining Egs. (6), (9), and (12), p, and F in
Eq. (3) can be determined.
Based on the derivative of F/z, the SAS nonlinear dy-
namic stiffness can be calculated as
_di —A dpb

dAe
Tdz +(pb_pa)dz

k 4z

(13)
Based on the ideal gas state equation of the airbag
(p,Va =const), we have

dp,  Ap, dV,

= - 14
dz V, dz (14)

By substituting Eq. (14) into Eq. (13), k is then re-
written as

dA, Ap,A, dV,
dz VvV, dz

The SAS dynamic model is described in Fig. 2(b).

From the car and SAS models given in Figs. 1 and 2
(b), the vertical forces of the front/rear SAS are ex-
pressed as

k=(p, -p.) (15)

Fi=co(Zim -2 +@,0,0) +... 4

ki(zi =2+l i=1,2 (16)

where c_,; is the damping values of the front/rear SAS.

ctrli

1.3 Models of the wheel-road surface contact
1.3.1

When the car is traveling on the soft road surface, the
elastic wheel interacts with the soft road. A dynamic

Contact model of the wheel-soft road surface

model of the wheel-soft road interaction with the surface
roughness of the soft road ¢ is built in Fig. 3(a). Under
the effect of the dynamic and static loads of the wheel on
the soft road surface, the road surface is sunk by z,.
Two deformable regions of the soft road surface-wheel
(bob' region) and soft road surface (b'a region) ap-
peared, as shown in Fig. 3(a). z,, z,, and z, are the
sinkage of the soft road, static deformation of the soft
road, and axle displacement, respectively, and r, F,,
and m, are the radius, dynamic force, and mass of the
wheel, respectively.

o JZu

(a)

Fig.3 Contact model of the elastic wheel-road surface. (a)
Soft road; (b) Rigid road

Assuming that the contact lengths of bob’ and b'a in
the horizontal direction are /, and [,, respectively, the
pressure p, and shear stress 7, of the soft road generated in
the contact lengths /, and [, are described by the reaction
force of the soft road on the elastic wheel as follows'':

F - Bl(zj’:ﬂ]pgdx N fo.sl‘»fzz(pg bW dx)

0.51,

k(. n
Py = ( ) +k¢)zx

7, = (¢ + p,tang) (1 - e (17)

where ¥=1//r -x"; k¢ and k_ are the stiffness values
of the internal friction and sinkage, respectively; b and n
are the dimension and sinkage exponent of the contact
patch, respectively; ¢ and ¢ are the soil cohesion coeffi-
cient and internal friction angle, respectively; and K is
the shear deformation modulus.

It is assumed that [ is the average roughness line of the
soft road surface, so z, can be determined by

2, =2t q+2,-A=2,-2+q+V¥V-r (18)

The force responses at the front and rear axles of the
elastic wheel are determined by

cli(.zxi _.Zi) +k(z,-2) = Fti} (19)

ng"'Fu'_mu'g:O
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where g is the gravitational acceleration and i =1, 2.
To determine ¢ in Eq. (18), the power spectrum den-
sity G(w,) of the soft road surface roughness was calcu-

3, 10
lated as"™ "

Yo
r
where w, = 0.1 m is the reference frequency.

Based on the white noise signal W and G(f), ¢ is then
determined by'""

G(f) = G(wy)w) (20)

q +2mw,vaq =2mw, /G(f)v, W (21)

Mitschke'"” presented the spectral densities of soft road
classifications, including good, medium, and poor soil
surfaces, as provided in Tab. 1. Thus, ¢ is generated u-
sing a parameter in these spectral densities.

Tab.1 Parameters of the soft road surface

Level surfaces 5 G(wy)/ (107° m3. cycle ")
Good 2.55 199.8
Medium 2.55 973.9
Poor 2.14 3782.5

1.3.2 Contact model of the wheel-rigid road surface

When a car is traveling on a rigid road surface, the sur-
face greatly affects the car’s ride quality. Here, the point-
contact model of the rigid road-wheel interaction was used
to calculate the force response of the wheel™ ™. To
calculate the force response of the wheel, the point-con-
tact model of the rigid road surface-wheel interaction is
also established in Fig. 3(b).

