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Abstract: To solve the increasing model complexity due to
several input variables and large correlations under variable
load conditions, a dynamic modeling method combining a
kernel extreme learning machine ( KELM) and principal
component analysis (PCA) was proposed and applied to the
prediction of nitrogen oxide (NO,) concentration at the outlet
of a selective catalytic reduction (SCR) denitrification system.
First, PCA is applied to the feature information extraction of
input data, and the current and previous sequence values of the
extracted information are used as the inputs of the KELM
model to reflect the dynamic characteristics of the NO,
concentration at the SCR outlet. Then, the model takes the
historical data of the NO, concentration at the SCR outlet as
the model input to improve its accuracy. Finally, an
optimization algorithm is used to determine the optimal
parameters of the model. Compared with the Gaussian process
regression, long short-term memory, and convolutional neural
network models, the prediction errors are reduced by
approximately 78. 4%, 67. 6%, and 59. 3%, respectively.
The results indicate that the proposed dynamic model structure
is reliable and can accurately predict NO, concentrations at the
outlet of the SCR system.
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n recent years, with the pursuit of a higher quality of
life and deterioration of air quality, the Chinese gov-
ernment has become more stringent regarding the emis-
sion requirements of nitrogen oxide (NO,)''. Selective

catalytic reduction ( SCR) flue gas denitrification is a
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technique applied in coal-fired power plants to reduce
NO,. The SCR denitrification technique has some salient
features, including a high denitrification efficiency and
simple device structure, and has thus attracted significant
attention and a wide application in most power plants in
China"*™.

However, based on practical experience, the efficiency
of the SCR denitrification system is easily affected by the
amount of ammonia injection and diluted air, reaction
temperature, catalyst activity, and other factors. When
the design and finalization of a unit are is put into opera-
tion, the reaction temperature can be controlled via a flue
gas bypass, and the catalyst can be replaced after failure.
Thus, the amount of ammonia injection is the key factor
for a daily adjustment in the control of NO, emissions'* .
In addition, an increase in the amount of escaping ammo-
nia will increase the operation cost and secondary pollu-
Thus,
ammonia injection is essential for the operation of an SCR
denitrification system'® .

Establishing an accurate model for predicting NO, con-
centrations at the SCR system outlet is a prerequisite for
the implementation of an accurate ammonia injection.
The NO, concentration at the outlet of the SCR is influ-
enced by several thermal parameters, such as the entrance
NO, concentration, inlet gas flow value, ammonia injec-
tion, and unit load. A strong nonlinearity, coupling, and
inertia occur between the factors and the NO, concentra-

. . . 5 .
tion in the environment"'. a suitable amount of

tion at the SCR outlet. These characteristics increase the
difficulty regarding the development of a mechanistic
model when applying a first-principle analysis method.
Fortunately, a data-driven modeling method as an
efficient modeling method has been widely applied to va-
rious industrial fields'". The extreme learning machine
(ELM) technique was proposed by Huang et al. "' Com-
pared with a traditional backpropagation (BP) neural net-
work or radial basis function (RBF) network, ELM can
avoid overfitting and has a relatively fast learning speed.
However, the performance of an ELM is affected to a
great extent by the number of nodes in its hidden layer.
To deal with this issue, Huang et al. ™ proposed the use
of a kernel extreme learning machine ( KELM), which is
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an extension of an ELM method.

Static models are also known as steady-state models
and are generally developed using data under steady-state
conditions to achieve the goal of optimization or monito-
ring of a power plant''”. However, the introduction of an
automatic generation control system can result in frequent
changes in the operational parameters of a power plant.
The SCR denitrification system has strong nonlinearity
and inertia owing to its working principle. Hence, com-
mon static models are inadequate for accurately reflecting
the characteristics of NO, concentrations at the SCR sys-
tem outlet. Compared to a steady-state model, it is more
difficult to establish a dynamic model of the thermal
process using a data-driven method''".

