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Abstract: Aimed at the problem that the state estimation in the
measurement update of the simultaneous localization and
mapping (SLAM) method is incorrect or even not convergent
because of the non-Gaussian measurement noise, outliers, or
unknown and time-varying noise statistical characteristics, a
robust SLAM method based on the improved variational
Bayesian adaptive Kalman filtering (IVBAKF) is proposed.
First, the measurement noise covariance is estimated using the
variable Bayesian adaptive filtering algorithm. Then, the
estimated covariance matrix is robustly processed through the
weight function constructed in the form of a reweighted
average. Finally, the system updates are iterated multiple
times to further gradually correct the state estimation error.
Furthermore, to observe features at different depths, a feature
measurement containing depth  parameters is
show that
measurement noise does not obey the Gaussian distribution and
there are outliers in the measurement information, compared
with the variational Bayesian adaptive SLAM method, the

model

constructed. Experimental results when the

positioning accuracy of the proposed method is improved by
17. 23%, 20. 46%, and 17. 76%, which has better
applicability and robustness to environmental disturbance.
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igh-precision navigation and positioning technology
H is an important guarantee for underwater vehicles to
successfully complete navigation detection and operation
tasks'"™' . In recent years, simultaneous localization and
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mapping (SLAM) technology has gradually become a re-
search hotspot in the field of underwater navigation due to
its advantages of realizing robot localization and real-time
update environmental feature location only by continuous-
ly sensing the external environment information through
sensors carried by itself without a prior map "*'. The ex-
tended Kalman filter ( EKF)-SLAM algorithm has been
widely used because of its rigorous mathematical theory,
simple structure, and easy implementation, and it was
first proposed by Smith et al'”. In this method, spatial
information is represented by a joint state vector contai-
ning the robot pose and environmental features, and the
uncertainties of localization and feature estimation are ex-
pressed by the covariance matrix. Simultaneously, it is
assumed that the noise obeys the Gaussian distribution.
The EKF-SLAM algorithm is demonstrated in detail
through theoretical derivation and experiments and opti-
mized by Guivant et al™*™"”’
plied to the SLAM algorithm for underwater vehicles by
Carpenter””, and an environmental feature map was con-
structed, realizing the verification of the EKF-SLAM al-
gorithm. The navigation system for underwater vehicles

. The EKF framework was ap-

in partially structured environments, such as dams, ports,
and docks, was described by Ribas et al. 1231 and the
feature information in the environment was extracted by a
mechanical scanning imaging sonar. Meanwhile, the ef-
fectiveness of the EKF-SLAM algorithm is verified in an
underwater environment at a depth of 600 m. Zhang et
"1 proposed a consistency-constrained EKF-SLAM al-
gorithm based on the idea of local consistency and applied
it to the autonomous navigation of the C-Ranger AUV.
Aimed at the problem of the azimuth variance accumula-
tion error in the EKF-SLAM algorithm, the pose estimate
is corrected using the absolute azimuth information given
by an electronic compass, which improves the estimation
accuracy of the EKF-SLAM algorithm "',

However, the filtering accuracy of the standard EKF-
SLAM algorithm depends on the accurate prior knowledge

al.

of noise statistics and Gaussian distribution assumption
U677 When an underwater vehicle operates, the noise
statistical characteristics of the measurement sensors are
usually unknown and time-varying due to the influence of
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complex hydrological environments, such as underwater
organisms, salinity, and ocean currents, which will lead
to a decrease in the filtering accuracy and may even cause
520 Sarkka et al. "

first proposed the combination of variable Bayesian learn-

filter divergence in severe cases

ing and the Kalman filter method for state estimation of
time-varying noise. Accordingly, more researchers began
to pay attention to the study of variational Bayesian meth-
221 Aimed at the filtering problem of transfer
alignment with an inaccurate measurement noise covari-

ods

ance matrix, a computationally efficient version of the ex-
isting variational adaptive Kalman filter is proposed"™”,
which facilitates the application of the variational adaptive
Kalman filter to transfer alignment. To solve the prob-
lems of unknown state noise and uncertain measurement
noise in coordinated underwater navigation, an adaptive
EKF based on variable Bayesian for master-slave autono-
mous underwater vehicles is proposed by Sun et al'”’'.
Many uncertain factors in an underwater environment,
such as abnormal clutters,
or mechanical vibrations of the power

