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Abstract; To solve the hardware deployment problem caused
by the demanding computational
convolutional layers and limited hardware resources for the
hardware network inference, a look-up table ( LUT )-based
convolution architecture built on a field-programmable gate
array using integer multipliers and addition trees is used. With
the help of the Winograd algorithm, the optimization of
convolution and multiplication is realized to reduce the
computational complexity. The LUT-based operator is further
optimized to construct a processing unit (PE). Simultaneously
optimized storage streams improve memory access efficiency
and solve bandwidth constraints. The data toggle rate is
reduced to optimize power consumption. The experimental

vast complexity of

results show that the use of the Winograd algorithm to build
basic processing units can significantly reduce the number of
multipliers and achieve hardware deployment acceleration,
while the time-division multiplexing of processing units
improves Under this experimental
condition, compared with the traditional convolution method,
the architecture optimizes computing resources by 2. 25 times
and improves the peak throughput by 19. 3 times. The LUT-
based Winograd accelerator can effectively
deployment problem caused by limited hardware resources.
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resource utilization.

solve the

ield-programmable gate arrays ( FPGAs ) have
F emerged as one of the promising hardware platforms
for accelerating convolutional neural network (CNN) in-
ferences due to the prominent advantages in terms of pow-
er consumption and acceleration performance versus cur-
rent GPU- and CPU-based counterparts. Small-size fil-
ters, such as 3 x 3 kernels, provide an efficient way to
store model weights in memory, thereby leading to data

]

transfer speedups''’. Data compression is used to lighten
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the throughput of CNN models. However, the accuracy
of network inferences using low-precision quantization
processing can be severely diminished and exceeds the ac-
ceptable threshold. As a standard user case, 8-bit quanti-
zation can already approximate the accuracy of the origi-
nal network, and the quantization error can be ignored'”’.

Efficiency-oriented architectures with small filters are
adopted to reduce computation complexity. Most of the
computation time is spent on a convolutional layer with 3
x3 and 1 x 1 kernels. The consistency of the kernel types
in different layers makes it possible to reuse operational
units.

A popular way for hardware structure optimization is to
parallel the multiply-accumulate ( MAC ) operations.
Digital signal processing (DSP) blocks on FPGAs enable
full-precision floating arithmetic operations to design par-
allel MAC operations. The parallelism degree depends on
the amount of DSP resources. As DSP resources are criti-
cal to FPGAs, they are underemployed in the implemen-
tation of quantized neural networks (QNNs) working for
customized low-precision inferences. Using other logical
resources to build processing elements ( PEs) to replace
DSP blocks in a low-word-size design is necessary.

Different from LUTNet"”’ and Hardieck et al. ’s
work'*' | which aim to gain a high resource utilization and
reconfigurability of look-up table ( LUT) resources, the
Winograd algorithm is introduced to reduce multiplica-
tion, provide a hardware algorithm co-optimization solu-
tion to reduce the usage of LUT resources, and propose
an efficient LUT-based QNN accelerator for arbitrary pre-
cision network inference, named WinoNet.

The LUT-based architecture, including the inner ele-
ment-wise matrix multiplication ( EWMM ) kernel and
outer Winograd convolution ( WC) architecture, optimi-
zes the intra- and inter-parallelism of the convolution. Ar-
ea-efficient convolutional structures explore the area and
latency tradeoffs through the optimal setting of Winograd.
A reconfigurable cluster of PEs uses a multiplexer
(MUX) to control the data flow and wire connection.
Accordingly, this article proposes a reconfigurable LUT-
based Winograd accelerator to solve the bottleneck prob-
lem of neural network deployment.
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1 Method

The LUT-based architecture is proposed for the quan-
tized CNN inference, namely, WinoNet. Compared with
the previous work'”' | the Wino PE cluster was proposed
for time-division multiplexing of Wino PE and improve-
ment of resource utilization, and the full network deploy-
ment was realized to prove the versatility of WinoNet.
The key computation unit is an LUT-based EWMM.

From the perspective of arithmetic density in CNNs,
matrix multiplication consumes the majority of computa-
tion resources. The Winograd algorithm is used to perform
matrix multiplication. The Winograd-based EWMM con-
sumes fewer numbers of multipliers than traditional
EWMM. By exploring the tradeoff between the LUT uti-
lization and throughput, the optimal parameters are de-
duced for the quantized WinoNet.

