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Abstract: To improve the accuracy and anti-noise ability of the
structural damage identification method, a bridge damage
identification method is proposed based on a deep belief
network ( DBN). The output vector is used to establish the
nonlinear mapping relationship between the mode shape and
structural damage. The hidden layer of the DBN is trained
through a pre-training.  Finally, the
backpropagation algorithm is used to fine-tune the entire
network. The method is validated using a numerical model of

layer-by-layer

a steel truss bridge. The results show that under the influence
of noise and modeling uncertainty, the damage identification
method based on the DBN can identify the accurate damage
location and degree identification compared with the traditional
damage identification method based on an artificial neural
network.
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ivil engineering is closely related to people’s life
C and property during construction and service. The
collapse of high-rise buildings and long-span bridges will
cause devastating damage. Hence, it is of great signifi-
cance to ensure the safety of civil engineering structures
during construction and service. However, due to the ag-
ing of materials, initial design defects, unqualified quali-
ty during construction, and the influence of earthquakes,
wind loads, traffics, temperatures, corrosions, and other
environmental factors during usage, various types of dam-
age can easily occur during the construction and use of
structures. The damage to structures often occurs with the
degradation of their physical properties, such as cross-
section cracking and mass reduction, which affects their
dynamic characteristics, such as frequency and stiffness.
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Hence, how to find the location and degree of the damage
to such structures in time is of great significance. Based
on the vibration characteristics of structures, several
structural damage identification methods have been devel-
oped. Such methods are based on the fact that structural
cross-section and mass changes influence the vibration
characteristics of the structure and allow a rapid and glob-
al assessment of large structures. However, the difficulty
for vibration testing is that noise, uncertainty in model-
ing, and the sensitivity of selected indicators to damage
may adversely affect the damage identification results. In
recent years, the use of artificial intelligence methods for
structural damage identification has become a hotspot.
From the perspective of mathematical methods, structural
damage identification is essentially a pattern recognition
problem. Machine learning is a good tool for pattern rec-
ognition. Santos et al. """ used a Gaussian mixture model
(GMM) based on a genetic algorithm and expectation
maximization (EM) algorithm to evaluate the damage of
the Z24 bridge through the change in frequency. The re-
search shows that the GA-EM-GMM can distinguish that
the change in frequency is caused by the damage and tem-
perature. An autoregressive ( AR) model” was estab-
lished to describe the acceleration time series. Principal
component analysis (PCA) and Sammon mapping were
used to reduce the dimension of the AR coefficient ma-
Then, learning vector quantization and nearest
neighbor classification algorithm were used to monitor

trix.

