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Abstract: To accurately analyze the fluctuation range of time-
varying differences in metro-to-bus transfer passenger flows,
the application of a probabilistic interval prediction model is
proposed to predict transfer passenger flows. First, bus and
metro data are processed and matched by association to
construct the basis for public transport trip chain extraction.
Second, a matching threshold method to
discriminate the transfer relationship is used to extract the
public transport trip chain, and the basic characteristics of the
trip based on the trip chain are analyzed to obtain the metro-to-
bus transfer passenger flow. Third, to address the problem of
the DeepAR model is
proposed to conduct interval prediction, where the input is the
interchange passenger flow, the output is the predicted median
and interval of passenger flow, and the prediction scenarios

reasonable

low accuracy of point prediction,

are weekday, non-workday,
evening peaks. Fourth, to reduce the prediction error, a
combined particle swarm optimization ( PSO)-DeepAR model

and weekday morning and

is constructed using the PSO to optimize the DeepAR model.
Finally, data from the Beijing Xizhimen subway station are
used for validation, and results show that the PSO-DeepAR
model has high prediction accuracy, with a 90% confidence
interval coverage of up to 93.6%.
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A s urban residents’ multimodal trips are developing
rapidly, fully mining passenger travel data, extrac-
ting travel chain features, and conducting interchange
passenger flow prediction are the current research hotspots
of multimodal trips, which are of reference significance
for improving residents’ trip efficiency and coping with

Received 2021-10-30, Revised 2022-06-20.

Biographies: Shen Jin (1997—), female, Ph. D. graduate; Zhao Jian-
dong ( corresponding author), male, doctor, professor, zhaojd@ bijtu.
edu. cn.

Foundation items: The National Key Research and Development Pro-
gram of China (No. 2019YFB160-0200), the National Natural Science
Foundation of China (No. 71871011, 71890972/71890970) .

Citation: Shen Jin, Zhao Jiandong, Gao Yuan, et al. Probabilistic in-
terval prediction of metro-to-bus transfer passenger flow in the trip chain
[J]. Journal of Southeast University ( English Edition), 2022, 38(4):408
—417. DOI: 10.3969/j. issn. 1003 —-7985.2022. 04.010.

holiday peak passenger flow induction and emergency
passenger flow evacuation.

In their study of trip chains, Adler et al. "' investigated
passenger trip chains from the perspective of utility maxi-
1 analyzed several factors affect-
ing trip chains, Qi et al. " explored the relationship be-
tween transport modes and trip chains using nested logit
models, and Wang et al." proposed a user-balanced

. . 2
mization, Kondo et al.

transport allocation model based on trip chains. In terms
of public transport interchange passenger flow, Wang et
al. ' established a simulation model of transfer organiza-
tion, Wang et al. " proposed a coordinated design of op-
erating routes between multiple transfer points to reduce
transfer costs, Zhang'' analyzed the coordination of met-
ro-to-bus transfers, and Xiong et al.'” predicted the
transfer passenger flow based on Kalman filtering. In
terms of passenger flow prediction, point prediction
methods for short-term passenger flow mainly include au-
toregressive integrated moving average ( ARIMA)!",
convolutional neural network!'", support vector machine

(SVM) "™, and long short-term memory'"’

models.

In contrast to outputting specific point forecasts, proba-
bilistic interval forecasts output a range of possible fluctu-
ations in passenger flow, and the reliability of the forecast
results is measured by a confidence metric. The schedu-
ling planner selects the prediction result under the best
confidence level according to the need to complete the
safe and reliable scheduling of public transport; thus, the
probabilistic interval prediction for predicting the proba-
bility distribution of passenger flow has attracted consider-
able attention from scholars. Zhang''*' investigated short-
term traffic flow interval prediction based on the gray sys-
tem theory. Zhu et al.'”

probability intervals based on the Bayesian network poste-
1.0

determined the traffic flow

rior distribution. Tong et a
range of traffic flow change by optimizing the SVM mod-
el. Thus, the probabilistic interval prediction is closer to
the essence, and the accuracy of the prediction is higher.

However, only a few studies of public transport trip
chains, transfer passenger flow, and time series probabi-
listic interval prediction have been conducted, and the re-

predicted the trend and

search on probabilistic interval prediction of metro-to-bus
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transfer passenger flow has yet to be enriched.

