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Abstract: Element « in ring R is called centrally clean if it is
the sum of central idempotent e and unit #. Moreover, a =e +
u is called a centrally clean decomposition of a and R is called
a centrally clean ring if every element of R is centrally clean.
First, some characterizations of centrally clean elements are
given. Furthermore, some properties of centrally clean rings,
as well as the necessary and sufficient conditions for R to be a
centrally clean ring are investigated. Centrally clean rings are
closely related to the central Drazin inverses. Then, in terms
of centrally clean decomposition, the necessary and sufficient
conditions for the existence of central Drazin inverses are
presented. Moreover, the central cleanness of special rings,
such as corner rings, the ring of formal power series over ring
R, and a direct product [] R, of ring R, is analyzed.
Furthermore, the central group invertibility of combinations of
two central idempotents in the algebra over a field is
investigated. Finally, as an application, an example that lists
all invertible, central group invertible, group invertible,
central Drazin invertible elements, and centrally clean
elements of the group ring Z,S, is given.
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n the research on ring theory, the cleanness of a ring
Iis a basic but important topic. Clean rings originated
from the study of exchange rings, which play an impor-
tant role in the cancellation of modules. The interesting
characterizations and properties of clean rings have moti-
vated many scholars to conduct further investigations.
The concept of clean rings was first introduced by Nichol-
son'"" in 1977. Subsequently, Nicholson et al. " proved
that the linear transformation of a countable vector space
over a division ring is clean. In 1999, Nicholson" intro-
duced a strongly clean ring and presented some equivalent
characterizations of strongly clean elements and rings. In
2001, Han et al." investigated the cleanness of group
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rings, the ring of formal power series over a ring, and a
direct product of rings. In 2011, Hiremath et al. "' pres-
ented some characterizations of strongly clean rings.
More details concerning the cleanness of the rings can be
found in Refs. [6 —12].

Throughout the paper, R denotes an associative ring
with unity 1. The center of R is denoted by C(R) = {xe
R: ax =xa for all a e R}. The element e € R is considered
idempotent if ¢ =e. In contrast, the element ¢ € R is
considered central idempotent if ¢’ = ¢ and e € C(R). The
symbols E(R), CE(R), U(R), and J(R) denote the sets
of all idempotents, central idempotents, invertible ele-
ments, and Jacobson radicals of R, respectively. Recall
that the element a € R is considered clean if u € U(R) and
e € E(R) exist such that a =u + e. The element a € R is
considered strongly clean if u € U(R) and e € E(R) exist
such that a =u + e and ue = eu. In this case, a =e + u is
considered a strongly clean decomposition.

1 introduced the concept of pseudo-inverse
(usually called Drazin inverse) in rings and semigroups.
The element a e R is considered a Drazin invertible if x e
R and the nonnegative integer k exist such that xax = x,

k+1
ax =xa, xa

Drazin

=a". Such x is unique if it exists and is
considered the Drazin inverse of a. The smallest nonneg-
ative integer k satisfying the previously presented equa-
tions is called the Drazin index of a. If k=1, then x is
considered the group inverse of a.

Further research showed that there is a close connection
between clean rings and Drazin inverses. For example,
Zhu et al. " proved that a € R is a Drazin invertible if
and only if u e U(R), e € E(R) and the positive integer n
exist such that a" = u + e is a strongly clean decomposi-
tion and a"RNeR =0. Moreover, many scholars investi-
gated the Drazin invertibility of combinations of idempo-
tents. For instance, Liu et al. "' analyzed this topic in
complex matrices, i.e., Drazin invertibility of aP + bQ
+ cPQ + dOP + ePQP + fOPQ + gQPQP for idempotent
complex matrices P and Q under the conditions (PQ)* =
(QP)*. More details concerning Drazin inverses can be
found in Refs. [16 —26].

In 2019, to analyze the commutative properties of Dra-
zin inverses ( see Example 2. 8 in Ref. [27]), Wu et
al. ” introduced the concept of central Drazin inverses.

Definition 1 Element a e R is considered a central
Drazin invertible if x € R and the nonnegative integer k
exist such that xax =x, xae C(R), xa**'
unique if it exists and is considered the central Drazin in-

=d*. Such x is
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verse of a, denoted by a°. The smallest nonnegative inte-
ger k satisfying the previously presented equations is still
the Drazin index of a, denoted by ind(a). If k=1, then
x is called the central group inverse of a, denoted by a®.