and classify the damage condition of a laboratory simple
three-layer framework and ASCE standard structure. The
research shows that this method can effectively evaluate
the damage condition. The damage status of the structure
was analyzed, and different damage degrees were classi-
fied. Gui et al. ™ used a support vector machine (SVM)
based on an optimization algorithm to identify the damage
to a three-layer aluminum frame in a laboratory. The re-
search shows that a residual error is more sensitive to
damage signals than the AR parameter and can judge the
damage state of structures more accurately. Therefore,
selecting the appropriate damage feature in the SVM for
damage classification is very important. Ozdagli et al. ™
validated a simply supported beam numerical model, a la-
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boratory 2D three-layer measured frame model, and a la-
boratory 3D frame model using PCA and a self-encoder
(AE). Through the data reconstruction of input data, the
Euler distance constructed by the residual error of the in-
put and output was used to evaluate the variability of the
structural model and structural health condition. The re-
search shows that the modal shape is more sensitive to
damage than the frequency and is not affected by the tem-
perature. However, the frequency alone is not sensitive to
the small damage and is greatly affected by the tempera-
ture, so judging whether the variability of the results is
caused by the damage or temperature is impossible. Ban-
dara et al. ¥ formulated a new damage index by reducing
the dimension of the frequency response function matrix
by PCA and then established the relationship between the
damage index and damage degree using artificial neural
networks ( ANNs). The research shows that ANNs can i-
dentify the damage condition of a structure, but they di-
vide a two-story frame structure into 14 parts and estab-
lish 14 ANNs, which is of great significance to large-
scale geotechnical engineering. Lam et al. ' proposed to
use Bayesian design ANNSs to detect the location and se-
verity of the damage based on the change in the Ritz vec-
tor caused by the damage. Successful identifications and
applications have been achieved using the above-men-
tioned methods. Among the ANN methods, the gradient
descent algorithm is one of the most commonly used algo-
rithms for training neural networks. However, when u-
sing these algorithms to train samples, especially in the
case of several hidden layers in a network, the gradient
disappearance problem may occur. Furthermore, the ma-
chine learning method has high requirements on the dam-
age index, so it is often necessary to construct a damage
index that is more sensitive to damages. Secondly, for
large bridges or high structures, the combination of dam-
age location and damage degree is amazing. However,
machine learning algorithms, such as SVMs and ANNS,
cannot easily locate and quantify damages because of their
shallow structure, which is often used to study a specific
damage condition or just health. In recent years, deep
learning algorithms have become a research hotspot be-
cause of their strong nonlinear analysis ability and the a-
bility to extract high-dimensional features. Their require-
ments for the damage index are not high. They often need
only the frequency, vibration mode, or acceleration data
to establish a relationship with the damage status and then
accurately realize the identification of the damage location
and damage degree. Nadith et al. " used an autoencoder
model with a deep neural network structure to perform a
numerical simulation and experimental verification on a
steel frame structure through layered pre-training and fine-
tuning. The results show that, compared with traditional
ANNS, this method can identify the location and degree
of damage and improve accuracy and efficiency. Zhang et

al."™ used a one-dimensional convolutional neural net-
work to input the original acceleration data into the conv-
olutional neural network. The research shows that a one-
dimensional convolutional neural network is more sensi-
tive to the small local damage of a structure, can effec-
tively extract the high-dimensional features of the dam-
age, and has a strong anti-noise performance. Guo et
al. " used a deep belief network (DBN) to identify the
damage to a real bridge. The research shows that the
DBN is more accurate than a backpropagation ( BP) neu-
ral network in identifying the damage to a bridge, but it
specifies several specific locations in the identification of
the damage location. The identification of the damage lo-
cation in these specific locations has certain limitations.

The above research shows that a deep learning algo-
rithm can effectively extract high-dimensional damage
features, and the requirement of the damage index is not
high.

In this study, the DBN is used for structural damage
identification. The model can extract the high-dimension-
al features of damage to establish the nonlinear mapping
relationship between vibration characteristics and damage.
A numerical model of a steel truss bridge in Sweden was
established to obtain modal characteristics, such as modal
shape. The modal shape of the structure was taken as the
input vector of the training model, and its damage was
taken as the output vector of the training model. The
training process was divided into two parts: A part of the
training set was used for pre-training to determine a group
of good weights and thresholds. The remaining training
set was fine-tuned to obtain the optimal weight and
threshold. The accuracy and efficiency of the method
were verified using a numerical example of the steel truss
bridge.

1 Structural Health Monitoring Framework

Based on a DBN

1.1 Restricted Boltzmann machine

The restricted Boltzmann machine (RBM) is the basic
model of DBNs, and it is an undirected graph model of
the dictograph structure. The variables in the RBM are al-
so divided into implicit and observable variables, as
shown in Fig. 1. The observable layer and hidden layer
can be used to represent the two groups of variables, re-
spectively. There is no connection between nodes in the
same layer. All nodes of the layer are connected, which
is the same as the structure of a two-layer fully connected
neural network.

[@ m ® Hiddenlayer]

L Weighted connections

[@ @ @ @ Visible]ayer]

Fig.1 RBM
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An RBM consists of K, observable variables and K,
hidden variables, whose definition is as follows:

1) Observable random vectors v € R*.

2) Hidden random vectors k& € R".

3) Weight matrix w e R“**. Each element w, is the
weight between the observable variable v, and hidden vari-
able A,

4) Bias a € R® and b € R, where a, is the bias of
each observable variable v, and b, is the bias of each hid-
den variable h,.