The area and memory tradeoffs are analyzed by explo-
ring parallel inter-kernel EWMM architectures. The LUT-
based WinoNet is used to complete the hardware deploy-
ment design of VGG16 to prove the versatility of WinoN-
et.

1.1 Overall design

The network design consists of the memory interface,
internal buffer, data quantizer, stream processing mod-
ule, and Winograd PE ( Wino PE) group, as shown in
Fig. 1. The external memory is used to store the weight
parameters and intermediate feature map. The data from

the weight buffer and input feature buffer are reordered by
the stream processing module and sent to the Wino PE
group to complete the operation. For the input feature
map, a single row of pixels is stored in the BRAM, and
four BRAMs are used to form the Winograd window to
solve the bandwidth limitation. As the adjacent data cal-
culation windows have two rows of data overlapping, on-
ly the bottom two rows of the feature map need to be up-
dated from the DDR for the vertical window slide. The
data read from the DDR is divided into two parts, which
correspond to the two adjacent rows of the feature map.
Accordingly, the calculation window required by the
Winograd algorithm can be formed when the second row
of data starts transferring. When the data load from the
external memory to the on-chip memory is completed,
the data read from the four BRAMs is reordered by the
stream processing unit and converted into a single feature
map and multi-channel form and sent to the Wino PE
group, as shown in Fig. 1(b).

The weight buffer caches the parameters corresponding
to the input feature map calculation from the external
memory. The data read from the weight buffer is divided
into multi-channel filters by the stream processing unit
and sent to the Wino PE group, as shown in Fig. 1(c).

The Wino PE group is composed of multiple Wino PE
clusters and the corresponding adder tree. The Wino PE
cluster is used to complete the single-channel output fea-
ture map calculation. As the transform matrixes are con-
stants, the transformation process is directly expanded in-
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Fig.1 Overall architecture. (a) Overall architecture of the single-layer network hardware deployment; (b) Feature map storage method and da-

ta stream processing scheme; (c¢) Weight storage method and reordering scheme
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to multi-level addition and subtraction to reduce resource
consumption and timing pressure. The fixedness of the
weight during the inference process allows for directly
preprocessing the data and storing them in the external
memory for use.

After the Wino PE group completes the calculation, the
output data are stored in the output feature buffer and
transferred to the external memory. The maximum and
minimum values of the output data stream are obtained
and stored for the calculation of quantization factors.

The innermost operation of the convolutional layer is
the EWMM. The generic method to exploit DSPs makes
the subsequent multiplication operation wait for the previ-
ous one, increasing the latency. In fact, each multiplica-
tion of the EWMM is independent of the other. The sum
of product (SOP) method is adopted to flatten independ-
ent multipliers for each element-wise multiplication, and

X N

an adder tree is used to accumulate the multiplication re-
sults. Although more resources are consumed to imple-
ment calculations, the inner parallelism in EWMM can be
effectively exposed, reducing the total delay. As the mul-
tiplier uses LUTs instead of relatively precious DSP re-
sources, the additional resource consumption caused by
the SOP is acceptable.

The LUT-based hardware structure is presented for the
basic integer multiplication unit using the KCM approach,
as shown in Fig. 2. The multiplier x and multiplicand y
are decomposed into several small parts with m-bits,
where m fits in the input of the LUT resource. Further-
more, these parts can be easily multiplied together
through partial multiplication computation using LUTs.
The multiplication order of each part is matched according
to the multiplication distribution law"®".
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Fig.2 Diagram of the architecture of the LUT-based EWMM kernel. (a) Diagram of the architecture of the LUT-based EWMM kernel ;

(b) Multiplier with an optimum adder stage

1.2 EWMM Kkernel design

To reduce the circuitry consumption, the generalized
parallel counter technique is used to design an efficient
LUT-based adder tree. The LUT resources are fully used,
and the carry chain structure is optimized in modern FP-
GAs.

1.3 WC optimization

The Winograd minimal filtering algorithm is introduced
to optimize the convolutional layer, which reduces the
number of multipliers used in the EWMM kernel. Al-
though the Winograd algorithms have been used to accel-
erate CNNs, the implementations are dependent on DSP
resources with full-precision matrix multiplication. Wi-
noNet is the first custom-precision CNN inference that
employs FPGA soft logic (i.e., LUTs) to implement ef-
ficient Winograd-based matrix multipliers. WinoNet can
reduce the computation cost and overall latency. The in-
ternal calculation delay is only related to the multiplica-
tion operation.