DeepAR is a time series prediction method based on
deep learning proposed by Salinas et al.''”’, which out-
puts the prediction results in the form of probability distri-
butions, provides interval estimates, and achieves more
accurate time series prediction. Yan et al. "' evaluated
the uncertainty of Web traffic prediction based on the
Prophet-DeepAR model. Zhu et al. "' verified the effec-
tiveness of the DeepAR model in predicting the probabili-
ty distribution of time series. Li et al. *” used the Deep-
AR model to predict the remaining life of an aeroengine.
The DeepAR prediction model, which has a wide range
of applications but has not been extensively employed in
passenger flow prediction, is mainly utilized for time se-
ries prediction.

Therefore, in this study, a combined particle swarm
optimization ( PSO)-DeepAR™" model is constructed to
predict the probability interval of metro-to-bus transfer
passenger flow based on multisource public transport da-
ta, extract the public transport trip chain, and determine
the metro-to-bus transfer passenger flow. Moreover, the
actual data of the Beijing Xizhimen subway station are
used as an example to compare and verify the accuracy of
the combined model.

1 Public Transportation Swipe Card Data Pre-
processing

In this study, we collected bus and metro swipe card
data, bus and metro line data, and bus and metro station
data of Beijing in April and May 2018. Among them, the
bus weekday daily swipe card data are approximately 8 x
10°, and the metro weekday daily swipe card data are ap-
proximately 5 x 10°. The names of the data fields used
are shown in Tab. 1.

Tab.1 Names of the swipe card data fields

Serial number Field name Meaning
1 GRANT_CARD_CODE Card number
2 ON_TIME Boarding time
3 OFF_TIME Drop-off time
4 ON_LINE Boardingline
5 OFF_LINE Drop-off line
6 ON_STATION Boarding station
7 OFF_STATION Drop-off station
8 CARD_TYPE Card type

These data originate from different data systems with
different field name identifications. First, bus and metro
swipe card data are preprocessed. Bus swipe card data are
cleaned to remove the data with the same in and out sta-
tions, earlier out time than in time, within nonoperating
time, long trip time, not swiped card when getting off,
and line stations that cannot be matched. The rail card da-
ta are cleaned to remove the data with the same up and
down stations, earlier time of getting off than time of get-
ting on, nonoperating time, and long trip time. After

cleaning, the valid data of the bus accounted for 88%,
and the valid data of the metro accounted for 97% . The
cleaned data are matched to obtain the card data integra-
tion table.

2 Trip Chain Identification and Transfer Pas-
senger Flow Analysis

2.1 Trip chain structure extraction

A trip phase'™ is a process in which a tripper uses the
same mode of transportation to get from the origin to the
A public transportation trip chain™”
complete trip process consisting of one or more public

destination. is a
transportation trip stages in the order of occurrence from
the trip origin station to the destination station. That is, a
complete public transportation trip can be composed of
only one trip stage, or several trip stages can be separated
by transfer points. The final constituted public transporta-
tion trip chain can reproduce the specific process of each
public transportation trip of the tripper. The trip chain
and trip phase relationships are shown in Fig. 1.
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Fig.1 Schematic diagram of the trip chain

The extraction of the public transportation trip chain
structure is the basis for transfer point determination and
transfer passenger flow extraction. In this study, we use
the transaction time difference between two adjacent
swipe records of passengers with the same card number in
the public transportation swipe data integration table to
determine whether the two trip stages are transfer relation-
ships and whether each swipe record, i. e., each trip
stage, belongs to the same trip chain. Then, the structure
of each trip chain is extracted.

Transfers in the public transportation trip chain of pas-
sengers are divided into three types, namely, bus to bus,
bus to metro, and metro to bus. In this study, the bus
trips of passengers are denoted as B, and the metro trips
are denoted as M.

The transfer time of metro to bus includes the time pas-
sengers spend walking to the bus station after exiting the
metro station and the time spent waiting at the bus stop.
The former can be determined based on the average dis-
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tance of bus stations around the metro station, and the lat-
ter can be determined based on the average waiting time
model for metro-to-bus transfer™™'. In general, a bus sta-
tion can be reached within the city by a 5-min walk from
the metro station'”'; the shortest bus departure interval
during peak hours is generally less than 10 min, taking
into account that passengers will exhibit other behaviors,
such as simple shopping during the transfer process; and
the maximum transfer time for metro-to-bus transfer is set
at 30 min. Analysis of the distribution of the card time
difference between the two trip stages in 30 min showed
that the cumulative frequency of the card time difference
is 95% of the 23-min metro-to-bus transfer time thresh-
old, i. e., when the same trip chain of the latter trip
stage bus trip boarding time minus the previous trip stage
metro trip off time is less than 23 min, the passenger is
determined to have metro-to-bus behavior. The schematic
diagram of the calculation method is shown in Fig. 2.
Similarly, we obtained the bus-to-bus time threshold of
26 min and the bus-to-metro time threshold of 18 min
using the calculation method.