The RBM is an energy-based model; that is, the com-
bination state of each model variable corresponds to an
energy, and the training process of the model is the
process of constantly changing energy. In the state of the
known visible layer and hidden layer neuron, the energy
function is defined as

E(v,h) ==Y av, = Y bh = > vwh (1)

The joint probability distribution of the RBM is defined
as

P(v,h) :%exp( -E(v,h)) (2)

where Z = Y exp(— E(v, h)) is the partition function.
v.h

Because there is no connection between the variables in
the same layer of the RBM, the hidden variables are inde-
pendent of one another when the observable variables are
given. Similarly, when the hidden variables are given,
the observable variables are also conditionally independent
of one another. Based on the above conditions, it can be
deduced that the RBM is a network model whose activa-
tion function is f(x) = sigmoid(x), and the conditional
probabilities of each observable variable and hidden varia-
ble are

PO =1 =o(a+ X wn | (3)

P(h, =1 lv) = O-(bi + Z W{,-V.,-) (4)

where ¢ is the logistic function.

The RBM uses the maximum likelihood function to de-
termine the optimal parameters. Given a group of training
samples, the log likelihood function is

N
L(D,w,a,b) = 1WZIOgP(v(");w,a,b) (5)
n=1

Its partial derivative with respect to the parameter (w,,
a,b;) is

dL(D;w,a,b
% :EP(")EP(h\v)(vihj) _EP(V,h)(Vihj) (6)
i
dL(D;w,a,b)
T aa BBy () =By (v) o (7)

i

IL(D;w,a,b)
. Epy Epnry(h) = Ep 0y (hy)  (8)

J

where P(v) is the actual distribution of v on the training
dataset.

Considering that the above formula is difficult to calcu-
late in an actual calculation process, considering the con-
ditional independence of the RBM, the contrastive diver-
gence (CD) algorithm can be used to update the parame-
ters. Alternating Gibbs sampling is the core of the CD al-
gorithm. Gibbs sampling is an algorithm used in Markov
chain Monte Carlo statistics. The sampling process of a
constrained Boltzmann machine is as follows:

1) The observable variable v is given or initialized ran-
domly, and the probability of the hidden variable is cal-
culated, from which a hidden vector k is sampled.

2)Based on h, the probability of the observable varia-
ble is calculated, and an observable variable v is sampled
from it.

3) (v, h) is obtained after repeating the process t
times.

4) When t—oo, the sampling of (v, k) obeys the P(v,
h) distribution.

The training process of the RBM based on the k-step
CD algorithm is as follows:

1) Initialize the parameters and set the network struc-
ture, including the learning rate a, weight and offset,
number of iterations 7, and number of hidden layer
nodes.

2) Assign values to the visual layer and pass the infor-
mation to the hidden layer. A sample is given to the visu-
al layer as the initial state, and the activation probability
of each neuron in the hidden layer is calculated through
the weight value, bias value, and activation function:

" =11 = o Twpl” wn) )

where superscripts v and h denote the state transition steps
K of the CD algorithm.

3) Extract hidden layer samples. A sample is selected
from the calculated probability distribution of the hidden
layer to represent the state of hidden layer neurons.

B ~P(h” [v*) (10)

4) Reconstruct the visual layer. By reconstructing the
visual layer, the probability of each neuron in the visual
layer is calculated:

PO =1 |0") = 0'( 3w,k +a,.) (11)
j=1
5) Sample the visual layer. A sample of the visual lay-
er is extracted from the reconstructed explicit layer proba-
bility distribution to represent the state of visual layer
neurons.
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v~ Py R (12)

6) Reconstruct the hidden layer. The activation proba-
bility of hidden layer neurons is calculated using the re-
constructed visual layer neurons:

p(hY =1 ]v") = (Zwijvi.” +bj) (13)
i=1

7) Complete the one-step CD algorithm above and re-
peat steps 2) to 6) until K transfers are completed.