reverberation interferences,
marine noises,
equipment inside the vehicle, will cause the noise charac-
teristics of the measurement sensor under actual working
conditions to have different degrees of non-Gaussian noise
and cause the appearance of irregular outliers in measure-
ment information. The generalized maximum likelihood
estimation method based on Huber can effectively solve
the non-Gaussian noise distribution problem. This method
is an estimation technique combining the minimum and
norms and has good robustness to the Gaussian distribu-
tion deviating from the assumption'™™'. To handle the
state and measurement outliers, a robust derivative-free
algorithm named the outlier robust unscented Kalman fil-
ter was proposed™.
version of the Kalman filter by introducing the Huber esti-

Chang et al. "' developed a robust

mator into the recast linear regression to address process
modeling errors in the linear system with rank deficient
measurement models.

Therefore, to solve the problem that the state estima-
tion is incorrect or does not converge in the measurement
update phase of the SLAM algorithm caused by time-var-
ying or the non-Gaussian distribution of the measurement
noise and outliers in the measurement information, an
adaptive robust SLAM localization method based on im-
proved variational Bayesian filtering (I[VBAKF-SLAM) is
proposed in this paper. The main contributions are as fol-
lows:

1) The proposed algorithm uses the variational Bayes-
ian filtering method to estimate the measurement noise co-
variance, then robustly processes the estimated covariance
matrix utilizing the weight matrix, and finally performs
multiple iterations on the system state update to gradually
correct its estimation error, which further reduces the po-
sitioning error of the state estimation.

2) In the system model construction, we introduce
depth information into the feature measurement model to
fully observe the environmental features at different
depths, which can better assist the navigation and positio-
ning of underwater vehicles.

1 Proposed IVBAKF-SLAM Method

The basic idea of the feature-based EKF-SLAM algo-
rithm is that the pose of underwater vehicles and features
are augmented into the system state vector. At the same
time, the system state is estimated using the filtering al-
gorithm through the state prediction, measurement up-
date, and state augmentation phases during the vehicle’s
voyage, and the environment map containing the feature
location estimation is constructed incrementally. In the
measurement update phase, the standard EKF-SLAM al-
gorithm assumes that the noise obeys the Gaussian distri-
bution. However, due to the existence of various uncer-
tain interference factors, such as signal disturbance in the
practical application environment, the measurement Sys-
tem often has characteristics, such as non-Gaussian distri-
bution or time-varying measurement noise, which may
lead to incorrect state estimation or even non-conver-
gence. Hence, a robust SLAM localization method based
on the IVBAKF is proposed. In addition, to make full
use of the feature information in the surrounding environ-
ment, the depth parameter of the feature is introduced in-
to the measurement equation.

1.1 State prediction

An underwater vehicle can move in space with six de-
grees of freedom according to various torques and its own
structural characteristics. To simplify the problem without
losing the validity of the model, the following assump-
tions were made for the underwater vehicle: If the under-
water vehicle only changes the depth without changing the
course, its center of gravity is maintained in the vertical
plane. If it only changes its course without changing the
depth, its center of gravity remains in the horizontal
plane. Based on this assumption, the spatial motion of
the underwater vehicle can be decomposed into horizontal
plane motion and longitudinal vertical motion without
considering the influence of the coupling between the two
planes on the spatial motion decomposition'”™'. There-
fore, the state vector of the vehicle pose can be expressed
as X, = {x,, ., 2, @, }', where x,,y,, z,, ¢, are the posi-
tions for the three directions (i.e., x, y, and z) and the
heading angle of the vehicle in the global coordinate sys-
tem, respectively. If {x, v,z 1" is used to represent the
position of the i-th feature in the global coordinate system,
the map vector is X, = {x,,y,, z,, -
the number of features.

T .
X, ¥,,2,}, and n is

Therefore, the augmented vector of the system state at
time k can be expressed as
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xn’ yn’ Zn }T (1)

where the north-east-down geographic coordinates are
taken as the global coordinate system, and the origin of
the vehicle coordinate system and the sensor coordinate
system are assumed to coincide.

In the state prediction phase, the pose information of

X, =X, Y0 20 @0 X1 Vs 245 oo

the underwater vehicle at the current time is calculated
based on the previous time’s pose according to the kine-
matic model. Then, the predicted value X, _, of the sys-
tem state at time k can be obtained by

X, + X,cosp, — y,sing,

)A'v + )A(Bsim;;v + fécosév

A

X, = Z, +7 +v, (2)
o0t

X,
where X,, y,, Z,, ¢, are the pose variations of the vehicle
at the current moment relative to the previous moment
and v is the time-independent process noise vector.