Based on the three time thresholds, we extract the trip

Metro exit(M)

Walking time from

metro station to bus — — -
stop(5 min) The swipe time dlﬁ;rence is
Two determined by taking the
times add cumulative frequency 95% of
up to 30 the time difference within
Bus stop waiting min 30 min to determine t‘he M-B
time(plus 25 min for time of 23 min

other acts)

Bus boarding(B)

Fig. 2 Time threshold identification diagram of metro-to-bus
transfer

chain structure of passengers and add two fields, i.e.,
“CHAIN” and “STAGE,” to the public transportation
card data integration table. “CHAIN” denotes the i-th trip
chain of the passenger, and “STAGE” denotes the j-th
trip stage of the passenger. After tagging, we obtain the
public transportation trip chain information tags ( see Tab.
2).

Tab.2 Public transport trip chain structure marking

GRANT_CARD_CODE ON_TIME OFF_TIME MODE CHAIN STAGE
(card number) (boarding time) (drop-off time) (trip pattern) (trip chain) (trip stage)
1123 2018-04-07T09: 24 2018-04-07T09: 46 B 1 1
1123 2018-04-07T20: 04 2018-04-07T20:22 B 2 1
1149 2018-04-07T06: 22 2018-04-07T06: 42 B 1 1
1149 2018-04-07T06: 44 2018-04-07T07: 38 M 1 2
1149 2018-04-07T17:43 2018-04-07T08: 33 M 2 1
1149 2018-04-07T18:43 2018-04-07T19:03 B 2 2

Taking the card swipe data on April 7, 2018, as an ex-
ample for statistical analysis, a total of 3. 82 x 10° trips
were made on that day, with a total of 9. 58 x 10° card
swipes, an average of 2. 39 swipes per person, and a total
of 6.61 x 10° trip chains, of which 95% of people’s trip
chains contained less than or equal to 4 trip stages. That
is, most people generally do not make more than three
transfer times in one trip. The number of trip structure
type statistics of public transportation trip chains of trip-
pers is shown in Tab. 3.

2.2 Extraction and analysis of metro-to-bus transfer
passenger flow

Beijing’s public transportation network covers a large
and detailed area, and frequent transfers are very rare. In
general, passengers do not transfer many times, and con-
sidering that passengers who transfer more than three
times may be engaged in special jobs or have problems
with the public transportation system statistics, we extrac-
ted the card records of passengers with trip stages less
than or equal to four for transfer passenger flow statistics.
To clarify the research object, the Xizhimen metro station

Tab.3  Statistics of the number and proportion of different
types of trip structures on April 7, 2018

Trip structure Number Percentage/ %
M 4 667 704 46.35
B 3594 147 35.69
B-B 805 332 8.00
B-M 408 929 4.06
M-B 4 036 124 4.01
B-B-B 98 275 0.98
B-M-B 42 588 0.42
B-B-B-B 14 625 0.15
M-B-B 12 227 0.12
B-B-M 11 345 0.11
M-B-M 1 737 0.02
B-M-B-B 1627 0.02
B-B-M-B 1 454 0.01
M-B-B-B 920 0.01
B-B-B-M 832 0.01
M-B-B-M 760 0.01
M-B-M-B 189 0
B-M-B-M 182 0
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was selected to obtain the metro-to-bus transfer passenger
For example, on April 9, 2018, 58 691
people got on and 58 759 people got off at Xizhimen met-
ro station; 7 229 of the people that exited from the Xizhi-
men metro station changed to buses; given that the metro

flow statistics.

generally departs every 5 min, the passenger flow was ag-
gregated at a time granularity of 5 min"**
bus passenger flow statistics for one week from April 9,
2018, to April 15, 2018, are shown in Fig. 3.