In this study, the KELM method is applied to establish
a model that describes the dynamic characteristics of the
NO, concentration at the SCR denitrification system outlet
of a1 000 MW ultra-supercritical unit. First, the princi-
pal component analysis (PCA) method is used to extract
the characteristic information from the initial input data to
reduce the correlation between the input data and input di-
mension. The proposed dynamic model uses the PCA
method to extract the input data features. Its advantages
are reflected in two aspects. On the one hand, PCA re-
duces the correlation of input variables, which conse-
quently reduces the correlation coupling between the final
model inputs and is conducive to the establishment of a
data model with high prediction accuracy. On the other
hand, the number of input variables can be reduced
through feature extraction. Next, the current and previous
sequence values of the extracted information are used as
the inputs of the KELM model, and the parameters of the
KELM are optimized through quantum particle swarm op-
timization ( QPSO). Finally, the dynamic KELM model
is developed using the actual data of a power plant opera-
tion.

1 Theory and Algorithm
1.1 KELM

The ELM is a feedforward neural network with a single
hidden layer. The bias and weights of the input layer of
the ELM algorithm are randomly and independently as-
signed. Given that N training samples (x,, y,), x, € R"
represents the input data, and y, € R" is the output data.
In addition, n and m represent the dimensions of the input
and output data, respectively. The standard mathematical
model of the ELM can be expressed as follows'™ :

! !
ZBigi(xj) = ZB,-g(wixj + bl) =0,
i=1 i=1
j = 1’2, cen ,N (1)
where B, is the output weight, which connects the i-th

hidden node with the output nodes; w, represents the in-
put weights connecting the i-th hidden node with the input

nodes. Previous studies have shown that the output value
of the ELM model can be fitted to the samples with zero
error. Thus, a derivation equation can be obtained as fol-
lows, where the number of the hidden layer nodes of the
model is /, and the activation function is g( -« ) :

!
2 o, -yl =0 j=12,N (2
j=1

The above equation can be simply written as

HB =y (3)
where
H:
glwx, +b,) g(w,x, +b,) g(wx, +b,)
glwx,+b,) g(w,x,+b,) g(wx,+b) ] |
(4)

Bz{ﬁl’ﬁz,'“,ﬁl}T9yz{yl,yz"",yN}T (5)

where B and y are the output weight matrix and output da-
ta matrix, respectively.

The output weight B can be calculated using the follow-
ing equation;

B=H'y (6)

where H " is the Moore-Penrose generalized inverse of H.

To increase the robustness and generalization capability
of the ELM, a coefficient C and kernel were proposed by
Huang et al. based on an analysis of the support vector
machine theory. The KELM uses Mercer’s conditions to
define the kernel matrix 2.

Q=HH".Q=h(x,)h(x,) =K(x,,x,) (7)

Based on the above equations, the output of the KELM
is determined as follows"’ .
-1

f(x) =h(x)HT(i1+HHT) ye

C
K(x,x,)
K -1
(x':’xz) (%u_(z) y (8)
K(x,x,)

In this study, the RBF is selected as the kernel func-
tion

(9)

K(x;,x;) =exp| - 2

” X, _xj ” 2)

where vy represents the kernel parameter of the KELM.
1.2 PCA

Suppose x = {x,, x,,-*-,x, | , with m variables and n

samples. The matrix x can be expressed using the PCA as
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follows'' .

T
t.=ax

i i

(10)

where a is the orthogonal matrix, which can be calculated
as

|IR-AI| =0 (11)

where R and [ indicate Pearson’s coefficients of matrix x
and a can be calculated using the corresponding eigenvec-
tors. In addition, ¢, is a newly extracted principal compo-
nent. To qualitatively describe the explanation rate pro-
vided by the principal component, the variance contribu-
tion rate §, of the principal component ¢, and the cumula-
tive explanation rate of the former p principal component
h, are defined as

)
N , 2 A

Somy= X8 =
2N B WY

j=1 i

(12)

The PCA achieves a reduction in the dimension by
eliminating strictly linear or highly correlated independent
variable information while ignoring principal components
with low explanation rates.