The corresponding covariance matrix can be expressed

34-35
as [ 1

Pk\k—] :JklkflPkflJZkal + U(S.k—lPrS.kflU;k—l (3)

where P, | expresses the covariance matrix of the system
1. P 5 k-1
corresponding to the state change at time k - 1; and J,,, _,
and U, _,
el function with respect to the system state vector and
state change, respectively. They can be expressed as

']v 0vm
Jui = [OT I ] (4)

m

state at time k — denotes the covariance matrix

are the Jacobian matrices of the nonlinear mod-

U

S k-1~

UV
] (5)

OT

vm

where J, and U, can be obtained by

1 0 0 -Xsin(g,) -y,cos(e,)
0 1 0 X,cos(p,) —v,sin(g,)
i1 = 0 0 1 pcoste 0 yosin(e (6)
0 0 0 1
cos(p,) —sin(g,) 0 0
sin(p,)  cos(p,) 0 0
Us,.. = 0 0 1 0 (7
0 0 0 1

1.2 Measurement update

During the navigation process, the environmental infor-
mation could be obtained using sensing sensors,
sonar, and the feature information could be extracted after
preprocessing the obtained data. Then,
tion algorithm is used to judge whether the currently ob-
served feature points match the existing features in the

such as

the data associa-

system state vector.
the existing feature in the state vector,
tween the predicted value and measured value of the fea-
ture is used to update the vehicle pose and the position of
the feature through the EKF method. However, when the
measurement noise is time-varying or has a non-Gaussian
distribution, the state estimation of the SLAM localization
method based on the standard EKF algorithm may be in-
correct or not convergent. Therefore, a robust IVBAKF
method is proposed in the measurement update phase.
Meanwhile, the measurement model containing the depth
information of features is constructed to observe more fea-
tures of different heights. The pressure sensor is used to
measure the depth of the underwater vehicle. The data as-
sociation method selected in this paper is the nearest-
neighbor data association algorithm"™' .

First, the relationship between the feature in the vehicle
coordinate system and that in the global coordinate system
is shown in Fig. 1. X,Y,Z represents the global coordi-
nate system, and X, YVZv represents the vehicle coordinate
system. The asterisk denotes the vehicle,
notes the feature, I, denotes the coordinates of the feature
in the global coordinate system. p, represents the distance
of the i-th feature observed in the vehicle coordinate sys-
tem. q,is the angle between the projection of the i-th fea-
ture on the plane of the vehicle coordinate system and the
X, direction, and g, is the pitch angle of the i-th feature in
the vehicle coordinate system.

If the currently observed feature is
the difference be-

the circle de-

I

|

l

VZ,
Fig.1 Feature description in the global coordinate system and

vehicle coordinate system

Therefore, the feature measurement model and depth

measurement model can be expressed as

(X, -X)"+ O, -3) "+ (z-2,)°
(i 9) :
arctan( % = | — o,
2y = X, -X (8)
Z, -2,
arctan( )
(X, -X) "+ (3,-3)°

z,=HX, +sz,=HX, +s, (9)

where {X,, y, z,} is the i-th feature estimation of the sys-
tem state vector; and H, and s, indicate the measurement
matrix and measurement noise of depth information, re-
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spectively.
Therefore, the sensor measurement model can be ex-

pressed as
Zg
Z=
24

Then, the measurement equation can be abbreviated as
the following discrete form:

(10)

7z, =h(X,) +w, (11)
]
Hk - aik )'(“H - [Hv 0] Hmi 02 ] -
oAy Ay Az
p p p
Ay Ax
S )
P P
AxAz  AyAz p
A Mds 2
P P P P p
L 0 0 1 0 0

where
Ax=X,-X,, Ay=y,-y,, Az=2, -2,

’ Hmi :i
o 0X, |z,

mi

_on

H =
T oX,

p= V(X -X)+(5, -y’

p= (Xi_)/\(v)2+(§i_.{}\v)2+(21'_2\/)2

Therefore, the system state model can be expressed as

2y _h(Xklk—l) +Hkalk71 Hk ¢ Wi
. = X 14
{ Xk|1<71 } [ I] * +[ _6k] ( )