1.4 Wino PE cluster design

The Wino PE cluster is made up of Wino PEs and the
The
number of input channels is not the same for all the lay-

corresponding accumulator, as shown in Fig. 1.

ers, leading to a difference in the number of Wino PE.
The independent Wino PE instantiation and controller de-
ployment for each layer cause additional resource con-
sumption. A MUX is used to realize the dynamic adder
tree combination and improve the utilization rate of Wino
PE. For the Wino PE Cluster [ , which is the smallest
cluster, the number of accumulator fans is determined by
the minimum input channel number of the single-layer
network. The pipeline design solves the time convergence
problem caused by the excessive fan. After the single-
cluster calculation, the MUX is used to control the data
flowing into the subsequent accumulator structure or di-
rectly as the single-layer output.

1.5 Data quantizer design

Quantization refers to the process of reducing the num-
ber of bits. The common process is to obtain the maxi-
mum value D

max

and minimum value D_. of the source

data and calculate the quantization factor. The quantiza-
tion factor is used to ensure that the variables are mapped
to the quantization interval without omission. The calcu-
lation formula of the quantization step A and bias z is as

follows :

D

max

- Dmin

1

A = e  Znin
Qmax -

(1)
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_Dmin
="y (2)
X =round(i) +z (3)
A
xq =clip(0,Q,,, —1,x,) +z (4)
a Xx=sa
clip(a,b,x) = {x asx<b (5)
b otherwise

where Q

In the quantification process, the original data are
scaled by the step size, and bias is added to shift the
whole interval to the quantization interval (0, Q. —-1)
for truncation processing. During the inverse quantization
process, the data are corrected by the bias and multiplied
by the step size to obtain the original data. As the basic
PE is constructed by the LUT, the system has low com-
plexity and high reconfigurable ability, which satisfy the
need for arbitrary precision.

is the interval length.

max

2 Design Space Exploration

The Winograd algorithm F(m xm, rx r) has different
acceleration effects for different output sizes m and filter
sizes r. Specifically, the reduction of multiplications

brought by WC is given by

M, (mr)®

W, (m+r-1)° (6)

where M, and W, are the multiplication numbers of the tra-
ditional convolution and Winograd-based convolution, re-
spectively. For example, for a 3 x 3 filter, when m =2,
the multiplication is reduced by 2. 25 times, and when m
=6, the reduction is 5. 06 times.

In principle, the larger m is, the more multipliers can
be avoided. However, as m grows, more adders are used
instead. With some choices of m, the overhead intro-
duced from such adders can be higher than the area and
latency benefit. How to choose m is the key to an effi-
cient implementation. An evaluation coefficient E,; is
introduced to evaluate the performance improvement un-
der different values of m. E| ;. normalizes the throughput
of a single LUT to evaluate the average performance. A
higher value of E|; represents a more efficient convolu-
tional architecture. The number of LUTs is defined as U,
which is characterized below :

U = UO + Umms (7)

where U, denotes the number of LUTs used for multipli-
ers in EWMM and U,

trans

denotes the number of LUTSs used
for other operations, including the LUT-based adder and
constant multipliers in the transformation operation.

The input feature map with the size of H x W is divided
into n x n tiles, where n =m +r — 1. When using a slid-
ing-window operation, the stride s should be n —r +1, so
s =m in our WCs. Therefore, the total number of convo-

lution operations in the whole feature map is as follows:

(8)

o=

H—r+1HW—r+l‘
m m

where « denotes the number of WCs. The data through-
put generated by the convolution operation sliding in the
entire feature map can be represented as

Sna

T:
al

(Sin+Sﬁ)Nbil (9)

where f,

max

is the operation frequency on FPGAs and L is
the delay of the Winograd operation expressed as cycle
clocks per operation. S, = (m +r—1)>and S, = 7 are
the input tile size and filter size, respectively, and N, is
the data bit width used for quantization.

The left part of Eq. (9) indicates the maximum opera-
tions of WCs per second. Finally, the evaluation coeffi-
cient E,; is given by
T

== (10)

ELUT U

3 Memory Requirement
3.1 Memory analysis

The Winograd algorithm also introduces an extra mem-
ory overhead when computing transformations. Compared
to traditional convolutions, it requires more static memo-
ry on the chip to store the input and output transform ma-
trices. For these filters, the static memory increases by
(n/r)*. WC is more efficient in terms of the utilization
of feature data. Although direct convolution ( DC) and
WC use the sliding-window method to traverse the entire
feature map, Winograd takes a larger input tile of the fea-
ture map than that of the filter. WC has less memory du-
plication of feature maps than DC.