2 SCR Denitrification System and Data Prepa-
ration

This study mainly considers the SCR flue gas denitrifi-
cation system of a 1 000 MW ultra-supercritical unit in
the Tai Zhou power plant in Jiangsu Province, China.
Fig. 1 shows the general layout of the SCR flue gas deni-
trification system. SCR devices are installed between the
air preheater and the economizer of the boiler' ', TiO, is
used as a catalyst in this SCR ammonia injection flue gas
denitrification system. The diluted air is mixed with am-
monia from the ammonia station. The ammonia injection
flow rate is adjusted using an ammonia injection control
valve. Then, the diluted air is ejected through the noz-
zle, and the flue gas is fully mixed. Under the catalysis
of the TiO,, mixed gases can be selectively catalyzed to
reduce into harmless N, and H,O, thus achieving the pur-
pose of flue gas denitrification. The main chemical reac-

tion equation of SCR denitrification is as follows' " .

4NH, +4NO + O, =4N, +6H20} (13)

4NH, +6NO =5N, +6H,0

A high-quality modeling sample is essential for build-
ing an accurate data-driven model. In the Tai Zhou power
plant, significant amounts of previous operational data are
continuously stored in a distributed control system data-
base using various acquisition equipment. In this study,
the boiler load in the data segment varies from 700 to
1 000 MW. In addition, based on basic knowledge of
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[ 1 L NH,
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»: system
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Air SCR flue
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channel

Fig.1 Schematic diagram of the reactor structure in the SCR
flue gas denitrification system

boilers and engineering experience "’

employed as inputs of the SCR model. The only output is
the export of the NO, concentration of the SCR denitrifi-
cation system. A description of the variables and parame-
ter ranges is listed in Tab. 1. There is a significant differ-
ence between the dynamic model and the steady-state

, six variables are

model in the selection of the modeling samples. Steady-
state models tend to select data that are mostly invariable
or with little variation in the operating parameters, which
can be selected from different time periods. By contrast,
data samples used to build dynamic models should be
continuous, and data segments can reflect the characteris-
tics of the changes in the production process. Based on
the above-mentioned criteria for a dynamic model sample
selection, a total of 13 000 operational data samples are
obtained, and the time sampling interval is 1 min. The
data samples are shown in Fig. 2, where a variation of the
unit load can be clearly observed. In this study, 4 200
measurements of boiler operation are selected as the train-
ing samples to train the KELM model. Another set of
3 700 data samples is used as the testing samples to evaluate

Tab.1 Description of variables and parameter ranges

Variable description Variable range
121.94 to 279.96
131.56 to 171.00
353.99 to 378.13
46.52 to 105.73
718.81 to 981.28
3.21 to 5.61

25.32 to 58.26

Entrance NO, concentration/(mg - m %)
.h! )
Inlet flue gas temperature/C

Inlet gas flow value/(m?

Ammonia injection/ (kg - h=")
Boiler load/MW
Entrance O, concentration/(mg + m %)

Export NO, concentration/ (mg + m %)

1000 Training data _‘ Testing data

g
= 900
E
g 800
2

700

0 2 6 8 12 14
Data sample/10° min

Fig.2 Load range chart of the selected sample data



386 Ma Ning, Liu Lei, Yang Zhenyong, Yan Laiqing, and Dong Ze

the generalized performance of the model.

Data preprocessing is an indispensable step in establis-
hing a data-driven model. All unusual operation data
samples and outliers that fail to correctly respond to the
process characteristics due to a sensor failure or equip-
ment abnormality should be removed. Many methods for
detecting the outliers of the modeling samples have been
proposed. The core idea of these methods is to eliminate
samples that are clearly different from nearby data and
then use specific technical means to complete deleted data
and meet data continuity. Data standardization can elimi-
nate the impact of different variable scales. The input and
output data are preprocessed in the same order as the am-
plitude using the following equations:

;X T X ;Y 7 Vo

X=———" Y=
X _‘xmin

max

(14)

y max min

where x_ and x,_, are the maximum and minimum values
of input variables x, respectively; x' is the standardized

input variable. Similarly, y . and y . are the maximum

min

and minimum values of output variables y, respectively;
y' is the standardized output variable.