The accuracy of the measurement noise statistical char-
acteristics has a direct impact on the system state estima-
tion accuracy. Inaccurate noise characteristics will seri-
ously reduce the state estimation accuracy and even fail
to converge in severe cases. Hence,
Bayesian estimation method is used to adaptively esti-
mate the covariance of the measurement noise, and the
estimated value R, can be expressed as

the variational

A

R, = diag(n, /) (15)

where u and 7 are the probability density distribution pa-
rameters of inverse gamma, and they can be obtained by

lu’k,i:lu’k—l,i+0'5 (16)

1 a
nk,i:nk—l,[-'-?[(zk_Hka)?+(HkPl<Hz)ii] (17)

where i =1,2, ..., d and d is the dimension of the meas-
urement vector, the value of 0.5 can be determined by
Ref. [21], and the subscript ii represents the diagonal el-
ement in the matrix.

Here, we define variables T,, m,, G, and &, as
follows:

where z, represents the observation vector at time k and w,
expresses the measurement noise.

If the theoretical state value is )A(k, the predicted state
value is X,,,_, at time k. Let §, =X, - X,,_,, and then

the measurement equation can be re-expressed as
zkzh(ik\k—l ) +Hk(Xk_Xklk71 ) +w, (12)

where H, denotes the Jacobian matrix of the measurement
function and can be obtained by

0o A A Az 0]
p p p )
0 —A—zy A—j‘ 0 0 .. 0
P p
o -AxAz _Aydz P, g
P P pp P
0 0 0 0 0 .. 0J
T k.0 (18)
k_[o Pk\kfl]
m, :kal/z[zk _h(Xklli—l) +HkaIkl] (19)
Xklkfl
H
_ 12 k
G=1.""/] (20)
w
,=TT”2[ ] (21)
& k -8,

Substituting Egs. (18) to (21) into Eq. (14), it can
be expressed as

m,=GX, +¢, (22)

Based on the generalized maximum likelihood estima-
tion method, the corresponding iterative convergence so-

lution can be expressed as
X" =(Gw'G,) ' GW m, (23)

where the superscript j represents the number of itera-

tions, and the initialization value can be given by
X" =(G;G, "'G/m, (24)

From the value ¥ corresponding to the final conver-
gent state, the corresponding state error covariance ma-

trix can be obtained by
P =(GwG) "' (25)

where ¥ denotes the weight function and can be given by

1 \eky,.\<'y
TS dedsy
ki

where vy is the regulatory factor and e, ; expresses the nor-
malized residual of the i-th dimension.



344

Zhai Hongqi, Wang Lihui, Cai Tijing, and Meng Qian

Due to the special structure of the matrix G,, the state
estimation process is further transformed into a more gen-
eral form by applying the matrix inverse lemma. First,
the weight matrix ¥ is divided into blocks, and ¥, and
W represent the state prediction residual and measure-
ment prediction residual, respectively.

=[1I', 0

y mxn

0 v,

nxm

(27)

where 0 denotes the m x n zero-valued matrix.

mxn

After derivation, the prediction covariance and meas-
urement covariance matrix can be expressed as

Pk:(Pk\k-l)l/zlpgl(sz-l)T (28)
R =R°w '(R™" (29)

Consequently, the estimated value of the system state
and corresponding covariance matrix can be obtained by

}A(ZH =Xvk\k71 +KZ [82 _HZ(Xk\k—l _X:) I (30)

P =(I1-KH)P, (31)
K{=P(H)"[HP(H)"+R.]"  (32)
n ah n vn . .
where H, = , & =2, —h(X}), and K, is the fil-
0X X=X
ter gain.

After the iteration, X} and P} are the final state esti-
mate value and covariance matrix of the system, respec-
tively, and n =1, 2, ..., N denotes the number of itera-
tions, generally set to 3.

ted to the feature position in the Cartesian coordinate sys-
tem through the following equation:

X, x, + (pcosB) cos(a + @,)
g (X, z) =7, |=| ¥, +(pcosp)sin(a +¢,)
21- 2V + psing
(33)

Then, it is augmented to the system state vector, and
the expanded state function can be expressed as

Xk
gi(??v,Z)] (39

The corresponding covariance matrix can be expressed
as

f}(Xk+l) = [

P =V P VS, (35)
P, P 0

P =P, P, O (36)
0 0 R

where P, P_, and P are the covariance matrices of the
vehicle, map, and between the vehicle and map, respec-
tively.