For DCs, the tile size is r x r, and the stride equals 1.
Therefore, the overlap factor is characterized as

A = (H+r-1)(W+r-1)(r-1)

overlap

(11)

For WCs with F(m xm,r x r) , the tile size is n x n,
and the stride size is n —m =r — 1. Therefore, the overlap
factor is

wcC

overlap —

H—r+1HW—r+1‘
m m

(r-1)n (12)

Assuming that the filter’s stride is 1, the reduction
ratio of the memory wasted is as follows
(H+r=-D)(W+r-1)(r=-1)r_m'r m'r
ClH-r+1]|W-r+1
(r-=1)n
m m

n m+r-1

(13)

3.2 Memory and dataflow co-optimization

To further increase the parallelism of the inter kernel,
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the dataflow is optimized during convolution because the
memory overlap is a severe bottleneck on the feature
map. Referring to the GPU-based convolutional optimiza-
tion strategy, the image-to-column (im2col) operation is
used to flatten the convolutional layer and convert the
convolution operations into matrix multiplications. The
im2col operation is employed to transform the N x N in-
put feature map divided by n x n blocks into a dataflow
matrix made up of column vectors. Afterwards, matrix
multiplication is conducted on this reshaped feature map
with the wino-EWMM kernel. Then, the multiplied ma-
trix is inverted back with the col2im operation to obtain
the final results.

3.3 Memory bandwidth optimization

The parameter loading process is divided into weight
loading and feature map loading. The weight loading will
be completed at the beginning, as shown by the W-1
stage in Fig. 3. Each block represents the transformation
process of two rows of data. The slashed area is the se-
quential buffer. After the weight loading is completed,
the first two lines of the feature map are cached from the

Memory read bus W-1| MRB-1 MRB -2

Data bus

4
Memory write bus

DDR to BRAM (MRB-1). The data calculation could be
started when the transferred data have constructed the cal-
culation window. The interval between the start of the
BRAM,, region transmission ( MRB-2) and the start of
the Winograd calculation ( DB-1) is recorded as f,. A
time difference ¢, exists between the data cycle and mem-
ory read cycle. t, can be adjusted by various methods,
such as changing the clock frequency. The data transfor-
mation from FIFOO to DDR (MWB-1) can be performed
when the Winograd calculation is started. As the memory
bus may be occupied by the memory read logic at this
time, there will be a memory wait (#,). The redundancy
time #, at the end of MOB-1 is determined by #,. The idle
time caused by the memory bus efficiency is recorded as
t,. The total time #,,,,,
single-burst operation is

Lemory = Ivre + Tyws 14 (14)

where t,,,; and t,,,,, are the theoretical times to complete

for the memory bus to complete a

the data transformation. The data processing cycle ¢
should be less than the memory burst cycle ¢

data

memory *

tdala = tl + tDB + t2 < tmemnry ( 15)

MRB-3 1 [MRB-N+I

A AW
VA DB-:2 VA AEDB-

AN |
Ui~} - 7

[
i
t3

lt4l

Fig.3 Timing diagram of the memory bus and data bus

The DDR bandwidth becomes the bottleneck rather than
the calculated throughput when the parallelism degree is
high.

4 Experiment Results

In this study, several experiments are conducted to inves-
tigate and validate the proposed architecture based on LUTs.
Moreover, the implementation of the proposed method is
evaluated on the Xilinx Virtex series FPGA platform.

4.1 Experimental setup

Xilinx Virtex XC7V2000T FPGA is used for prototy-
ping CNN models. The LUT-based kernels are imple-

mented on Xilinx Vivado 2019. 2 in Verilog to facilitate
efficient multiplication and compressor tree circuits.

4.2 Hardware evaluation

There are three comparison points; traditional convolu-
tion using DSPs'"™®'
based operators™*' | and WinoNet. The proposed WinoNet
is implemented with a 3 x 3 filter, i.e., F(2 x2,3 x3),
which is the same size used in other implementa-
S/ The intra- and inter-optimization architectures
are implemented. The structures are tested with a variety
of output sizes (m =2,3,4,5,6). The detailed experi-
mental data are provided in Tab. 1.

, traditional convolution using LUT-

tions!

Tab.1 Synthesis results of the resources and latency for the DSP- or LUT-based methods.