8) Update the weight and bias, where o > 0 is the
learning rate.

w=w+a(P(h” =1 vy @" —P(h" =1 |v")»"T)
b=b+a(P(h” =1[v") -P(h" =1 |v"))
(14)

9) Repeat steps 2) to 8) until ¢ iterations are comple-
ted.

Several experiments have found that when the number
of state transition steps k is 1, a reconstructed sample
similar to the training data can be obtained, which
achieves good results.

1.2 DBN

A DBN is a deep probabilistic digraph model, and its
graph structure is composed of multi-layer nodes, as
shown in Fig.2. There is no connection inside the nodes
of each layer, and the nodes of two adjacent layers are
fully connected. The lowest layer of the network is the
observable variable, and the other layer nodes are the hid-
den variables. To effectively train the DBN, we trans-
form the sigmoid belief network of each layer into an
RBM. The advantage of this method is that the posterior
probabilities of hidden variables are independent of one
another, so sampling becomes convenient. In this way,
the DBN can be stacked from bottom to top using multi-
ple constrained Boltzmann machines. The hidden layer of
the L-th RBM can be used as the observable layer of the (L

QOO0

[ Input data ]

Fig.2 Deep belief network

+ 1)-th RBM. Furthermore, the DBN can be trained
quickly through layer-by-layer training; that is, starting
from the bottom layer, training only one layer at a time
until the last layer. The training process of the DBN can
be divided into two parts: layer-by-layer pre-training and
fine-tuning. First, the parameters of the model are initial-
ized to obtain better values through layer-by-layer pre-
training, and then fine-tuning is performed using the BP
of the last layer.
1.2.1 Layer-by-layer pre-training

In the layer-by-layer pre-training stage, a layer-by-lay-
er training method is adopted to simplify the DBN for the
training of multiple RBMs. Assuming that we have
trained the RBM of the first 1-1 layer, we can calculate
the bottom-up conditional probability of the hidden varia-
ble:

P(h"

h(i—l)) :O_(b(i) +w(i)h(i—l)) (15)

where b” is the bias of the i-th layer RBM and w"’ is the
connection weight. In this way, we can combine A" ™"
and k' into an RBM. The specific pre-training steps are
as follows:

1) Using the original sample as the input, perform un-
supervised pre-training on the first layer of the RBM ac-
cording to the CD algorithm. After completion, fix its
weight parameter w'" and bias a'"”, b'".

2) Learn the hidden layer £‘" of the first RBM through

P(h" [v) =P(R" v, w").

3) Use the learned hidden layer A" as the input layer
of the next RBM, perform unsupervised pre-training on
the next RBM according to the CD algorithm, and fix its
weight parameters w'® and biases a'” and b'” after the
training is completed.

4) Repeat steps 2) and 3) until the unsupervised pre-
training of all RBMs is completed.

1.2.2 Fine-tuning

The specific fine-tuning process is to add another out-
put layer to the last layer of the DBN and then use the
backpropagation algorithm to tune the parameters.

2 Numerical Research
2.1 Numerical model

In this study, the finite element model of a steel truss
bridge in service in Sweden was established. The Aby
Bridge is a steel truss bridge. The steel truss design was
used for both bridges and was constructed at the same
time. The railway bridge across the Aby River is one of
the two bridges, and the other is on the Rautasjokk Riv-
er. Because the two bridges are used in the same way,
the performance of the Rautasjokk Bridge can be roughly
estimated based on the field measurements and finite ele-
ment analysis results of the Aby Bridge.
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Under the joint support of the seventh framework pro-
ject of the European Union, LKAB Iron Mine Company
of Sweden, and the Swedish Railway Administration, the
research team jointly carried out research studies on the
static and dynamic performances of the Aby Bridge with
the research team of Luled University of Technology of

Sweden""”

. The research team mainly tested and studied
the dynamic response of the Aby Bridge under the excita-
tion of the train load. The bearing distance between the
two supports of the Aby Bridge is 33.7 m, the height of
the center line of the main truss is 4. 7 m, and the dis-
tance between the two main trusses is 5.5 m. Along the
bridge, it consists of two main trusses and two longitudi-
nal girders. There are transverse connecting members be-
tween the longitudinal girders and the main truss. Among
them, the transverse connection member between the lon-
gitudinal girders is angle steel, while the transverse con-
nection member between the main trusses, in addition to
the T-shaped steel member at the bottom, is I-shaped
steel that intersects with two longitudinal girders above.
I-shaped steel is mainly used in the main truss. The end
diagonal bars and upper longitudinal beams adopt closed
sections, and stiffening ribs are used at each joint. The
actual bridge and three views are shown in Fig. 3.