The Jacobian matrix V f, can be obtained by

I, 0 0
of,
vf"wzaxfl = 0 I, 0 (37)
kel 1 Xy Vg;(\ 0 ng

The Jacobian matrices V gz and V g_ can be given by

1.3 State augmentation 92, 10 0 —pcosBsin(a +A¢V)
Ve =y =0 1 0 pcosBeos(a+e,)
If the currently observed feature is a new feature, it is 2 ST 00 1 0
integrated into the system state vector through the state (38)
augmentation process to realize incremental map con-
struction. First, the current observation value is conver-
5 cosBeos(a +@,)  —pcosBsin(a +¢,)  —psinBcos(a +¢,) O
Vg, = aiz’ =| cosBsin(a +¢,) pcosBeos (a+¢,)  —psinBsin(a+¢,) O (39)
(X,.2)

sinB
Consequently, the covariance matrix can be obtained by
P, = VfXHPk vf)T(m =

P, P, P Vg
P}, P, S
VgsP, VgiP, Vg,P Vgi+VgRVg!

(40)

Therefore, the newly observed features are expanded
into the state vector through Eqgs. (33) to (40), thereby
realizing the expansion and construction of the map.

2 Experiments

To evaluate the effectiveness of the proposed
IVBAKF-SLAM algorithm, we design three groups of

0 pcosp 1

experiments and compare them with EKF-SLAM and
VBAKF-SLAM. The SLAM algorithm simulator used is
based on the SLAM model provided by the Australian
Centre for Field Robotics and is adjusted according to the
kinematics model designed in this study. The experi-
ments are carried out under the condition of known data
association, which can eliminate the influence of incor-
rect data association on the filter estimation performance.

When an underwater vehicle sails, 28 environmental
features are randomly distributed around the trajectory
(assuming that these features remain stationary). The in-
itial pose is {0,0,0,0°}, the velocity is 3 m/s, and the
control frequency is 40 Hz. The observation distance of
the sensor is 30 m, and the output frequency is 5 Hz.
The three algorithms are performed in 30 Monte Carlo
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trials, and the average value is taken as the statistical re-
sult.

To verify the feasibility of the proposed method, the
first set of experiments is set up. The observation noise
is set to o, =0.1m,o, =1°, oy = 1°,0,=0.1 m, and
the process noise is set to o, =0.1 m/s, o, =2°. The
comparison between the estimation trajectories for the
three algorithms (i. e., EKF-SLAM, VBAKF-SLAM,
and IVBAKF-SLAM algorithms) and the real trajectory
is shown in Fig. 2. The position curves estimated by the
three methods can basically follow the real trajectory,
and the accuracy of the estimated trajectory based on the
IVBAKF-SLAM algorithm is slightly better than those of
the other two methods.

—True

- - EKF-SLAM

............ VBAKF-SLAM
—IVBAKF-SLAM
o Feature-true

» Feature-estimation

—20-50
Fig.2 Trajectory comparison for the three methods in Experi-
ment 1

To clearly describe the positioning accuracy of the
three algorithms, the root mean square (RMS) error &
and average RMS (ARMS) error £, of the vehicle pose

[37]

are introduced as evaluation indicators”"', which are de-

fined as

n

i 1 m
o= (41)

m=1

avg(é,) = 172{ £ (42)

—T — . .
where g(Rf) =X, X, is the error norm at time k of the n-th

Monte Carlo and ¢ denotes the total time step.
Similarly, the RMS error ¢, and ARMS error avg(¢, )
of the i-th feature position are defined as

n

NN (43)
ave(€,) =y Y& (44)

where &,"

th Monte Carlo, and the N denotes the total observed
features.

:xzwx,_w is the error norm at time k of the n-

Therefore, the RMS value of the pose estimation error
for the three methods can be calculated according to Eq.

(41), as shown in Fig. 3. The positioning accuracy
based on the IVBAKF-SLAM method is better than that
of the VBAKF-SLAM and EKF-SLAM algorithms, re-
gardless of whether it is the RMS error of the position es-
timation or that of the heading angle.