LUT-based convolution architecture

Width/ DSP-based direct convolution -
bit m DSP Direct convolution SOP convolution WinoNet
DSP FF LUT  Latency FF LUT  Latency FF LUT  Latency FF LUT Latency

8 2 x2 2 580 532 20 0 436 353 39 918 1582 5 1220 1388 6
8 3x3 3 990 918 31 0 508 397 85 1545 2 448 6 2243 2818 7
8 4 x4 4 1 488 1184 42 0 582 440 148 2284 3357 7 2404 2922 7
8 5 x5 5 2 070 1 620 53 0 656 439 229 3135 4379 8 3331 4312 8
8 6 x6 6 2 724 2122 64 0 728 471 328 4110 5408 9 3524 4424 8




WinoNet: Reconfigurable look-up table-based Winograd accelerator for arbitrary precision convolutional neural...

337

The experiments are conducted in the same hardware
configuration and corresponding logical resource usage.
The direct implementation of the LUT-based convolution
is conducted without any strategies. The other three im-
plementations performed the row-unrolling operation for
parallel acceleration. The SOP convolution additionally
uses SOP for acceleration. The experimental results show
that WinoNet has a great advantage in the inference
Compared with the
convolution structure based on DSPs, the proposed meth-

speedup over traditional methods.

od can reduce the calculation latency by at least 3. 3
times. The receptive field becomes wider, and the extra
transformation consumes additional hardware resources.
Compared with the SOP structure, WinoNet brings more
resource consumption but does not reduce the latency
when the output size is small. The advantages become
obvious when the output size becomes larger. The area
and speed tradeoff of the parameter selection of m is criti-
cal.

4.3 Design space investigation

Regarding the different sizes of input tiles, the Wino-
grad accelerators are evaluated using E|,, coefficients,
and the actual results are normalized to the (0,1) propor-
tion. The experiments are conducted under feature map
sizes (N), output sizes (m), and data bit widths (b)
and are carried out on Xilinx Vivado HLS 2019.2. The
value of E|; changing with the output size has a similar
curve. Thus, only experimental data with a data width of
8 are shown in Tab. 2.

Tab.2 Synthesis results of the resources and latency for the
Winograd-based methods with different F(m xm,3 x3)

When the output size becomes larger, the WC will
greatly improve the speed performance by up to 19. 3
times. The speedup factor represents the acceleration de-
gree. When m =2, E|, reaches the maximum value, but
the speedup is only about one-third compared to the case
of m =6. The priority between performance and efficien-
cy needs to be considered. In this study, setting m =2 is
considered to be a balanced choice for the area and speed
tradeoffs.

4.4 Performance comparison

The deployment in this study has instantiated 128 Wino
PEs considering the external memory bandwidth limita-
tion. The cluster scheduler is designed for the dynamic
organization of the adder tree and wire connection. Wi-
noNet is compared with several prior FPGA works, and
power, resource estimation, and throughput are used as
the metrics to evaluate the design. The throughput is de-
fined as the operation amount (o) completed per unit of
time and is measured in giga operations per second
(GOPS). The calculation cycle T,
map is a quarter of the output feature map size. The for-

for the output feature

al

mulas of the convolution operation amount o and through-
put p are shown as follows:

0= 2Cink2 Houl Woul Coul ( 16)
_of _ 4of _ 2
p= T - Hom W(,ul - Smek Coul ( 17)

cal

where f is the clock frequency; k is the kernel size; H_,
and W,

the input and output channel numbers.
As power is related to multiple factors, such as re-