/)

R

Fig.3 Aby Bridge

The acceleration response is one of the important inde-
xes to measure the dynamic response of the bridge struc-
ture. The site acceleration test points of the Aby Bridge
are arranged, as shown in Fig.4, in which the dot is the
upper acceleration observation point of the truss, and the
star is the lower acceleration observation point.

Fig.4 Aby Bridge acceleration test point

The modal and natural frequency extraction of the
bridge structure from acceleration measured data using the
unweighted principal component random subspace identi-
fication method. A finite element model was updated
using a response surface model based on multi-objective

particle swarm optimization. The density and elastic mod-
ulus of the finite element model are used as modified pa-
rameters. The elastic modulus and density of the bridge
are 200 GPa and 7 800 kg/m’, respectively. After upda-
ting the finite element model, the elastic modulus of the
Aby Bridge is 191 GPa, the density is 7 785 kg/m’, and
the maximum error of the updated frequency is only
2.86% (see Tab.1). In the following research, the up-
dated finite element model can be used as the baseline
model to generate training data and verify the perform-
ance of the proposed framework in structural damage
identification. In the following chapters, the proposed
method and ANN will be used to study the vibration char-
acteristics of the damage model. The results of the ANN
are compared with the proposed method to prove the su-
periority of the method.

Tab.1 Measured and analytical natural frequencies of the ex-
perimental model before and after updating

Mode Before updating After updating
measured/ Analytical”/  Error/ Analytical/ Error/
Hz Hz % Hz %o
3.67 3.93 6.97 3.77 2.70
7.35 6.96 -5.27 7.14 2.86
8.67 8.98 2.63 8.63 -0.46

Fig. 5 display the established finite element model. The
element type is an Euler beam element. The output is the
first five modes in the y-axis direction, and the number of
modes is 90.

10 17
68 69 70 71 72 73 74 75

1 5 9
76 77 78 79 80 81 82 83
18 25

(a)
56 57 58 59 60 61

2}/ 33 40

10 11 12 13 14 15 16 17
(b)
62 63 64 65 66 66

41 48 2%

18 19 20 21 22 23 24 25
(o)
Fig.5 Member number of the Aby Bridge. (a) Horizontal brac-
ing; (b) Left main truss; (c) Right main truss

2.2 Data generation

By randomly selecting two members, the elastic modu-
lus of the specified member was reduced, and the elastic
modulus of the other members remained unchanged,
which is 191 GPa. A total of 2.6 x 10° samples were gen-
erated. To improve the convergence speed and accuracy
of the DBN, the input data were normalized, and the de-
viation standardization was used to normalize the sample
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data between 0 and 1. The input of the neural network is
the first five modal data of the samples, and the output is
the damage degree of each member. Considering the in-
fluence of noise in the environment, 2% Gaussian white
noise was introduced into the modal data. The noise re-
sults and non-noise results were compared to study the
noise resistance of the proposed model. There are three
hidden layers in the DBN, and the units are 120, 100,
and 90. For the convenience of comparison, the layers
and units of the ANN were set the same as those of the
DBN.
* X = Xin

xmax - xmi

(16)
n

To study the effectiveness and robustness of the pro-
posed method for structural damage identification, the
dataset includes the influence of measurement noise and
uncertainty in finite element modeling. The following
scenarios are defined in the numerical research:

1) There is no measurement noise and uncertainty, and
the influence of noise and the uncertainty of finite element
modeling were not considered in the dataset.

2) Considering the influence of noise and the uncertain-
ty of modeling, 2% Gaussian white noise was added to
the dataset.