In Ref. [28], a centrally clean element and a centrally
clean ring are also introduced.

Definition 2™ Let a e R. If u e U(R) and e e
CE(R) exist such that a = u + e, then a is considered cen-
trally clean. In this case, a =u + e is considered a cen-
trally clean decomposition of a. Thus, centrally clean is
clean. If every element of R is centrally clean, then R is
considered a centrally clean ring.

Moreover, a € R is a central Drazin invertible if and
only if ue U(R), e e CE(R) and the positive integer n
exist such that a = u + e is a centrally clean decomposi-
tion, and a"RNeR =0, or equivalently, u e U(R), ee
CE(R) and the positive integer n exist such that a =u + e
is a centrally clean decomposition and ae is nilpotent.
Subsequently, Zhao et al. ™ investigated the one-sided
central Drazin inverses.

Motivated by the previous studies, we investigated cen-
trally clean elements and central Drazin inverses in R. We
first give an example and characterizations of centrally
clean elements. Then, we analyze the properties of cen-
trally clean rings and provide some equivalent character-
izations. Moreover, we present the necessary and suffi-
cient conditions for the existence of central Drazin inver-
ses in terms of centrally clean decompositions. In addi-
tion, we investigate the central group invertibility of com-
binations of two central idempotents. Finally, we calcu-
late all invertible, central group invertible, group inverti-
ble, central Drazin invertible elements, and centrally
clean elements of the group ring Z,S,.

1 Characterization of Centrally Clean Elements

First, we provide an example of centrally clean ele-
ments.

Example 1

1) Units are centrally clean.

2) The elements in J(R) are centrally clean.

3) Nilpotent elements are centrally clean.

4) Central idempotents are centrally clean.

Proof 1) and 3) are obvious.

2) Let x e J(R). Notably, J(R) ={xeR: 1 —ax is
left invertible for any a e R} and J(R) = {xe R: 1 —xa is
right invertible for any a € R}.

Then, we take a =1, and it follows that 1 —x e U(R).
Hence, x is centrally clean.

4) Let e e CE(R). Given that (2¢ —1)> =1 and (1 -
e)>=1-e, it follows that 2¢ =1 € U(R) and 1 — ¢
CE(R). Then, e=(2e-1) +(1 —e). Hence, e is cen-
trally clean.

Let a e R. Then, we use Ra and aR to denote the left
and right ideals generated by a, respectively. We use

l(a) and r(a) to denote the left and right annihilators of
a, respectively. That is,

Ra ={ra: reR}, aR={ar: reR}
l(a) ={xeR: xa=0}, r(a) ={xeR: ax=0}

Nicholson"” proved that if e e E(R) and a € eRe is
strongly clean, then a € R is also strongly clean. Moreo-
ver, he provided some characterizations of strongly clean
elements. Then, we investigate the relevant characteriza-
tions of centrally clean elements.

Let a € R and e € E(R) with ea = ae.
Then, the following conditions are equivalent:

1) ae e U(eRe).

2) ee Ra and I(a) Cl(e).

3) ecaR and r(a) Cr(e).

Theorem 1 Let a € R. Then, the following condi-
tions are equivalent:

1) a is centrally clean.

2) e e CE(R) exists such that /(a) CR(1 —e) CR(1 -
a) and I(1 —a) CReCRa.

3) e e CE(R) exists such that r(a) C(1 —e)RC(1 -
a)R and I(1 —a) CeRCaR.

4) e e CE(R) exists such that ea € U(eR) and (1 —¢)
(1-a)eU((l-e)R).

5) e e CE(R) exists such that ea is centrally clean in

3
Lemma 1"

eR and (1 —e) (1 —a) is centrally clean in (1 —e)R.

6) e e CE(R) exists such that ea is centrally clean in
eR and (1 —e)a is centrally clean in (1 —e)R.

7) The decomposition 1 = e, + e, + -+ + e, exists,
where 7 is a positive integer, e is a centrally orthogonal
idempotent, and e,a is centrally clean in e,R for each pos-
itive integer i.

Proof 1)=2). Given that a is centrally clean, we
can suppose that a = (1 —e¢) +u, where ¢ e CE(R) and
ueU(R). If ra=0, then r(1 -¢) +ru=0, and it fol-
lowsthat r=ruu" =[ —=r(1 —e)Ju' eR(1 -¢),
i.e., I(a) CTR(1 -e). Moreover, from ae=[ (1 -e)
+ule=ue, we derive e=u 'ae=u"'eacRa, i.e., Re
CRa.