E2[ - EKF-SLAM
A 20f w VBAKF-SLAM v
Z 15| — IVBAKF-SLAM -
£10 [ — .
£ 5 P . ’
)
o 0 1 1 1 1 1 ]
0 500 1000 1500 2000 2500 3000
Timesteps
(a)
§ 041 — EKF-SLAM
0.3+ — VBAKF-SLAM r*'l\w
—IVBAKF-SLAM / /
~0.2 /
2
g 0.1 /
&) 0 1 1 1 1 1 1
0 500 1000 1500 2000 2500 3000

Timesteps
(b)

Fig.3 RMS error of the pose estimation for the three methods
in Experiment 1. (a) Position RMS; (b) Heading RMS

To quantitatively describe the filtering performance of
the three methods, the ARMS value of the estimation er-
ror is calculated according to the definition of the average
RMS error in Eqs. (42) and (44), as shown in Tab. 1.

Tab.1 ARMS for the three methods in Experiment 1

Method EKF-SLAM VBAKF-SLAM IVBAKF-SLAM
Vehicle-position/m 11.434 4 8.447 4 5.8525
Vehicle-heading/rad 0.208 5 0.206 8 0.133 1
Feature-position/m 13.062 7 10.036 4 6.733 8

In Tab. 1, the ARMS of the position estimation from
the IVBAKF-SLAM algorithm is 5.852 5 m, that of the
heading estimation is 0. 133 1 rad, and that of the feature
estimation is 6. 733 8 m. Compared with the EKF-
SLAM and VBAKF-SLAM algorithms, the filtering per-
formance based on the IVBAKF-SLAM method is rela-
tively optimal.

The second group of experiments is set up to evaluate
the effectiveness of the proposed method when the meas-
urement noise is time-varying. Here, the process noise is
consistent with that in Experiment 1. The observation
noise is set to 8°R during 1 000 to 1 600 timesteps, set to
5°R during the 2 000 to 2 600 timesteps, and set to R in
other timesteps. R = diag(o’) is the same as that in Ex-
periment 1. Fig. 4 shows the RMS error of the pose esti-
mation for the three methods. In Fig. 4, the RMS error
of the position estimation and that of the heading angle
estimation based on the IVBAKF-SLAM algorithm are
relatively smaller than those of the other two methods.

The estimation errors for the observed features are
shown in Fig.5. The cyan curve marked with a plus sign
expresses the estimated feature error based on the EKF-
SLAM algorithm, and the point where each marked symbol
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£330 EKF-SLAM

A 25 VBAKF-SLAM
2 20r— IVBAKF-SLAM
g ]0 -

2 S

= %300

17000 1500 2000 2500 3000
Timesteps

(a)
B0.5r EKF-SLAM

2 0 4-— VBAKF-SLAM
—IVBAKF-SLAM

1 1 1 [ ]
1000 1500 2000 2500 3000
Timesteps

(b)

s
0 500

Fig.4 RMS error of the pose estimation for the three methods
in Experiment 2. (a) Position RMS; (b) Heading RMS

20 -~ EKF-SLAM . T
£ |- * VBAKF-SLAM si Te
S10 [—*IVBAKF-SLAM +++ 11t .T.ﬂ
> + 44+ 10110
2 lassssasattbitttrasfttl]l

0 5 10 15 25

Number of features
(a)

|5~ ~EKF-SLAM
g 13 [+~eVBAKF-SLAM 83
5 10—*IVBAKF-SLAM = M
SR Al
~ olitadbeettleetial|t]? .
0 5 10 15 20 25 30
Number of features
(b)
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o
oL sastipeli 1] f it
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Number of teatures

(¢)

W

30

Fig.5 Estimation errors for features observed in Experiment

2. (a) x-error; (b) y-error; (c) z-error

is located represents the i-th observed feature. The esti-
mation error curve of the VBAKF-SLAM algorithm is in-
dicated by the dotted line marked with a circle, and that
of the IVBAKF-SLAM algorithm is represented by the
dotted line with a pentagram.

To compare the RMS errors of the position estimation
for the three methods, the ARMS values of the vehicle
and features observed in Experiment 2 are shown in Fig.
6. The ARMS-vehicle and ARMS-feature of the
IVBAKF-SLAM algorithm are the lowest, and the EKF-
SLAM has the maximum ARMS errors.