3) Without considering the influence of noise and mod-
eling uncertainty, 1% uncertainty was added to the stiff-
ness in finite element modeling.

4) Considering the influence of noise and modeling un-
certainty, 2% noise was added to the modal data, and
1% uncertainty was added to finite element modeling.
The effects of noise and uncertainties are considered for
all datasets. Uncertainty was mainly introduced as a 1%
variation of stiffness with the Gaussian distribution to
simulate the certainty of finite elements.

3 Results and Discussion

3.1 Not considering the impact of environmental
noise and modeling uncertainty

Firstly, considering the damage condition of a bar, the
damage degree at position 65 is 0.2. This damage condi-
tion is not included in the training center. Fig. 6(a) shows
that the damage identification results of the ANN and
DBN can complete the damage location identification.
The result of the DBN identification is 0. 207, that of
ANN damage identification is 0. 182 8, and their absolute
errors are 0. 007 and 0. 017 2, respectively. Hence, the
recognition accuracy of the DBN is better than that of the
ANN without noise and modeling error.

Secondly, considering the condition that two bars are
damaged at the same time, the damage degrees of posi-
tions 6 and 46 are both 0.3. This damage condition is not
included in the training center. The damage identification
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Fig.6 Damage identification results from the ANN and the
proposed approach for Scenario 1. (a) Single-damage case; (b)
Double-damage case; (c) Multiple-damage case

results show that the ANN and DBN can complete the
damage location identification. Fig. 6 (b) shows that the
damage identification results of the DBN are 0. 307 and
0.290, and those of the ANN are 0.384 and 0. 163, re-
spectively. Among them, the maximum absolute error of
the DBN recognition is 0. 01, and the maximum absolute
error of the ANN recognition results is 0. 137, which
means that the recognition accuracy of the DBN is better
than that of the ANN without noise and modeling error.

Finally, considering the damage of three bars, the true
damage degrees of No. 3, 16, and 41 locations are 0.2,
0.15, and 0. 3, respectively. This damage condition is
not included in the training center. Fig.6(c) shows that
the damage identification results show that the ANN and
DBN can complete the damage location identification.
The identification results of the DBN are 0. 188, 0. 149,
and 0. 319. The identification results of the ANN are
0.168, 0.105, and 0.228. Among them, the maximum
absolute error of the DBN recognition results is 0.019,
and the maximum absolute error of the ANN recognition
results is 0. 072. Hence, the recognition accuracy of the
DBN is better than that of the ANN without noise and
modeling error.

3.2 Considering the impact of environmental noise

Firstly, considering the damage condition of a bar, the
damage degree at position 63 is 0. 15. This damage con-
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dition is not included in the training center. Fig. 7 (a)
shows that the ANN and DBN can complete the damage
location identification. The result of the DBN identifica-
tion is 0. 142, that of ANN damage identification is
0. 184, and their absolute errors are 0. 008 and 0. 032, re-
spectively. Hence, the recognition accuracy of the DBN
is better than that of the ANN without noise and modeling

error.
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Fig.7 Damage identification results from the ANN and the

proposed approach for Scenario 2. (a) Single-damage case; (b)
Double-damage case; (c) Multiple-damage case

Secondly, considering that two bars are damaged at the
same time, the damage degrees of positions 18 and 45 are
0.1 and 0. 35, respectively. This damage condition is not
included in the training center. Based on the damage
identification results, Fig.7(b) shows that the DBN can
identify the damage location. The ANN cannot identify
the damage at position 18. The ANN can judge position
25, which has not been damaged, as damage. Hence, in
the case of ambient noise, the ANN’s recognition accura-
cy significantly decreases, but the DBN can still complete
damage identification.

Finally, considering the damage of three bars, the true
damage degrees of No. 4, No. 22, and No. 53 locations
are 0.2, 0.3, and 0. 15, respectively. This damage con-
dition is not included in the training concentration. Fig. 7
(c) shows that the DBN can correctly identify the damage
location, whereas the ANN cannot identify the damage to
No. 53 locations. Hence, in the case of environmental
noise, the recognition accuracy of the DBN is better than
that of the ANN.