3 Development of the Dynamic SCR Denitrifica-
tion Model

3.1 Model input feature extraction using PCA

For the six input variables selected to establish the NO,
concentration model for the SCR outlet, a certain degree
of correlation exists among the variables. For example,
there is a significant correlation between the unit load and
inlet flue gas flow because an increase in the unit load
will inevitably accompany an increase in the boiler fuel
and total. As a result, the flue gas flow of the SCR deni-
trification system will also increase. If these variables are
directly used as the model input, a redundancy of the in-
put information will inevitably weaken the generalization
capability of the model. To eliminate the correlation
among the variables, the PCA technique is used to extract
information about the input variables before building the
model.

According to Eq. (12), the interpretation rate of the
information variance is determined based on the number
of extracted principal components. The explanation rate
of the six principal components for the input variable data
used to establish the SCR model is illustrated in Fig. 3.
The explanation rate of the first two principal components
is as much as 95% of the primary data samples and is ob-
viously higher than that of the other principal compo-
nents. Hence, the original six input variables have a large
degree of linear dependence on one another, which is also
consistent with the actual operation. When the number of
principal components is 2, approximately 95% of the va-
riance information in the dependent variables is ex-

plained. At this time, the information regarding the vari-
ance interpretation obtained by extracting new principal
components slightly changes, and thus the residual can be
considered noise interference. If the number of principal
components is increased, the noise will be introduced and
the complexity of the model increases, which can reduce
the prediction accuracy of the model. Hence, the first
two principal components are applied as input vectors for
establishing the KELM model.

100 e —
90 Em Interpretation variance
—=— Cumulative interpretatior
80 variance
70
®
> 60
Q
£ 50
< 40
60
20
10
l 1 2 3 4 5 6

Principal component

Fig.3 Explanation rate of the six principal components and
cumulative explanation rate

3.2 Dynamic model structure for SCR denitrification

When setting up a steady-state model of the industrial
process, the data samples of the independent variables
and predicted variables must be in a stable state. In other
words, the core idea of establishing a steady model is to
find a functional expression between the current values of
the input and output variables at the current time using a
mathematical method. Suppose the KELM is used to es-
tablish a steady-state model; the prediction model can be
expressed as follows

y(1) =f(x(1))

where y(t) and x(t) are the predicted and independent
variables at time ¢, respectively; f( - ) is the mapping
function of the KELM.

However, an SCR denitrification system has a large de-

(15)

lay and strong dynamic characteristics. Considering that
the time sequence of the input and output data is the most
significant difference between static and dynamic models
if only the current time value of the independent variable
is considered the input of the model without considering
the previous period of time; the performance of the model
in reflecting the dynamic characteristics of the process
will be restricted. The past values of the output can also
influence the current output value of the dynamic system.
Hence, input and output variable delays at different scales
are often introduced into dynamic models. For a given in-
put variable x and output variable y, (x(t), y(t)) re-
present the input and output values of the sample at time



Dynamic model for predicting nitrogen oxide concentration at outlet of selective catalytic reduction. . . 387

t. The inputs of a dynamic model should be composed of
x(t) and previous time values x(¢-7), y(t-7,). The
dynamic prediction model can be expressed as follows

y(1) =f(X(1))
X(t) =1{x, (1), x,(t=1),,x,(t=7,),,x,(1),
x,(t=1) - ,x,(t=7,) =, y(t=1) = y(t-7,)
(16)

where m is the number of dimensions of the independent
variable x; 7, and 7, are the delay order sizes of x and y,
respectively.

Based on the principle of a dynamic model and the
PCA, the structure of the SCR denitrification dynamic
model is shown in Fig. 4. Two principal components, u,
and u,, are extracted from the original input data using
the PCA method. For u, and u,, two time series, whose
ranges of variation vary from the current time value u, ()
to the past time u, (¢t - 7,) and from u,(t) to u,(t-71,),
are considered inputs of the model. In addition, the past
values of the predicted variable y are applied as the model
inputs. Accordingly, the new input dimensions of the dy-
namic model are d=1+7 +1 +7, +7.