The vertical forces of the front and rear wheels ( F,;)
are written as

Flizcli(i]i_zi+z) +k (g —2:,,) (22)

g of the rigid road surface is computed in Eq. (21) with
G(w,) determined according to ISO-8068"".

1.4 Evaluating index

To estimate the driver’s ride quality and the efficiency
of isolation systems, the index of the RMS accelerations

of the seat calculated according to I1SO 2631-1""
d[b, 8, 14]

was
use . Based on the car’s dynamic model and ISO
2631-1, the RMS accelerations of the driver’s seat and
car’s pitch angle are written as

] T
a, = /7joaj(t) dr

where y = {z,, ¢,}; a, (1) is the acceleration in k; and T
is the simulation time.

To assess SAS efficiency controlled by the ML model
on enhancing the car’s ride quality under various surfaces
of soft and rigid roads, the decrease in a,

vz 1

(23)

and a,,,, was
chosen as the evaluation index.

2 SAS Control Algorithm

The FC efficiency greatly depends on its control rules.
The control rules of the FC are also optimized by the GA
to enhance its efficiency'”. However, the optimized con-
trol rules also strongly depend on the conditions of the
road surface and car speed. The FC efficiency could be
reduced when the high roughness of the road surface is
changed in a large range. To overcome this shortcoming,
based on the various surfaces of a soft road, including

. . 10
good, medium, and poor soil surfaces'”,

and various
surfaces of a rigid road, including level A, level B, and
level C, according to the ISO 8068'"", each control rule
of a road surface was optimized. Then, a data map of the
FC control rules optimized under all the soft and rigid

roads was applied for the ML model to control ¢

ctrl *

2.1 Optimizing the FC control rules

The structure of FCs is defined by the fuzzification in-
terface (FI), fuzzy inference system (FIS), and defuzzi-
fication interface (DI). First, input values in the FI were
transformed into linguistic variables (LV). Then, the FIS
was used to compute the LV using deductive rules. Final-
ly, the LV was transformed back to the output values via

3, 6]

the DI for controlling the objectives™ ®'. To control the

front and rear SASs, two damping values of c_,, and ¢

ctrl 1 ctrl2

should be separately controlled. Thus, two controllers
should be designed. However, the design process of the
FC for the front and rear SASs is the same. Thus, a spe-
cific FC was designed and applied to control the front and
rear SASs. To design the FC, the displacement z and ve-

locity z (i 2%) of the SASs are two input values,

while ¢, is an output value. The LV and values of z, 7,

ctrl

and c,, provided in Tab. 2 were used to build the mem-
bership function of the FC input/output variables.

Tab.2 LV input/output and value of the FC

Road LV . LV  cqn/ (KN -
surface input Description z z output s.m7!)
pb  Positive big 0.6 1. a, 0.2
pm Positive medium 0.4 0. a, 0.5
Soft ps  Positive small 0.2 0.4 aqa 0.8
road z  Zero 0 0 a, 1.1
surface  ns  Negative small -0.2 -0.4 a4 1.4
nm Negative medium -0.4 -0.8 as 1.6
nb Negative big -0.6 -1.2 aq 1.8
pb  Positive big 0.3 0.9 q 0.1
pm Positive medium 0.2 0.6 aq 0.3
Rigid ps Positive small 0.1 0.3 a 0.6
road z  Zero 0 0 a, 0.9
surface  ns  Negative small -0.1 -0.3 a4 1.1
nm Negative medium -0.2 -0.6 as 1.3
nb Negative big -0.3 -0.9 a4 1.5
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Based on the LV and values of z, z, and c.q of the
soft and rigid roads defined in Tab. 2, the “if-then” con-
trol rule in the FIS is described as follows:

l) If = pb and Z = pb’ then Cczrl = aO'
2) If z=pb and z =pm, then ¢, =a,.
49) If z=nb and z =nb, then c,, = aj.