3.3 Considering the impact of modeling uncertainty

Firstly, considering the damage condition of a mem-
ber, the damage degree at position 60 is 0. 15. The train-
ing center does not include this damage condition. Fig. 8
(a) shows that the ANN and DBN can complete the dam-
age location identification. However, the ANN judges the
rod at position 14, which has not been damaged, to be
damaged. For the rod DBN at position 60, the damage
degree is 0. 162. The damage identification result of the
ANN is 0. 192, and the absolute error is 0. 012 and
0.042, respectively, which indicates that the recognition
accuracy of the DBN is better than that of the ANN under
the condition of the modeling error.
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Fig.8 Damage identification results from the ANN and the
proposed approach for Scenario 3. (a) Single-damage case; (b)
Double-damage case; (c) Multiple-damage case

Secondly, considering the condition that two bars are
damaged at the same time, the damage degrees of posi-
tions 30 and 65 are 0.2 and 0. 3, respectively. This dam-
age condition is not included in the training center. From
the results of damage identification, in Fig. 8 (b), the
DBN can identify the damage location, but the ANN can-
not identify the damage at position 65. The ANN will
identify positions 19 and 25, which have not been dam-
aged, as damaged. Hence, under the condition of the
modeling error, the ANN’s recognition accuracy decrea-
ses significantly, while the DBN can still complete dam-
age identification.
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Finally, considering the damage of the three bars, the
true damage degrees of No. 15, No. 32, and No. 61 lo-
cations are 0.2, 0.3, and 0. 15, respectively. This dam-
age condition is not included in the training center. Fig. 8
(c) shows that the DBN can correctly identify the damage
location, and the ANN cannot correctly identify the dam-
age at No. 61 and the bar at No. 76, which has not been
damaged but is judged to be damaged. Hence, under the
condition of the modeling error, the recognition accuracy
of the DBN is better than that of the ANN.

3.4 Considering environmental noise and modeling
uncertainty

First, considering the damage condition of a member,
the damage degree of position 61 is 0. 4. This damage
condition is not included in the training center. Fig. 9(a)
shows that the ANN and DBN can complete the damage
location identification. However, the ANN judges the po-
sition 19 bar, which has not been damaged, as damaged.
This finding shows that in the case of environmental noise
and modeling error, the recognition accuracy of the DBN
is better than that of the ANN.
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Fig.9 Damage identification results from the ANN and the

proposed approach for Scenario 4. (a) Single-damage case; (b)
Double-damage case; (c) Multiple-damage case

Secondly, considering the condition that two bars are
damaged at the same time, the damage degrees of posi-
tions 15 and 40 are 0.2 and 0. 3, respectively. This dam-
age condition is not included in the training center. Based
on the damage identification results, Fig. 9(b) shows that
the DBN can identify the damage location. The ANN

cannot identify the damage at position 40, but it can iden-
tify the damage at position 61, which has not been dam-
aged, as damaged. This finding indicates that in the case
of ambient noise and modeling error, the ANN’s recogni-
tion accuracy significantly decreases, whereas the DBN
can still complete damage identification.

Finally, considering the damage of the three bars, the
true damage degrees of No. 18, No. 41, and No. 69 lo-
cations are 0.2, 0.15, and 0.3, respectively. This dam-
age condition is not included in the training center. Based
on the damage identification results, Fig.9(c) shows that
the DBN can correctly identify the damage location, the
ANN cannot identify the damage at the No. 41 location,
and the bars at No. 7 and No. 22, which have not been
damaged, are judged as damaged. This result shows that
the recognition accuracy of the DBN is better than that of
the ANN in the case of environmental noise and modeling
error.

4 Conclusions

1) The bridge damage identification method based on
the DBN can be used to identify the damage location and
damage degree of bridge structures. It can also identify
small damage under various uncertainties and noises.

2) This method shows a strong anti-noise ability and
robustness in the aspect of bridge damage identification.
Compared with the BP neural network, this method has
more accurate recognition results.

3) The method can use incomplete modal data for
structural damage identification and is an effective tool for
damage identification.
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