are the output feature map size; C,, and C,, are

out

source consumption and clock frequency, energy efficien-

m FF LUT Epyr(normalized) Latency  Speedup cy and LUT efficiency are used as supplementary indices
2 343 827 1 6 6.5 x for comparison, as shown in Tab. 3, and the measure is
301138 2682 0.6937 10 8.5 indicated in parentheses. Using only 25.4% LUTSs and
4 179 4242 0.779°8 12 12.3 x no DSPs, a frequency of 235 MHz, a peak throughput of
> 5 10214 0.506 0 16 14.3 x 2 165 GOPS, and an average throughput of 1 928 GOPS
6 8 055 16 499 0.451 1 17 19.3 x .
are achieved.
Tab.3 Implementation of FPGA and comparison with other works
Method iccap’1gl®l  TvLsriol?l  rcem21t4! TvLsr2o!t FPGA’19!12] FPGA™20!"5 WinoNet
Model VGG16( pruned) VGG16 VGG16 VGG16 VGGl16 VGGl16 VGGl16
Winograd-based
. No No Yes Yes No No Yes
inference
Precision 8-bit fixed 8-bit BFP 8-bit fixed 16-bit fixed 16-bit fixed 16-bit fixed 8-bit fixed
Platform XC77Z045 VX690T XCZU9EG Arria-10 VU9P Alveo U200 XC7V2000T
Frequency/MHz 200 200 200 250 214 200 235
DSP/ % 75.56 28.53 40.63 88.53 78.20 39.18 0
LUT/ % 52.75 53.58 70.07 15.74 58.47 19.46 25.37
BRAM/ % 99.45 62.11 39.04 61.47 74.49 68.01 35.29
Power/W 7.20 9.18 10.20 18.00 49.25 14.90
Performance/GOPS 524.00 760. 83 1150 1 642 1 828.61 3439 2 165
LUT efficiency/
3 4.56 3.28 5.99 9.07 1.21 14.95 6.98
(GOPS - 1077)
Energy efficiency/
72.80 82.88 112.75 91.22 37.13 145.30

(GOPS - W)
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Compared with implementations using DSPs"”™*' | en-

ergy efficiency has been demonstrated in WinoNet. Wi-
noNet achieved up to 3.9 times more energy efficiency
and 5. 8 times more area reduction than Yepez et al.’s""”’.
Compared with Winograd-based inferences "™’ | the Wi-
noNet uses LUTs instead of DSPs for custom-precision
computing and constructing more reusable architecture,
achieving up to 1.6 times energy efficiency and 1.2 times
area reduction. Compared with LUTNet, WinoNet pro-
vides a common architecture for arbitrary precision net-
work inference.

4.5 Discussion

For CNN models, such as VGG16, with uniform-size
convolutions, Wino PE can reduce resource occupation
and power consumption. Many CNN models contain ker-
nels of different sizes, such as MobileNet V2. Apart from
the 3 x 3 convolutional layer, the bottleneck residual
block is the main composition of MobileNet V2. 1 x 1
convolution mainly involves multiplication and accumula-
tion. The internal structure of Wino PE is revised by
adding a data bypass to directly transfer the data and
weight to the Hadamard product module to support a gen-
eral convolution of 1 x 1, as shown in Fig. 4. Tab. 4
shows the resource usage of the classical 16-channel 1 x 1
convolution, Wino-based convolution, and Wino-based
bottleneck residual block in MobileNet V2. The bottle-
neck residual block transforms from 32 to 16 channels,
with a stride of 1 and expansion factor of 1, and instanti-
ates 32 Wino PEs. The modified Wino PE can process
16-channel 1 x 1 and regular 3 x 3 convolution kernels.
Compared with separate 1 x 1 and 3 x 3 convolutions, the
modified Wino PE achieved up to 1.34 times LUT reduc-
tion and 1. 18 times FF reduction. The changes in kernel
sizes and strides lead to the adjustment of the sampling
window and transform matrix, and the adder tree mapped
by the transform matrixes needs to be redesigned. The di-
lation rate also affects the sparsity of the algorithm, read/
write flow of the memory system, and data ordering. The
hardware architecture needs some adjustments to accom-
modate different algorithms. Further architecture needs to
support dynamic window adjustment and data reordering
to realize a general convolution.

Wino PE(3x3 Conv) Hadamard product ~ Wino PE

Data : Input : 7 5 ;

| Transform |i:° : o :

; - : i utput i
e | - o |

Weight |[™ Transform ; ' i

= 1x1 Conv

1x1 Conv

Fig.4 Internal structure of the modified Wino PE

Tab.4 Resource usage comparison between different methods

Classical Wino-based Wino-based Bottleneck
Method 1x1 3x3 1 x1 and residual
Conv Conv 3 x3 Conv block/103
LUT 1200 1388 1 930 80
FF 512 1220 1 466 88

5 Conclusions

1) The WinoNet enables a low-bit-width quantized
neural network deployment optimization with its parallel
EWMM kernel. The Winograd algorithm optimizes multi-
plier numbers to achieve convolution acceleration.

2) The LUT-based Wino PE optimizes the minimum
PE, and the dynamic cluster reconfiguration improves re-
source utilization to optimize LUT efficiency.

3) The optimized storage format and memory access
reduce data flipping, improve single data burst utiliza-
tion, and further improve throughput.

4) Experimental results demonstrate that compared
with the
achieves 2.25 times the calculation resource optimization

traditional convolution method, WinoNet

and 19. 3 times the peak throughput improvement.
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