To enhance the FC efficiency, the GA was then applied
to optimize the “if-then” rule as follows.

The input variables z =z =pb, pm, ps, z, ns, nm,
nb of the LV were encoded by [u,],,,; the output varia-
bles ¢, ..., ag of the LV were also encoded by
[v;,]1,.,; and the GA population initialization was 150.

The individuals of x = [u

=da,, a,

. vl " created in the initial pop-
ulation were random, and each gene in u, and v, was ran-
domly selected from pb to nb and a, to a,. The fitness
value of the GA given by the minimum value of J _, =
min{a,,, a,,} was then applied to optimize the FC con-
trol rules. Through the GA optimal process, the individu-
als of x that create low J , will provide good control
rules. Then, these individuals were updated and opti-
mized until the evolutionary generation of 1 500 ended or
satisfied the stop condition of | J = in (i | <0.001
of the GA.

To optimize the FC control rules and establish a data
map for the ML model under soft and rigid roads, the
values of § and G(w,) of the soft road surfaces in Tab.
1, f<10 Hz, and v, =54 km/h were applied to build the
various surfaces of the soft road. Moreover, the rigid
road surfaces of levels A (good), B (medium), and C
(poor) of G(w,), §=2, f<10 Hz, and v, =54 km ac-
cording to ISO-8068'"" were applied to build the various
surfaces of the rigid road. The simulation results of the
soft and rigid roads with various surfaces are plotted in
Figs. 4(a) and (b).

min(i+1)

Time/s
(b)
Fig.4 Random road surfaces. (a) Soft road; (b) Rigid road

Based on the different vibration excitations of ¢ in Fig.
4, initial control rules of the FC in Tab. 2, and car’s dy-

namic parameters in Tab. 3, an algorithm program was
then built to optimize the FC control rules, as plotted in
Fig. 5 with “FC.” From the optimized control rules of
the FC, three different types of data map, namely, 1)
using the good, medium, and poor soil surfaces of the
soft road; 2) using the surface of ISO levels A, B, and C
of the rigid road; and 3) using the soft and rigid road sur-
faces, are plotted in Fig. 6.

Tab.3 Dynamic parameters of the car and SAS

Parameters Values || Parameters Values
m, /kg 85 /(KN -s-m™") 2.000
m,/kg 1469 || co/(KN-s-m™") 2.000
my/kg 66 k, /(KN -m~1) 25.000
m,/kg 87 R 287
[,/m 1.35 T,/K 288
l,/m 1.604 || p,/MPa 0.10
I;/m 1.245 || poi/MPa 0.25
Age/m? 0.070 7 || po/MPa 0.28
Vop/m* 0.005 7|| ky/(kKN -m~") 193.211
¢,/(N-s-m™h 250 || ko/(kN -m™") 226.422
< Car’s parameters; data
of the different roads )
el it Z T
Neuro-adaptive Car’s
learning simulink

|

Car’s
simulink

Optimized
control rules

re (FCresis )

Ce/(KN-s'm™")

Co/(KN"s'm™")

(b)

Con/(KNs'm™")

0
0.6 <o

0.61.2
(¢)

Fig.6 Data map of the FC optimized control rules. (a) Soft
road; (b) Rigid road; (c) Soft and rigid road
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2.2 Control of ML from the FC control rules

The FC efficiency optimized by the GA obtains the
maximum value when the car is moving on a type of road
surface. However, under a type of the actual road sur-
face, the good, medium, and poor surfaces of the soft
road or surfaces of ISO levels A, B, and C of the rigid
road can concurrently appear on each surface of the soft
and rigid roads when the car is moving. Thus, the opti-
mized FC efficiency is reduced. Thus, from the data map
of the FC control rules optimized on all the surfaces of the
soft and rigid roads in Fig. 6, neuro-adaptive learning in
an adaptive neuro-fuzzy inference system ( ANFIS)'*™"
was used to optimize the control efficiency of the SAS
under various conditions of the car. The model of neuro-
adaptive learning is provided in Fig. 5 and labeled with
“ML.”