Principal || . q!
™|componentH
Extraction u, :

of principal _—.—> KELM -

components
by PCA

Original
input
data

4]

Principal

—
1 L~
b= componentH{ ™ ¢ ;

U,

qr

Fig.4 Structure of the dynamic model used in SCR denitrifi-
cation

3.3 Parameter selection method of the SCR dynamic
model

The performance of the KELM model is usually affect-
ed by the selection of the kernel parameters y and regular-
ization coefficient C. The two parameters can be deter-
mined through k-fold cross-validation during the experi-
ments. Specifically, the training samples are equally di-
vided into k groups. Then, the k — 1 groups are used to
train the KELM model, and the remaining group is ap-
plied to test the model. After k repeated experiments,
each group of data can be used as test data in turn. The
average of the total test errors is taken as an assessment
criterion to evaluate the parameters of the KELM model.
In this study, the 10-fold cross-validation method and
QPSO are used to optimize the combination of parameters
(y, C). The search range of the kernel parameter y is

(0, 500) , and the search range of the regularization co-
efficient C is (0, 600). The QPSO algorithm is an intel-
ligent optimization algorithm based on the particle swarm
optimization ( PSO) algorithm and quantum mechanics
theory. The QPSO algorithm overcomes the shortcomings
of a low aggregation performance and limited search
range in the PSO algorithm to a certain extent and has a
good particle search performance. In recent years, the
QPSO algorithm has been widely used for solving difficult
optimization problems in numerous fields'”. In this
work, the QPSO algorithm parameters are set as follows
the search particle population is 30, the maximum num-
ber of iterations is 200, and the initial search particle po-
sition is the random position within the search interval. In
addition, the delay orders of the dynamic models, inclu-
ding 7,, 7,, and 7., need to be determined during the
model development. Owing to the lack of a theoretical
basis, selecting the appropriate delay order of each pa-
rameter is more difficult than determining the kernel pa-
rameters and regularization coefficients. Although an
open-loop test is a theoretically feasible method, it re-
quires a lot of money and on-site resources. In the present
study, the delay orders of dynamic models are calculated
using a trial-and-error approach. The detailed process is
given in the following section.

4 Results and Discussions

To quantitatively evaluate the performance of the pro-
posed dynamic models of the SCR denitrification system,
the root mean square error (RMSE) and mean relative er-
ror (MRE) are applied as the evaluation criteria, which
can be written as follows:

j:i -V
Vi

n

3

i=1

(17)

where n represents the number of samples and y, and y,
are the real and corresponding predicted values, respec-
tively.

To prove the rationality of the model structure, several
models with different numbers of input delays are com-
pared. The first model we established is denoted as model
I , where delays in the input and output variables are not
considered. In other words, the input variables of model
I only include the extracted principal component u, (1)
and principal component u, (7). Model [ is a steady-
state model of an SCR denitrification system in a coal-
fired power plant. The RMSE and MRE of model [ for
the training samples are 3.306 3 mg/m’ and 6.85% , re-
spectively. For the testing samples, the &gy and &, of
model [ are4.794 0 mg/ m’ and 10.35% , respectively.
In addition, the prediction results of the testing samples
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are shown in Fig. 5, where the error in the predicted re-
sults for the testing samples is large, and that of the indi-
vidual special sample points even exceeds 20 mg/m’.
Hence, for data with strong dynamic characteristics, the
steady-state model without considering the delay cannot
achieve good prediction results.

E 70 —— Actual
. 60 Predicted
2 50
T 40
2
230
520
o 1 ! 1 ! I ! | ]
z l00 5 10 15 20 25 30 35 40
Testing sample/10?> min
(a)
25
IE 15
o S
g W‘Wu i
5 -5
@15
1 1 1 1 1 1 1 ]
0 5 10 15 20 25 30 35 40

Testing sample/10? min

(b)
Fig.5 Predicted performance of model [ for testing data. (a)
Fitting curve; (b) Prediction error

Model I is established by considering the delay of the
NO, concentration at the SCR outlet y. In contrast to
model
historical sequence of y, and its mathematical expression
can be written as follows:

y(1) =f(X(1))
X(1) = {u (1) ,u, (1) ,y(1=1) -, y(t=7,) |
(18)

[, the input variables of model [I contain the

When 7, equals zero, the delay of output y is not con-
sidered, and model ]I becomes the same steady-state
model as model [ . Fig. 6 shows the variation in the ¢
ruse Values of the training samples and testing data with a
7, value from 0 to 10. When 7 is assigned as 2, model
Il achieves the minimum &, value of the testing sam-
ple, which is 0. 803 5 mg/m’.
I , the prediction accuracy of model 2 is improved by
83.23% , which indicates that the generalization ability of
the model can be greatly improved by introducing the out-

Compared with model

put delay 7, into the model input.