. The metro-to-
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Fig.3 Display of Xizhimen metro

Fig.3 shows the weekday transfer passenger flow from
April 9, 2018, to April 13, 2018, and the nonworking
day transfer passenger flow from April 14, 2018, to April
15, 2018. The weekday transfer passenger flow exhibits
an obvious morning and evening peak regularity, whereas
the nonworking day passenger flow shows an inconspicu-
ous morning and evening peak passenger flow regularity.
Thus, the prediction scenarios are categorized into week-
days and nonworking days. To improve the prediction ac-
curacy, decision-makers need to reasonably plan and in-
duce passenger flow during the peak and low peak peri-
ods, deploy station security measures in advance, and
improve transfer efficiency. This study separates the
weekday morning and evening peak transfer passenger
flows for separate predictions.

3 Probabilistic Interval Prediction Model for
Metro-to-Bus Transfer Passenger Flow

3.1 DeepAR probabilistic interval forecasting model

DeepAR is an autoregressive recurrent neural network
(RNN) time series model, which is an RNN model with
hidden states. The model predicts the probability distribu-
tion of z, based on the autoregressive RNN. z, denotes the
predicted values of the model at the time step and ¢, de-
notes the prediction start moment. The training starts with
the input layer for data X, input, and the metro-to-bus
transfer passenger flows are inputted into the model. At
the input to the network includes the
taken at the previous time step and the state
h,_, at the previous time step.

each time step f,
value X

t-1

station connection and transfer volume

The network layer is a neural network containing hid-
den states, where z, is the small batch input of time step ¢
in the sequence, h, is the hidden variable of that time
step, h,_, is the hidden variable of the previous time step,
and h,=h(h,_,Z
puted in the network layer. A new weight parameter W,

._1) is the current state, which is com-

is introduced to determine how the current time step uses
the hidden variable of the previous time step. The hidden
variable of time step ¢ of the hidden variable k, is jointly
determined using the input of the current time step and the
hidden variable of the previous time step. The hidden
variable can be used to determine the state or network
memory of the current time step; thus,
ble is also called the hidden state.

the hidden varia-

h1:¢(zrwxh+hr—lwhh+bh) (D)

(2)

The hidden state at the current time step is defined using
the hidden state from the previous time step, and Eq. (1)
is computed cyclically. The output layer is calculated
using Eq. (2).

The computational logic of the network layer RNN at
three adjacent time steps is shown in Fig. 4. The compu-
tation of the hidden state can be viewed as a fully con-
nected layer with the activation function ¢ after linking
the input Z, with the hidden state h,_, of the previous time
step. The output of this connected layer is the hidden
state &, of the current time step, and the model parameters
are the link between W and W, with a deviation of b,.

0, =hW, +b,
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The hidden state k, of the current time step ¢ will be in-
of the
next time step ¢+ 1 and inputted into the fully connected

volved in the calculation of the hidden state h

t+1

Training process

. e
| ~
Outputs(transfer passenger |

transport layer of the current time step, where W, W,
and W, are the weight parameters and b, and b, are the
deviations.
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Fig.4 DeepAR model training and prediction models

After obtaining the output value O,, the parameter 6, of
the likelihood function /(z, | 6( 0,) is calculated, and the
parameters of the network are learned by maximizing the
log likelihood. The final output value of the training is
Z,, including the predicted transfer passenger flow inter-
vals and the medians of intervals.

L(o) = Y lglz, | 6(0)) (3)
The detailed training process of the model is shown in
Fig.4, with the training process on the left and the pre-
diction process on the right.
After the training is completed, the ¢ < ¢, historical data
is inputted into the network to obtain the initial state
h

prediction results: For 7, ¢, + 1, ..., T, each time step is

.-1- Then, ancestor sampling can be used to obtain the
randomly sampled to obtain Z, ~ [( - \ 0,) , and this sam-
pled value is used as the input for the next time step. Re-
peating this process yields a series of ¢, ~ T values, which
can be used to compute the desired target values, such as
quantile and expectation.

The specific form of ( 0,) depends on the likelihood
function [(Z, | 6,), and the likelihood function needs to
be selected based on the statistical characteristics of the
data itself. The likelihood function that best matches the
statistical properties of the data needs to be selected, and
the commonly used likelihood functions are Gaussian dis-
tributions for real-valued data. If a Gaussian distribution
is selected, then the Gaussian distribution is parameter-
ized using the mathematical expectation y and deviation
o,i.e.,0=(u,o), where the mathematical expectation
w is derived using the affine transformation function of the
network output, and the deviation ¢ is obtained using the
affine transformation of the following activation functions

to ensure that the variance is greater than 0, where

1 -(z-p)’
Lzluo) = 2o =55 @)
p(0,) =w,0,+b, (5)
0(0,) =log(1 +exp(w,0, +b,)) (6)

where w, and w,_ are weight parameters; b, and b are the
bias variables; and u(0,) and ¢ (0,) are the mean and
standard deviation of the Gaussian distribution function,
respectively.