To verify the effectiveness of the proposed method
when the thick-tail distribution exists in the measurement
noise and there are outliers in the measurement informa-
tion, the third group of experiments is set up. Similarly,
the process noise is consistent with that in Experiment 1,
and the measurement noise obeys the mixed Gaussian

lor — = Vehicle
14+ 1 Features
12 -
=10 I
%)
= 8r
~
< 6
4._
2_
0

EKFSLAM VBAKF-SLAM IVBAKF-SLAM
Fig. 6 Comparison of the ARMS of the vehicle and features

observed in Experiment 2

where a 90%
probability obeys the Gaussian distribution with a mean

distribution in the following equation,

of 0 and variance matrix of R and a 10% probability fol-
lows a Gaussian distribution with a mean of 0 and vari-
ance matrix of 100R.

N(0, R) P=90% (45)
s {N(O, 100R) P=10%
where R =diag(¢”) and ¢=[0.1 1 1 0.1] are the

same as those in Experiment 1. Meanwhile, an outlier is
added to the measurement information every 200 time-
step during the 500 to 2 500 time-step. The measurement
at the other timesteps is normal. The experiment results
are shown in Figs. 7 to 9.

Fig. 7 shows the comparison of the estimation trajecto-
ry for the three algorithms. The trajectory estimated by
the EKF-SLAM method seriously deviates from the real
trajectory TRUE, whereas the trajectory estimated by the
VBAKF-SLAM and IVBAKF-SLAM algorithms can still
follow the true trajectory.

—— True
----- EKF-SLAM
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& o True landmarks
40 g & » Estimated landmarks

¥ o

-20-80

Fig.7 Estimation trajectory comparison in Experiment 3

The pose estimation error and RMS value of the pose
estimation error for the three algorithms are described in-
Figs. 8 and 9, respectively. In Fig. 8, the filtering
effects of the three algorithms are the same in the time-
steps of 0 to 500, and the fluctuation of the pose estima-
tion error in the x, y, and z directions and heading is
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very small. After 500 timesteps, the pose estimation er-
ror based on the EKF-SLAM method begins to increase
gradually, and the maximum error value in y direction
reaches 52.29 m. Meanwhile, the pose estimation errors
based on the VBAKF-SLAM and IVBAKF-SLAM algo-
rithms are relatively small, and the filtering effect of the
IVBAKF-SLAM algorithm is optimal. Similarly, from
the perspective of the RMS error of the position and
heading angle, the RMS error of all three methods in-
creases when the non-Gaussian noise and outliers appear
in the measurement information. However, the RMS er-
ror curves of the EKF-SLAM method greatly fluctuate,
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Fig.8 Pose estimation error curves for the three methods in

Experiment 3. (a) x-error; (b) y-error; (c) z-error; (d) ¢-error
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Fig.9 RMS error of the pose estimation for the three methods
in Experiment 3. (a) Position RMS; (b) Heading RMS

and that based on the VBAKF-SLAM and IVBAKF-
SLAM methods slowly increases.

Tab. 2 demonstrates the ARMS values of the vehicle
estimation and features estimation observed for the three
algorithms. In Tab. 2, the ARMS of the position esti-
mation based on the IVBAKF-SLAM algorithm is
8.027 4 m, that of the heading estimation is 0. 176 1
rad, and that of the feature estimation is 9. 316 3 m.
Therefore, compared with the other two methods, the
filtering performance of the IVBAKF-SLAM algorithm is
optimal.

Tab.2 ARMS for the three methods in Experiment 3

Method EKF-SLAM VBAKF-SLAM IVBAKF-SLAM
Vehicle position/m 26.389 8 9.698 5 8.027 4
Vehicle heading/rad 0.630 7 0.2214 0.176 1
Feature position/m 32.564 1 11.327 6 9.316 3

3 Conclusions

1) In practical applications, the statistical characteris-
tics of the measurement noise are usually unknown and
time-varying. It also has non-Gaussian distribution or
outliers due to various factors, such as impulse noise or
instantaneous interference.

2) All of these will result in the incorrect or even non-
converged state estimation of the measurement update
phase of the SLAM localization method. Based on this,
a robust SLAM localization method based on the
IVBAKEF is proposed.

3) Three experiments are designed, and in the third
set of the experiment, the positioning accuracy of the
proposed method is improved by 17. 23%, 20. 46%,
and 17.76% compared with that of the VBAKF-SLAM
method. Therefore, the IVBAKF-SLAM method has
better applicability and robustness to environmental inter-
ference.
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