To evaluate the effect of the delay in the extracted
component #, on the model performance, we set up mod-
el I, where the historical sequence of u, is added to the
model inputs. The inputs of model Il can be written as
x(t) = {Ml(t) yu (t=1) -, u (t=7,), u,(t)f. The
variation in the &, values of model [l for testing the
sample data with the 7, value from O to 10 is shown in

5 —=— Training data
4 —o— Testing data
3

2

I _o—0—

Error/(mg - m~)

1 ]
10 11

1 1
8 9

Fig.6 Variation of the RMSE values with the output delay 7,

Fig. 7. In the figure, the prediction accuracy of the model
gradually decreases and then increases with an increase in
7,. The minimum error is obtained when 7, is set to 3
with &uyee =4.657 5 mg/m’. The prediction accuracy of
model I is slightly higher than that of model [ but not
as high as that of model II. Hence, adding the historical
data of the principal component u, to the model input is
beneficial for improving the prediction performance.

5.0
'T'E 49 n
o /-/
E 4.8 -\.\ /././l
=] [ ]
247 . /
0 \-/'
1 1 1 1 1 L 1 L L L J
46 1 3 4 5 6 7 8 10

Fig.7 Variation in RMSE values with 7,

With model I, to assess the effect of the delay in the
extracted component u, on the model performance, model
IV is built. Its input can be expressed as x(¢) = {u, (1),
w, (), u, (t=1) -, u, (t=7,), y(t=1),-, y(t-
7,)|. Figs.8(a) and (b) show the prediction results of
model IV for the testing samples, in which 7 is set to 0
and 2, respectively. In Fig.8(a), where 7 is set to 0,

_48p

E 46 \.
\.
=]
£ 44 \ o
= ]
5 L e
5 42 \'\.,d.,,-/.
4.0l 1 1 1 1 1 1 1 1 1 )
2 3 4 5 6 7 8 9 10
T
(a)
08r™
E 07
on
0.6 S
E’ .\. "
‘éOS \. /./-/
E \./l

T

(b)
Fig.8 Variation of RMSE values with 7,. (a) 7, =0; (b) 7, =2
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i.e., the delay of output y is not considered, the mini-
mum error of the model is reached when 7, is increased to
5 and &y is 4. 120 1 mg/m’. Another case is shown in
Fig. 8(b), where 7 is set to 2, and the optimal error val-
ue of 0.465 5 mg/m’ is obtained when 7, is set to 5. In
both cases, the generalization performance of the model is
improved when compared with that of the model in which
the extracted component u, delay is not added to the mod-
el inputs.

By introducing the historical data of the original input
variables u, and u, and output y into the model inputs, the
improvement in the prediction accuracy of the model can
be seen at various degrees. To further improve the predic-
tion accuracy of the dynamic model, model V is devel-
oped by adding the delays of u,, u,, and y. The inputs of
model V are expressed as x (1) = {u, (t), u,(t-1), -,
u (t=7,), u, (1), u, (t=1) -, u,(t=1,), y(t-1),
o, y(r-7,)}. A grid search method is applied to deter-
mine the delay values of 7, 7,, and 7,. Based on the re-
lationship between the delay and accuracy of the model,
the search range of the parameters is set as follows: the
ranges of 7, and 7, are set to [ 1, 10], and the range of
7,issetto [1, 5]. Fig. 9 shows the grid search results
when 7 is fixed at 2. By optimizing the search, the opti-
mum parameters are determined as 7, =4, 7, =5, and 7,
=2. The minimum &g, of the testing data is 0.422 9
mg/m’. The corresponding prediction result is shown in
Fig. 10, where the predicted curve of model V mostly
coincides with the actual curve. In addition, Tab. 2
shows the parameter information and the error accuracy
on the training and testing samples of the five different
models. Compared with the first four models, the train-
ing and generalization performance of model V are sig-
nificantly improved. This result indicates that introducing
appropriate historical data into the model input can greatly
enhance the capability of the model in describing the

dynamic characteristics of the NO_ concentration at the
outlet of the SCR denitrification system.