The affine transformation function is used to compute
the output of the fully connected layer, the result of
which is the input final activation function. In this study,
a Gaussian distribution is used as the likelihood function
model. That is, instead of a common RNN model that
predicts points directly, a probability is predicted, from
which the predicted value is then obtained, and the range
in which the point may occur is described using features
of the probability distribution. In contrast to point predic-
tion, which results in a single point or a specific value,
probabilistic prediction is equivalent to predicting the
probability distribution of that point and being able to use
the features of the probability distribution to describe the
range in which that point may occur.

3.2 PSO algorithm

The PSO algorithm is derived from the movements of a
flock of birds searching for food to obtain an optimized
solution. The basic idea is to identify the best position of
each individual by analyzing its adaptability to the envi-
ronment and move to the best position in the region using
mutual collaboration and information sharing among each
individual in the group. The algorithm treats each indi-
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vidual in the group as a particle without volume and
mass, and each particle flies in the given search space at
a certain speed, which is dynamically iterated and upda-
ted according to the particle itself and the flight of its sur-
rounding companions. In the process of solving the opti-
mization problem, the particles dynamically adjust their
velocities and positions to obtain the optimization solu-
tion. The process can be expressed as follows:

Vi =8V v e R, (P!

tsl

_Xf;) +62R2(Pf,\-2 _Xfx) (7)
(8)

where V' is the velocity of the ¢-th particle in search space
dimension s and iteration number k; § is the inertia
weight; X is the position of the r-th particle in search
space dimension s and iteration number k; P%, and P’, are
the individual and global extremes of the 7-th particle in

search space dimension s and iteration number k, respec-

Xk+l

ts -

k k +1
XI: + V!s

tively; e, and e, are the acceleration factors, both of
which are nonnegative constants; and R, and R, are con-
stants in the (0,1) interval.

3.3 PSO-DeepAR probabilistic interval prediction

model

The modelling process for the PSO-DeepAR model is
shown below.

(D The DeepAR network structure is designed.

(2) The DeepAR network is trained.

) The initial parameters of the optimal prediction
model are determined.

@ The particle optimal position and individual are up-
dated according to the size of the particle fitness value.

® If the optimality search condition is satisfied, then
the iteration is terminated ; otherwise, the particle position
and velocity are continuously updated until the termina-
tion condition is satisfied.

® The optimal solution to the DeepAR model is as-
h

Y [rmax(y,

signed.

4 Case Analysis

4.1 Interval prediction performance indicators

We assume that the predicted value is f/, ={y,,7,, "

>

{.;‘1 ’.92"“,.;”%' The pre-

dicted value is the median of the interval obtained by pre-

3, and the true value is ¥, =

dicting the passenger flow. The following error evaluation
metrics were used to measure the model interval predic-
tion performance.

1) Mean absolute square error ( MASE)

MASE reflects the superiority of probabilistic interval
prediction over plain average prediction.

h
S ly,-v,|
t=1
1 n
n_mt;nﬂ

MASE = 17 (9)

v, -7,
where £ is the length of the prediction and m is the fre-
quency of the time series.

2 ) Symmetric mean absolute percentage error
(sSMAPE)

SMAPE determines the magnitude of the difference be-
tween predicted and true values. The smaller the value,
the smaller the error.

h
|

>

t=1

Y, -V, |
AR ANY

SMAPE =

10)

=

3) Weighted quantile loss ( wQuantileLoss[ 7] )

The wQuantileLoss [ 7] metric is used to measure the
accuracy of the model at a specified distribution point
called quantile. This metric helps capture the inherent bi-
as in each quantile, and the selection of a higher quantile
better captures the peak passenger flow. The wQuantileL-
oss[ 7] is expressed as

-07.,0) + (1 -7)max(Q"” - 7,,0)]

wQuantileLoss[ 7] = 2 =

where 7 is the quartile, 7 [0.1,0.997; QO is the
quantile of the model prediction. In this study, we select
the 0. 9 quantile to identify the prediction accuracy,
which indicates that the true value is expected to be lower
than the predicted value 90% of the time. Moreover, the
smaller the value is, the smaller the error.