Rewrite a=(1 -¢) +uasl-a=e+( —u). Then,
by a similar argument, we can obtain /(1 — a) € Re and
R(1-¢)CR(1-a).

2)=4). From e ReCRa and [(a) CR(1 -¢) =
[(e), we can obtain ea € U(eR) based on Lemma 1.
Similarly, we can derive (1 —¢) (1 —a) e U((1 -e)
R).

1)=3)=4) are similar to 1) =2)=4).

4)=5). This is obvious from 1) of Example 1.

5)=6). Given that (1 —¢) (1 —a) is centrally clean
in (1 —e)R, it follows that (1 —e)a=(1-¢) — (1 —e)
(1 —a) is also centrally clean in (1 —¢)R.

6)=7) Write ¢, =e¢ and e, =1 —e. Then, ee, =0
and 1 = e, +e,. Moreover, e,a is centrally clean in e,R
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for each i.

7)=1). For each positive integer i, e,a is centrally
clean in e,R. Then, we suppose that e,a =f; + u,, where
f,eCE(e,R) and u, € U(e,R), and it follows that v, e
e,R exists such that v,u, = u,v, = e,. Given that e, is a cen-

trally orthogonal idempotent, we derive f = 2 fi e
CE(R), u= Y u, € UR),andu™ = Y v, Hence,

a= Zeia = Z(f,+u,) = Zf,+ Zui =f+u
Therefore, a is centrally clean.

Proposition 1 Let a e R. Then, the following condi-
tions are equivalent ;

1) a is centrally clean.

2) ve U(R) and fe CE(R) exist such that f = fva and
1-f=-(1-f)v(l -a).

3) ue U(R) and fe CE(R) exist such that f = fua and
1-f=(1-Hu(l -a).

4) fe CE(R) and x,y e R exist such that f=fxa, 1 —f
=(1-f)y(1-a), and fx - (1 -f)ye U(R).

Proof 1)=2). Leta=u+e, where ue U(R) and e
e CE(R). Write f=1-e and v=u"". Then,

f=(1-e)u'a=fua

and
l-f=-eu'(1-a)=-(1-Hv(l -a)

2)=1). Writee=1-f. Then, v(a-e) =[fv+ (1 -
AvIa=1+f) =foa—fo+fo-(1-fHv(l —a) =f+1
—f=1. Hence, a-e=v™", i.e. ,ais centrally clean.

2)=3). Write u=(2f-1)v. Then, f=fva = fua and
L-f=-(-Hv(l-a)=(1-fHHu(l-a).

3)=2) is similar to 2)=3).

2)=4). Write x=v and y = —v. Then, f=fxa and 1
-f=(-Hy(l-a).

4)=2). Write v=fx - (1 -f)ye U(R). Then, fx =
frand - (1 -f)y=(1-f)v, and it follows that f = fxa
=fraand 1 -f=(1-f)y(1-a)=-(1-f)v(l-a).

2 Characterizations of Centrally Clean Rings

Recall that if R/J(R) is a division ring, then R is con-
sidered a local ring.
Proposition 2

ring.

Proof Let ae R. If ae J(R), then a is centrally
clean based on 2) of Example 1. If a¢ J(R), then a +
J(R) e U(R/J(R)). Hence, x+J(R) e R/J(R) exists
such that

Every local ring is a centrally clean

(a+J(R))(x+J(R)) =1+J(R)

and it follows that ax + J(R) =1 +J(R) ,i.e. ,ax-1¢e
J(R). Therefore, ax=1- (1 -ax) e U(R). Then, ais
right invertible in R. Similarly, we can deduce that a is
left invertible in R. It follows that a e U(R) , and hence,

it is centrally clean.

In 2004, Nicholson et al. 2 proved that if R##0, then
R[ x] is not clean. Then, it is obvious that R[ x] is not
centrally clean when R#0.

Proposition 3 The following conditions are equiva-
lent .

1) 2e U(R), and R is centrally clean.

2) Forany ae R, ue U(R) and x e C(R) exist, with
x* =1, such that a = u + x.

Proof 1)=2). Let a e R. Given that R is centrally
clean, ue U(R) and e e CE(R) exist such that I ;—a =e

+u, and it follows that a = (2¢ — 1) +2u. From 2 e
U(R), we derive 2u e U(R). Moreover, (2¢ -1)> =1
and 2¢ -1 e C(R).