The input signals n are defined by a vector of X = {q,,
a, ..., a,}", and the output signal ¥ of ML is computed by

Y=y(;19iai—a)

where vy is the trigger function; 4, is the weight of a,;
and « is the neural activation threshold.

Based on the ANFIS tool in the MATLAB software, a
neuro-fuzzy controller (NFC) was then designed to learn
all the optimized control rules of the data map, as shown
in Fig. 6. The data of the input/output values of “z and

(24)

z” and “c_,” in MATLAB/ workspaces were fed into the
ANFIS via the input/output variables of “a, and a,” and
“Y.” The NFC model is plotted in Fig. 7(a). To per-
form the training process and ML in the ANFIS, the
training method was chosen by Hybrid; the constituent
rules’ number is three, comprising two input values and

one output value; the training process error is 10 ; and

z

Hidden layer
(a)
e Training data; * ANFIS output

Co/(KN's'm™")

.

2000 3000 4000 5000

Data set index
(b)

0 1000

Fig.7 ML model. (a) NFC model; (b) Training result of the NFC
from the data map of the optimized control rules

the number of the training times is 10°. The results of the
training process are given in Fig. 7(b), and they are
saved for the ML model to control ¢, of the SAS. The
efficiency of the ML model was simulated and compared
with the FC under the medium surface of the soft road
and level B of the rigid road, as shown in Fig. 8.

a,/(m-s?)

(a)

= WCtrl; FC; === ML :
P i a2 R s : M j“
: AN b :‘ L AR 3
SRRV IVATINAYAYA NIV A
s f WM WP W Y Y TR AT
L R
-1 5 1 1 L L H i
25 26 27 28 29 30

Time/s

(b)

Fig.8 Acceleration response of the driver’s seat. (a) Soft road;
(b) Rigid road

Fig. 8 shows that the acceleration response of the
driver’s seat using the ML method is similar to the train-
ing data of the FC when the car is moving on a medium
surface of the soft road or a rigid road surface of ISO lev-
el B. The calculation results in Tab. 4 indicate that the
value of a,, is slightly decreased by 0.57% on the medi-
um surface of the soft road and 0.22% on the ISO level
B of the rigid road surface. There is a small error be-
tween the FC and ML, which is due to a small error in
the learning process of the ML. Moreover, the value of
a,, with the SAS is smaller than that without control
(WCtl) by 17.86% on the medium surface of the soft
road and 20. 64% on the ISO level B of the rigid road
surface. Hence, the car’s ride quality with the SAS is im-
proved. To evaluate the efficiency of the ML for the
SAS, various moving conditions of the car were simula-
ted and assessed.

Tab.4 Seat’s RMS acceleration

Control ay/(m-s7%)

methods Soft road Rigid road

Passive 0.646 2 0.5552
FC 0.5337 0.441 8
ML 0.5307 0.440 8

3 Results and Analysis
3.1 Influence of soft road surfaces

A car mostly moves on rigid road surfaces, so its ride
quality is mainly evaluated under the excitation of differ-
ent rigid road surfaces” ™ *. However, in the same ca-
ses, the car can also move on soft road surfaces of the

soil or sand grounds. Thus, soft road surfaces also affect
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the car’s ride quality and control efficiency of the suspen-
sion systems. However, this issue has not been evaluated
yet in existing studies. To clarify this issue, a soft road
with lumped parameters of n =1.01, k., =60 kN/ m"*',
k, =5 880 MN/m"*?, ¢=3.1kPa, and ¢ =29. 8°'" of a
medium surface was simulated and compared with the rig-
id road surface of ISO level B (medium level). The re-
sults of the acceleration responses and RMS values are
provided in Fig. 9 and Tab. 5.