4) Standardized deviation (ND)

The smaller the standardized deviation, the smaller the

1 n

MSIS — n—m 5y

2 A~
z ‘ Yl - Y/—m ‘ +E(L/ - Y/)IQY,<£,$ +

; (11)
> |y, |

€rror.
Y (12)

5) Mean scaled interval score ( MSIS)
The smaller the MSIS value, the smaller the error.

2 ~
E( Y, - Uz)I:y,>0,‘

1

0 (13)

z ‘Yt - Yr—m

n—m,r
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where S is the level of significance (8e [0,1]); U, is

the upper bound of the prediction interval ; i, is the lower
bound of the prediction interval; I,, 7, is the relationship

between Y, and f,, when Y, < lA,I , Iy .p, =1 (otherwise,
I,.r, =0);and [, g, is the relationship between Y, and

ﬁ, when Y, > ﬁ,, Iy.p, =1 (otherwise, I, 5 =0).

h
]7 ; (U, — L,) penalizes the interval between upper and
lower bounds, %( i, -Y,) 1, ;, penalizes cases where

the true value is below the lower bound, and l( Y - 0,)

I,y ¢, penalizes cases where the true value is above the
upper bound.
6) a confidence interval coverage (Coverage| o] )
Coverage[ o] is the proportion of h-step predictions in
which the true value Y, is less than or equal to the o quan-

tile of the prediction f/r. If the prediction is more accu-
rate, the proportion should be closer to «.

h

Coverage[ a] = % Sliioy,

=1

(14)

where [ ;_,, is the relationship between Y, and ffl (when

Y <Y

t o

quantile o e [0,1].

Iy_y =1; otherwise, I,;_, =0) and « is

4.2 Forecast analysis of metro-to-bus transfer pas-
senger flow

The transfer flows based on the analysis of trip chain
characteristics are inputted into the PSO-DeepAR model.
The final optimal parameters of the DeepAR model opti-
mized using the PSO algorithm are a learning time step of
12, learning rate of 10 ~*, number of hidden layers of 1,
number of RNN fiducials per layer of 40, and batch size
of 100. The model prediction results are obtained in 50
cycles. The model outputs for weekday, non-weekday,
and weekday morning peak (7:30 to 9:30) and evening
peak (17:00 to 19:00) transfer passenger flow intervals.
The medians of intervals are shown in Fig. 5.

Taking Fig.5 (a) as an example analysis, the blue line
denotes the actual passenger flow, the green line denotes
the median of the passenger flow forecast interval, the
dark green interval denotes the 50% confidence prediction
probability, and the light green interval denotes the 90%
confidence prediction interval, i. e., the probability that
90% of the predicted passenger flow falls within the light
green interval is 93.60% . Thus, the confidence probabil-
ity is higher at 90% , and all passenger flows fall within
the prediction interval range. The comparison of the 50%
and 90% prediction accuracies shows that the 90% confi-
dence probability prediction accuracy is higher than the
50% confidence probability prediction accuracy.
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Fig.5 Workday, non-workday, morning and evening peaks of
workday transfer passenger flow forecast. (a) Workday (May 25,
2018); (b) Non-workday (May 26, 2018); (c) Workday ( May 24,
2018 ) morning peak; (d) Workday (May 24, 2018) evening peak

To verify the effectiveness of the PSO-DeepAR model,
this study compares six models, namely, Mean, Seasonal
Naive, ARIMA, SimpleFeedForward, DeepAR, and
PSO-DeepAR. The Mean prediction method is the predic-
tion of all future values equal to the average of historical
data. The Seasonal Naive prediction method is based on
the characteristics of the data, taking the point of the last
cycle of the data as the prediction value, which is a sin-
gle-point prediction. The SimpleFeedForward neural net-
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work is the simplest neural network, where each neuron is
arranged in layers, there is no feedback in the whole net-
work, and the signal propagates from the input layer to
the output layer in one direction. ARIMA is an autore-
gressive sliding average method, which transforms the
nonstationary time series into a stationary time series and

builds a model by regressing the dependent variable on
only its lagged values and the present and lagged values
of the random error term.

Using six evaluation indicators for assessment, multiple
models predicted errors, as shown in Tab. 4.