2)=1). Hypothetically, we have ] =x +v, where v e
U(R), x =1 and xe C(R). Then, (1 -v)’=x"=1,
and it follows that v* =2v. Hence, from ve U(R), we
derive 2=ve U(R). Let aeR. Then, 2a-1=y+w,
where we U(R), y° =1 and y e C(R). Therefore, a =
yzi + % is centrally clean.

Then, we provide some characterizations of centrally
clean rings.

Theorem 2 The following conditions are equivalent .

1) R is centrally clean.

2) Every element x € R can be written as x = u — e,
where u e U(R) and e e CE(R).

3) Every element x € R can be written as x = u + e,
where u e U(R) UO and e e CE(R).

4) Every element x € R can be written as x = u — e,
where u e U(R) UO and e e CE(R).

Proof 1)=2). LetxeR. Then, —x=e+v, and it
follows that x = —v —e, u = —ve U(R) and ¢ e
CE(R).

2)=3) and 3)=4) are similar to 1) =2).

4)=1). Let xe R. Then, we derive —x =u — e based
on the assumption, where u € U(R) U0 and e € CE(R).
Hence, x=( —u) +e. The case when u =0 follows from
4) of Example 1.

Recall that if e e E(R) exists such that e e aR and 1 -
ee (1 —a)R for any a € R, then R is an exchange ring.
Moreover, if every idempotent of R is central, then R is
called abelian.

Theorem 3 The following conditions are equivalent:

1) R is centrally clean.

2) R is an exchange and abelian.

3) R is clean and abelian.

4) For any ae R, e e CE(R) exists such that e € aR
and 1 —-ee (1 -a)R.

Proof 1)=3). It suffices to prove that every idemp-
otent of R is central. Let e e E(R). Then, we derive e =
f+u, where fe CE(R) and u € U(R), and it follows
thatif f+u=(f+u)’ =f+2fu+u’, then | =u +2f.
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Hence, we obtain e=f+u=f+1-2f=1-fc CE(R).

3)=4). Given that clean rings are exchange rings, it
follows that, for any a e R, ¢ € E(R) exists such that ¢
eaR and 1 -ee (1 —a)R. Given that R is abelian, we
derive e e CE(R).

4)=2). This is enough to show that R is abelian. Let
fe E(R). Then, according to the assumption, e e
CE(R) exists such that e e fR and 1 —e e (1 - f) R.
Hence, we obtain fe = e and (1 —f) (1 —e) =1 —e.
Then, f=e e CE(R). Therefore, R is abelian.

2)=1). Let x e R. Given that R is an exchange ring,
ec E(R) exists such that ec xR and 1 —ee (1 —x)R.
Let e =xa’, where a’ e R. Then, e = ¢’ = xa’xa’. Write
a=a'xa’, and it follows that e = xa and ae = a’xa'xa’ =
a'xa’ =a. Then, axa = a. Given that R is abelian, we
derive ax = axax = xa(ax) = xaxa = xa. By a similar ar-
gument, we can obtain (1 -¢) =(1 -x)b, b(1 -¢) =
b, and (1 —x)b=b(1 -x). Furthermore, we can obtain
[x-(1-¢e)](a-b)=xa-xb-(1-e)a+(1-e)b=
e+(1-x)b=1and (a-b)[x-(1-e)] =1. That is,
[x-(l-e)] '=a-b. Then, x=x-(1-¢) + (1 -
e). Hence, R is centrally clean.

Proposition 4 Let p e CE(R). Then, a € pR is cen-
trally clean in R if and only if a is centrally clean in pR.

Proof The necessity is clearly stated in Theorem 1.
Conversely, assume a e pR is centrally clean in R. Then,
e CE(R) and u e U(R) exist such that a =e + u, and it
follows that pa = pe + pu, pe € CE(pR), and pu e
U(pR). From pa =a, we derive a = pe + pu. Hence, a
is centrally clean in pR.

Corollary 1 Let pe CE(R). If R is a centrally clean
ring, then so is pR.

Han et al. " proved that when e e E(R), if eRe and
(1 -e)R(1 —e) are clean rings, then so is R. Here, we
consider the case of e e CE(R).

Corollary 2 Let ec CE(R). If eR and (1 -¢)R are
centrally clean, then so is R.