—Level B

1.2~ e Medium_soil surface;
0.6 |\

0HA
0.6 M

-1.2
25 26 27 28 29 30

Time/s
(a)

06 T Medium soil surface; ——Level B

a,/(m-s?)

Time/s

(b)

Fig.9 Acceleration responses under the medium level of the
soft and rigid road surfaces. (a) Driver’s seat; (b) Car pitch

Tab.5 RMS accelerations under ISO level B of the rigid road
and medium surface of the soft road

Parameters Rigid road Soft road Increase/ %
a,,/ (m-s7?) 0.3470 0.408 1 17.60
a,,,/(rad -s7%) 0.109 2 0.190 6 74.60

wep

Fig. 9 indicates that under the same medium level of soft
road and rigid road surfaces, the comparison results show
that the accelerations of the vertical driver’s seat and car
pitch angle on the soft road are higher than those on the rigid
road. In particular, a,, and a, strongly increased by
17.60% and 74.60% , respectively. This outcome can be at-
tributed to the effect of the deformable soil ground of the
soft road under the impact of the static and dynamic loads of
the wheels when the car is moving. Thus, the driver’s ride
quality and car body’s shaking on the soft road were re-
duced in comparison with those on the rigid road. Hence,
the soft road greatly reduces the driver’s ride quality and
health in comparison with the rigid road.

3.2 ML efficiency for the SAS

Based on the ML result learned via the optimized FC
rules, the ML efficiency has not been clearly demonstra-
ted yet under the medium surface of a soft road or ISO
level B of a rigid road in Section 2.2. Thus, a random
road surface built from a combination of the poor-good-
medium surfaces of the soft road, and a random road sur-
face built from a combination of the ISO level C-level A-
level B of the rigid road were applied to evaluate the ML
efficiency as follows:

poor soil surface t<10 s
q= {good soil surface 10 s<t<<20s  (25)
medium soil surface 20 s<t<<30 s
ISO level C t<10 s
q:{ISO level A 10 s<t<20 s (26)
ISO level B 20 s<t<30s

The acceleration responses of the driver’s seat and car’s
pitch angle under the soft and rigid roads are shown in
Figs. 10 and 11, respectively. Under the excitation of the
poor-good-medium soil surface of the soft road, Fig. 10
shows that the accelerations of the driver’s seat and car’s
body used in the ML model greatly decreased as com-
pared to those of the FC and WCul. a,, and a,, using
the FC in Tab. 6 obviously reduced by 18. 02% and
12.31% in comparison with those using the WCtrl, re-
spectively, whereas a,, and a, using the ML model sig-
nificantly decreased by 30.20% and 19.95% compared
to those using the WCtrl, respectively. Thus, the control
efficiency of the ML model is better than that of the FC.

FC; —ML

-0.9
-1.8 f| 1
0 5 10 15 20 25 30
Time/s
(a)
0.8 :
- § weeWCHl, - FC; —ML
@04 o
. Al
5 —0.41

0 5 10 15 20 25 30
Time/s

(b)

Fig.10  Acceleration responses under the poor-good-medium
surface of the soft road. (a) Driver’s seat; (b) Car pitch

Tab.6 Calculation results of the RMS accelerations

Road surfaces Parameters WCtrl FC ML
Poor-good-medium  ; /(m.572) 0.6075 0.4980 0.424 0
surface of the soft
road g/ (rad -s7%) 0.2802 0.2457 0.2243
Level C-level A- 4 /(m-.s™?) 0.5477 0.4208 0.3595
level B surface of
the rigid road g/ (rad -s7%) 0.1750 0.1517 0.137 1