Fig.9 Variation of the RMSE values with 7, and 7,

~
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on

£ 50

£ 40

2 30

5 20

5 10 1 1 1 1 1 J
4 15 20 25 30 35 40

Testing sample/10?> min

(a)
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5 10 15 20 25 30 35 40
Testing sample/10> min

(b)
Fig.10  Predicted performance of model V for testing data.
(a) Fitting curve; (b) Prediction error
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Tab.2 Parameter setting and prediction results of the five models

Parameter Training sample Testing sample
Model - - y c
T T 7y  RMSE/(mg-m™) RME/ % RMSE/(mg - m~°) RME/ %
I 0 0 0 3.306 3 6.85 4.794 0 10.35 81.56 0.21
I 0 0 2 0.448 7 0.86 0.803 5 1.47 142.84 45.80
I 3 0 0 3.005 3 6.22 4.657 5 9.85 100. 32 96. 84
0 5 0 2.362 17 4.90 4.120 1 8.30 168.12 25.26
v 0 5 2 0.403 7 0.77 0.465 5 0.89 121.22 85.25
\ 4 5 2 0.3753 0.71 0.4229 0.84 154.32 78.45

To further verify the performance of the proposed mod-
el, three other modeling methods are used for experimen-
tal comparison. The three methods are Gaussian process
regression (GPR)"®" | long short-term memory ( LSTM)
neural network''” , and convolutional neural network
(CNN) "™ The results of the four models are displayed
in Tab. 3. In the table, for the GPR approach, the &,

value of the GPR model is 1. 031 1 for the training dataset
and 1.989 3 for the testing dataset. The LSTM and CNN
methods display an obvious betterment, and their root
mean square errors of the test data are 1.307 8 and 1.040 7,
respectively. Compared with the GPR, LSTM, and CNN
models, the prediction errors are reduced by approximate-
ly 78.4% , 67.6% , and 59. 3% , respectively. As the
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four models use the same training and testing datasets,
the predicted results on the testing dataset are reliable in
proving the models’ generalization and prediction accura-
cy capability. The GPR model has the worst performance
among the four models. The LSTM and CNN perform
better than GPR but are not as good as model V. There-
fore, the proposed dynamic model is more precise than
the three other models for modeling the NO_ concentration
at the outlet of the SCR denitrification system.

Tab.3 Comparison of the prediction results of the four models

Training samples Testing samples

Model RMSE/ RMSE/
.. RME/% i RME/%
(mg-m~) (mg-m~)
Model V 0.3753 0.71 0.422 9 0.84
GPR 1.031 1 1.74 1.989 3 2.80
LSTM 0.873 3 1.47 1.307 8 1.83
CNN 0.4257 0.81 1.040 7 1.52

5 Conclusions

1) A dynamic model for the NO, concentration at the
outlet of an SCR denitrification system is established
based on a combination of the KELM and PCA methods.
The current and previous values of the two principal com-
ponents extracted from the original input data are applied
as model inputs. In addition, the value of the NO, con-
centration at the outlet of the SCR denitrification system
for a period of time is introduced into the model inputs as
feedback.

2) The performance of the dynamic model is valida-
ted by the real operational data of a 1 000 MW ultra-
supercritical unit. Compared with the GPR, LSTM,
and CNN models, the prediction errors were reduced
by approximately 78.4% , 67.6% , and 59.3% , re-
spectively.

3) The comparison results demonstrate that the pro-
posed model has a relatively high precision prediction per-
formance and can be an alternative when designing a soft-
ware package to control NO_ emissions from the SCR
denitrification system.
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