Proof This is clearly stated in Theorem 1.

Han et al. "*' also investigated the cleanness of group
rings, the ring of formal power series over a ring, and a
direct product of rings. Then, we analyze the relevant re-
sults of R[ [ x] ] and TIR,.

Proposition 5 The ring R[ [ x] ] is centrally clean if
and only if R is centrally clean.

Proof lLetf=a+bx+cx +--eR[[x]].
that R is centrally clean, we can suppose that a =u + e,
where e e CE(R) and u e U(R). Then, f=e + (u + bx
+cex’ ++), eeCE(R[[x]]), and u +bx +cx’ + -+
U(R[[x]]). Therefore, R[ [ x] ] is centrally clean.

Conversely, we know that R[ [ x]]/(x) is centrally
clean because R[ [ x]] is centrally clean. Hence, R =
R[[x]]/(x) is centrally clean.

Lemma 2 Let R, S be two rings and ¢: R—S be a
surjective ring homomorphism. If R is centrally clean,

Given

then so is S.

Proof It is obvious.

Proposition 6 A direct product R = [[R, is centrally
clean if and only if R is centrally clean.

Proof Given that 77 : [IR,—R, is a surjective ring
homomorphism, it follows that R_ is centrally clean based
on Lemma 2.

Conversely, suppose that R is centrally clean. Let x =
(x,) e [IR,. Then, for each a, we derive x, =u, +e_,
where u, € U(R,) and ¢, e CE(R_). Hence, we obtain
x=e+u, u=(u,) e U(TIR,) and e =(e,) € CE(]I
R,), and it follows that R = [[R, is centrally clean.

Let L be a two-sided ideal of R. We suppose that the
idempotents can be lifted modulo L if, given that x e
E(R/L), e E(R) exists such that e — x € L. Similarly,
we can define the concept that the central idempotents can
be lifted modulo L if e € CE(R) exists such that e —x e L
for xe CE(R/L).

Proposition 7 R is centrally clean if and only if R/
J(R) is centrally clean, and the central idempotent can
be lifted modulo J(R).

Proof Based on Lemma 2, we confirm that the factor
ring of a centrally clean ring is centrally clean. Then, R/
J(R) is centrally clean. Given that a centrally clean ring
is exchange, it follows that the idempotents can be lifted
modulo J(R). Based on Theorem 3, we determine that
the idempotents of R are central. Then, the sufficiency is
proven.

Conversely, let xe R and x =e + u, where e e CE(R/
J(R)) and u e U(R/J(R) ), which indicates that v e R/

J(R) exists such that uv = vu = 1. Then, r,,r, e J(R)
exist such that uv =1 +r, and vu =1 + r,. Hence, u e
U(R). Given that the central idempotents can be lifted
modulo J(R) , we suppose that p e CE(R) and p - e e
J(R), and it follows that r € J(R) exists such that x =p
+u+r=p+u(l+u'r). Given that u 're J(R), we
derive 1 +u~'re U(R). Hence, R is centrally clean.

3 Characterizations of Central Drazin Inverses

In this section, we mainly provide some characteriza-
tions for the existence of central Drazin inverses.

Theorem 4 Let a € R. Then, the following condi-
tions are equivalent;

1) a is central Drazin invertible.

2) ueU(R), e CE(R), and the positive integer m
exist such that a” = eu and au = ua.

3) ve U(R) and fe CE(R) exist such that a =f+v

and af e R".

4) pe CE(R) exists such that ap e U(pR) and a(1 -
») c R

Proof 1)=2). Write ¢ =aa’. Then, e e CE(R).

Given that a is central Drazin invertible, and it follows
that the positive integer m exists such that ¢" = a"aa® =
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a"e. Writte u=a" + (1 —e). Then, [a" + (1 -¢)]
[(a)"e+(1-e)]=a"(a")"e+a" (1 -¢) +(1-¢)
(a)"e+(1-e)>=e+1-e=1. Hence, we have u
U(R) and u™" = (a)"e + (1 —¢), and it follows that
a"=a"e=[u-(1-e)]e=euand au =ala" + (1 -
e)]=a""+a(l-e)=a""+(1-e)a=[a" + (1 -
e)]a=ua.