Similarly, under excitation of the ISO level C-level A-
level B of a rigid road surface, Fig. 11 also shows that
the accelerations of the driver’s seat and car’s body using
the ML model are lower than those of the FC and WCtrl.
The calculation results of a,, and a,,, with the ML model
in Tab. 6 decreased by 34.36% and 21.66% in compari-
son with those using the WCtrl and by 14. 56% and
9.62% compared with those using the FC, respectively.
Therefore, the SAS controlled by the ML model can bet-
ter improve the car’s ride quality in comparison with the
FC under various excitations of the soft and rigid roads.
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Fig. 11  Acceleration responses under the level C-level A-level
B surface of the rigid road. (a) Driver’s seat; (b) Car pitch

3.3 ML efficiency under different velocities

To fully assess the ML efficiency, a speed range from
2.5 to 20 m/s was also simulated in three cases: Case
1—the ML was only used by the data map of the soft
road, Case 2—the ML was only used by the data map of
the rigid road, and Case 3—the ML was used by the data
map of the soft and rigid roads, as shown in Fig. 6. The
a,, results of the three cases are simulated and plotted in

Fig. 12.
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Fig. 12 RMS acceleration of the driver’s seat under various
vehicle velocities. (a) Case 1 under soft road; (b) Case 1 under rigid
road; (c) Case 2 under soft road; (d) Case 2 under rigid road; (e)
Case 3 under soft road; (f) Case 3 under rigid road

Fig. 12(a) shows that under the influence of the soft
road, a,, quickly augmented, whereas Fig. 12(b) indi-
cates that under the influence of the rigid road, a,, insig-

nificantly augmented, especially from 15 to 20 m/s. This
result implies that the car’s traveling velocity needs to be
limited when the car is traveling on a soft road. With the
SAS controlled by the ML and FC, the result of a,, is
greatly reduced compared to that in the WCtrl under the
car’s different velocities on both the soft and rigid road
surfaces. Therefore, the car’s ride quality is obviously
ameliorated by the SAS.

In Case 1, with the ML model only using the data map
of the soft road, Fig. 12(a) reveals that a,, with the ML
model is also significantly reduced in comparison with the
FC under all the different velocities of the car traveling on
the soft road. However, Fig. 12(b) reveals that a,, with
the ML model is insignificantly changed in comparison
with the FC on the rigid road under the car’s different ve-
locities. This result can be due to the ML learning process
only learning the optimized control rules of the deform-
able surfaces of the soft road. Therefore, the ML control
efficiency has been limited on the rigid road.

In Case 2, similarly, with the ML model only using the
data map of the rigid road, the result of a,, in Fig. 12(c)
is unchanged on the soft road, whereas the result of a , in
Fig. 12(d) is significantly decreased on the rigid road as
compared to the result of a,, controlled by the FC.

In Case 3, with the ML using the data map of the soft
and rigid roads, both Figs. 12(e) and (f) indicate that
the results of a,, are obviously reduced compared to the
FC under the car’s different velocities. Consequently, the
car’s ride quality with the SAS controlled by the ML
model is better than that of the FC. Concurrently, the
ML control efficiency also depends on the learning data.

wzl

4 Conclusions

1) The deformable surface of soft roads greatly influ-
ences cars’ ride quality as compared to rigid roads under
the same car simulation conditions. Therefore, cars’ veloc-
ities on soft roads need to be limited to assess their ride
quality.

2) The ML efficiency for the SAS to assess a car’s ride
quality is better than the efficiency of the FC and WCtrl
under all the simulation conditions of the car. In particu-
lar, a,, and a,, of the ML model were greatly reduced
by 30.20% and 19.95% on the deformable surfaces and
34.36% and 21.66% on the rigid surfaces in comparison
with the WCtrl, respectively.

3) The ML efficiency significantly depends on learning
data. Thus, to optimize its efficiency, the map of the
learning data for the ML model should be further expand-
ed under various conditions.

4) The ML has not only learned the optimized control
rules of the FC from the data map to further enhance the
SAS control efficiency but also improves the car’s ride
quality more than the FC under the combined different
road surfaces.
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