Tab.4 Error of multimodel transfer passenger flow prediction

Prediction Prediction
. MASE sMAPE ND MSIS WQL[0.9] Coverage[0.9]
scenarios models

Mean 2.826 0.750 0.723 25.196 0.511 0.872
Seasonal Naive 0.929 0.353 0.235 36.819 0.254 0.414
Weekday ' ARIMA 2.805 0.766 0.717 22.300 0.475 0.885
SimpleFeedForward 0.831 0.3%4 0.213 6.197 0.092 0. 846
DeepAR 0. 840 0.411 0.212 5.108 0.105 0.930
PSO-DeepAR 0.824 0.425 0.210 4.926 0.214 0.936
Mean 1.222 0.515 0.422 7.091 0.182 0.837
Seasonal Naive 0.987 0.397 0.341 39.482 0.400 0.409
Nonworking ARIMA 1.068 0.489 0.369 7.030 0.163 0.911
day SimpleFeedForward 0.831 0.450 0.287 5.99%4 0.160 0.779
DeepAR 1.063 0.487 0.369 6.447 0.166 0.925
PSO-DeepAR 1.136 0.476 0.273 6.201 0.165 0.932
Mean 1.631 0.336 0.318 7.392 0.097 0.960
Seasonal Naive 0.725 0.163 0.141 29.017 0.144 0.520
Weekday ARIMA 1.720 0.361 0.335 7.245 0.085 0.920
morning peak SimpleFeedForward 0.567 0.124 0.110 6.508 0.047 0.880
DeepAR 0.739 0.157 0.151 3.650 0.082 0.920
PSO-DeepAR 0.638 0.148 0.139 3.120 0.068 0.934
Mean 1.281 0.276 0.266 5.060 0.080 0. 840
Seasonal Naive 1.000 0.225 0.208 40.001 0.266 0.400
Weekday ARIMA 1.157 0.247 0.241 5.390 0.093 0.720
evening peak SimpleFeedForward 0.834 0.179 0.173 6.197 0.075 0.840
DeepAR 0.608 0.137 0.135 4.251 0.071 0.870
PSO-DeepAR 0.574 0.152 0.147 3.972 0.069 0.921

As shown in Tab. 4, the Mean model is the base statis-
tical forecasting model among the five models, and only
the Seasonal Naive model is the point forecasting model.
The comparison of the point forecasting model and proba-
bilistic interval forecasting model shows that the MASE,
sMAPE, and ND errors of the point forecasting model are
lower than that of the traditional statistical type probabilis-
tic interval forecasting model and higher than that of the
DeepAR model. The MSIS and Coverage[0.9] errors of
the point forecasting model are higher than that of the tra-
ditional statistical type probabilistic interval prediction
model and lower than that of the DeepAR model, i. e. ,
the point prediction model has higher accuracy for MASE
but lower accuracy for Coverage[ 0.9 ] interval coverage.
The DeepAR model is the model with the smallest com-
bined error among several models, and the prediction er-
ror of the PSO-DeepAR model is significantly reduced af-
ter optimization by the PSO algorithm. Thus, the Deep-
AR model is the most suitable for predicting transfer pas-
senger flow intervals.

When comparing point forecasts with interval fore-
casts, the decision-maker should select point forecasts if

they need to predict a value or interval forecasts if they
need to obtain a range of possible fluctuations in passen-
ger numbers. The value obtained from the point forecast
is only a point in the range obtained from the interval
forecast. When a metro station needs to cope with a sud-
den peak in passenger flow, the point forecast does not
predict the peak in passenger flow, and the interval fore-
cast is more appropriate.

5 Conclusions

1) Passenger trip chains are identified and extracted ac-
cording to the transfer time threshold of passenger trips,
the specific structure of passenger trip chains is obtained,
and the trip chains with a trip phase less than or equal to
four at Xizhimen metro station are screened to obtain the
passenger flow of the metro-to-bus transfer.

2) An optimized probabilistic interval prediction model
is used and compared with the single-point prediction
model. The optimized probabilistic interval prediction
provides a range of predicted passenger flow fluctuations
under a certain confidence level, which improves the ac-
curacy and reliability of the prediction.
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3) Four typical scenarios, namely, weekday, non-
workday, weekday morning peak, and weekday evening
peak , were selected for separate forecasting. The forecas-
ting results of PSO-DeepAR were compared with those of
Mean, Seasonal Naive, ARIMA, SimpleFeedForward,
and DeepAR. The results show that the PSO-DeepAR
model has the highest patronage coverage at a 90% confi-
dence interval and the best interval prediction.
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