2)=3). Write f=1 -e. Then, fe CE(R). Given
that (a" —f) (u'e -f) =1, we derive a" —fe U(R).
Then, (a-f)(a" " +a"*f+- +af+f) =a" —-fe
U(R). Hence, we obtain v=a -fe U(R) and (af)" =
a"f=eu(l —e) =0, i.e., afe R™.

3)=4). Write p=1-f. Then, pe CE(R), ap =pa
=pve U(pR) and a(1 -p) =afe R".

4)=1). Based on this assumption, it follows that w e
U(pR) exists such that apw = pwa = p. From pw = w,
we derive aw =wa=pe C(R), waw =pw =w, and a -
aw=a(l-aw) =a(l —p) e R". Hence, a is central
Drazin invertible.

Zhu et al. "' showed that @ is Drazin invertible if and
only if ue U(R), ec E(R), and the positive integer m
exist such that @" = u + e is strongly clean decomposition
and a"RNeR =0. Here, we investigate the relevant re-
sults of central Drazin inverses.

Theorem 5 Let a € R. Then, the following condi-
tions are equivalent

1) a is central Drazin invertible.

2) ueU(R), ec CE(R), and the positive integer n
exist such that a" =u +e and a"RNeR =0.

3) ue U(R), e CE(R), and the positive integer n
exist such that " =u —e and a"RNeR =0.

Proof 1)=2). Given that a is central Drazin inverti-
ble, we derive u =a" — 1 + aa® € U(R) for any positive
integer n >ind(a). Write e =1 — aa”.
is the centrally clean decomposition. Let x € a"R N eR.

Then, a" =u +e

Then, y,z € R exist such that x = a"y = ez = ea"y = 0.
Hence, a"RNeR =0.

2)=1). From e e CE(R), it follows that the positive
integer m exists such that;

(ane)m — (an)me:e(an)meaaneR:O

i.e., a"e e R". Let m be the nilpotent index of a’e.
Then, (a")" =u"(1 —¢). In fact,

(an)rn:(u+e)nlz
W+ (Mu" e+ G u" e+ + (" ue e =
"+ (u"e—-u"e) + (Mu" e+ (D)u" e+
e+ (U Jue+e=
u'(1-e)+(u"e+(Mu" e+ (M)u" e+
(0 Juete) =
Mm(l—€> +(um+(r]n)um—l +(12n)um—2+
(N Ju+e)e=
u"(l-e) +(a")"e=
u"(l-e)+(a"e)"=u"(1-e)

Hence, (a")" is central group invertible derived by The-
orem 3.6 in Ref. [ 28 ]. Then, a is central Drazin inverti-
ble derived by Theorem 3.3 in Ref. [28].

1)<3). This is similar to the proof of 1)2).

From Theorem 5, we derive the following corollary.

Proposition 8 Let a e R. Then, the following condi-
tions are equivalent .

1) a is central Drazin invertible.

2) e CE(R) and the positive integer n exist such that
a"e=0and a" —ece U(R).

3) e CE(R) and the positive integer n exist such that
a"e=0and a" +ec U(R).

Proof 1)=2). Given that a is central Drazin inverti-
ble, we derive u =a" -1 +aa” € U(R) for any positive
integer n >ind(a). Write e =1 —aa‘. Then, a"e =0 and
a"-ecU(R).

2)=1). Let xe a"RNeR. Then, y,z e R exist such
that x=a"y=ez=ea"y=a"ey =0. Hence, a"RNeR =0.
According to Theorem 5, the proof is completed.

1)¢3). This is similar to the proof of 1)¢2).

For the central group inverses, we also obtain the fol-
lowing relevant results.

Proposition 9 Let a e R. Then, the following condi-
tions are equivalent .

1) a is central group invertible.

2) ue U(R) and e e CE(R) exist such that a =u + e
and aRNeR =0.

3) ve U(R) and fe CE(R) exist such that = fva, 1
-f=(1=-f)v(l -a), and af =a.

Proof 1)«2). This is given in Corollary 4. 6 in
Ref. [28].

2)=3). Write f=1-eandv=u"'(1-2¢). Then, v
e U(R) and fe CE(R), and it follows that fva = (1 -
eu'(1-2e)(u+e)=(1-¢)(1-2¢)=1-e=fand
a(l-f)=(u+e)ecaRNeR =0. Hence, af =a and

(1-HHv(l —a) =eu " (1 -2e)(1 —e—-u) =
eu ' (1-2e)(-u)=e=1-f

3)=2). Writte u =v~'(2f-1) and e =1 - f. Given
that 1 —=f=(1 -fHv(l —a) =(1 =-fHv-(1 =fHva=(1
-fHv-va+fva=(1-f)v-va+f, it follows that a =
v =fpHv+v I (2f-1) =1 -f+v ' (2f-1) =e +u.
Let xeaRNeR. Then, r,t e R exist such that x = ar =
et, and it follows that fr = fvar = fv(et) =fv(1 -f)t=0,
i.e., r=(1-=f)r. Then, x=ar=a(l -f)r=(a-af)r
=0. Therefore, aRNeR =0.

4 Central Group Invertibility of Combinations
of Two Central Idempotents

Motivated by the study conducted by Liu et al. '*' | we
investigate the central group invertibility of combinations
of two central idempotents in this section.

In this section, F denotes a field and A denotes the al-
gebra over F.
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Theorem 6 Let p,q e A be the central idempotent and
a=d,p+d,q+d,pq, where d,e F, i=1,2,3. Then, a
is central group invertible, and

a®=dlp+diq+(d -d -d})pq
where

1
d=d, +d, +d,, d“':{d
0 d=0

d+#0

Proof Letx=dp+d,qg+ (d -d -d))pg, which
suffices to prove that x is the central group inverse of a.

Given that p,q e CE(R), we derive xa e C(R). By
computation, it follows that

ax=(d\p +dyq +dpq) [dip +dyq + (d' -d} —d;)pq] =
dld;rp+d2d;q+ [d1(d; +d' _di _d;) +
dy(d) +d" -d| -d}) +d,(d} +d, +d' -d| -d,) |pq =
did\p +dyd,q +[d,(d" -d}) +d,(d' -dy) +d,d' Ipq =
dyd\p +dydyq + (dd' - d,d} - d,d,) pq

Then, we obtain

xax=[dip+d;q+(d' —d; -d})pq]ld,dip +d,d;q +
(dd' -d,d| - d,d})pq] =
dddp+dddq+[d(dd +dd —dd -dd) +
di(dd +dd' -dd -dd) +(d -d -d)dd 1pq=
dip+dig+(d' —dy -d;)pg=x

and

d’x=aax=(d,p+d,q+dpq) [ d,dp+d,diq+
(dd.{. _dld-l‘- - dzd;)PQJ =
dldld:p + d2dzd;q + [dl(dﬂf - dld;r) +
dz(ddf —dzd;) +d3ddf]pq =
dldld-:-p + dzdzdlq +
[dlddT -d, +d2dd? -d, +d3ddf]p6] =
dldld:p + dzdzd;q +dpg=a

Hence, x is the central group inverse of a, and a®© =
dip+dig+(d -d -d)pq, where

1
s d#0
d=d, +d, +d,, d':{d .
0 d=0

Letd, =1, d, =1, d, =0. Then, we obtain the fol-
lowing results according to Theorem 6.

Corollary 3 Let2 e U(R) and p,q € A be the central
idempotents. Then, p + g is central group invertible, and

3
(p+a)®=p+q-7pq
If pg =p, then we obtain the following results accord-

ing to Theorem 6. That is, we take d, =0 in Theorem 6.
Corollary 4 Let p,q € A be the central idempotent

and pg =p. Then, d,p + d,q is central group invertible,
and

(dp+d,q)©=(d -d})p+diq

If pg = g, then we obtain the following results accord-
ing to Theorem 6.

Corollary 5 Let p,g € A be the central idempotent
and pq =q. Then, d,p + d,q is central group invertible,
and

(dp+dyq)®=dip+(d -d))q

5 An Example

In this section, we present all invertible, central group
invertible, group invertible, central Drazin invertible ele-
ments, and centrally clean elements of Z,S,. For conven-
ience, we write g, = (1), g,=(12), g, =(13), g, =

6
ng"'

By computation, we obtain the following results

(23), gs=(123), g, =(132), and e =

E(Z,S,) =10,8,,85 + 8.8 + 85 +8:8 +8 + 8,8 +
83 +86:8, +8,t85,8, t8 +8,8: +8,t8,8 +
84 t8:,8 8 t8 +85,8 +8 +8 +8,8 +8& +
84 +t85,8 8 +8 +8,8 +8 +8,+85,8 +8 +
84+ 8!

C(Z,S;) =10,8,,85+ 86,8 +85 +8 -8 +8& +&,
8 8 t§; +g4’e+glae%

CE(Z,S;) =10,8,,85 + 8,8 +8; + 8!

Example 2  All invertible, central group invertible,
group invertible, central Drazin invertible elements, and
centrally clean elements of Z, S, are listed as follows.

For convenience, we use CG (Z,S,), G (Z,S,),
CD(Z,S,), and CC(Z,S,) to denote the sets of all cen-
tral group invertible, group invertible, central Drazin in-
vertible elements, and centrally clean elements of Z,S,,
respectively.

U(ZZS3> = {gl9g2’g3ag4’g57g6,e+gl,e+gz’e+g3’
e+g,,e+gs,e+gl

CG(Z,S,) =10,U(Z,S;) ,8, + 85,8, + 818 + &>
8s t 86,81 +85,8: +g6€

G(Z,S;) = CG(Z,S,) .8, +8, + 8.8 +8& + &
81 +8; 18,8 t8 +8,8 +84185,8 t8+8>
8, +83 185,818 +8:,8, 784185,8, 184 +8>
83 +84 185,88, Y8 +8,¢+8,t8,6+8 +38s,
e+g tg,etg tgs,e+g, tg,,e+8 +gs,el

CD(Z,S,) = {CG(Z,S,) .8, +8,,8 +85:8 + &>
8 +8 t8;,8 t8 t84,8 t8;5+84,8 T8 +8&»

8 185 +86,84+8s 8,6 +8 +8:,6+8 +8,,
e+g, +g,,e+g +g,,e+g8 +g,,et+g +g,,el
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CC(Z,S,) =10,U(Z,S,) .8 + 8,8 +85:8 *+ &>
81 +85,81 +86:85 +86:8 t83,8, 184,85 84>,
8 t8 t8:,8 +8 +84,8 +8;+84,8 +8; +84,
81 +85t8:,8 8 +8:,8:+85 86,84 1t8 +8»
8 +8;t8,,6+8 +8,¢+8 +8,6+8 +8,,
et+g +8,et8 +8,6e+8;+8,,6+8 +8,,
e+g, +g,e+g.,e+gs, el

Proof Given that Z,S, is finite, it follows that Z,§, is
strongly wr-regular. Hence, the elements in Z,S, are Dra-
zin invertible.

Then, we calculate the units of Z,S,.

Let a =x,8, +X,8, + X;8; + X,8, + X585 + X8, and B =

Vi& t Y282 + Y385 + V484 + V585 + V8- FromaB=g,, we
can obtain

Xy Xy Xy Xy Xgo X5 | (W

1
Xy X X X5 X3 Xy || W 0
Xy X5 X X Xy X || 0
X Xy Xy Xy Xgo X5 ||, 0
x2 xl x() x5 x3 x4 y5 0
0
LX, X, X, X, X, XY
which has a unique solution.
XX, X X, Xg X
Denote A = |x, X, Xx;| and B =|Xx; X3 Xx,|.
Ay X X Xe Xy Xy
B 2
Then, we have Al= |A +B|*+0. Notably, X, +

X, +Xx; +x, +x; +x, =1. Hence, we can obtain

X X, X, +XxX, Xy X
Xy +Xs X, vX, X, +X | =
X +x, X, +x, X +x,
1 1 1
(Xl +X, +X; +Xx, +X; +x6) X, +Xs X tX; X, +X | =
Xy +Xg X, +Xs X X,
1 1 1

O X +x,+x, +x X, +X,+X, +X5 | =

0 X, +x,+x; +X, X, +X, +X; +X,

L+x,+x, 1+x +x,

L+x, +x, 1+x, +x

(T+x, +x) (T +x, +x5) +(1+x, +x,) (1 +x, +x,)

Then, from |A + B | #0, it follows that x; =0 for

certain i e {1,2,-+-,6} and the others are 1, or x, =1 for
certain ie {1,2,--+,6| and the others are 0. Hence, we
have

U(ZZSS> = {gl9g29g3’g4’gsagﬁ’e+g]’e+g2’e+g3’
e+g,,etg,e+gl

Therefore ,based on Theorem 3. 6 in Ref. [ 28 ], Propo-
sition 8.24 in Ref. [30 ], Theorem 4.5 in Ref. [28 ],
and the definition of centrally clean elements, we can

present the sets of CG(Z,S,), G(Z,S,), CD(Z,S,),
and CC(Z,S,) , respectively.
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