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Abstract: To improve the accuracy of speech emotion
recognition ( SER), the possibility of applying transformer-
based SER is explored. The log Mel-scale spectrogram and its
first-order differential feature are fused as the input to extract
hierarchical speech representations using the transformer. The
effects of the variation in the number of attention heads and the
number of transformer-encoder layers on the recognition
accuracy are discussed. The results show that the accuracy of
the proposed model increased by 13.98% , 8.14%, 24.34%,
8.16%, and 20. 9% compared with that of the transformer
with the Mel-frequency cepstral coefficient as featured on the
ABC, CASIA, DES, EMODB, and IEMOCAP databases,
respectively. Compared with recurrent neural networks,
convolutional neural networks, transformer-based models, and
other models, the proposed model performs better.
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anguage is the most common tool used by human be-
Lings to communicate and express ideas in daily life.
As a medium of language transmission, a speech signal
contains abundant emotional information, which can re-
flect the psychological state of the speaker. Correspond-
ingly, most people can automatically and effectively per-
ceive features in other individuals’ speech signals and rec-
ognize emotional information from them, which is a natu-
ral and unconscious process but a rather challenging task
for machines.

Speech emotion recognition ( SER) technology can
bring great convenience to medical, education, and other
industries. The continuous development of artificial intel-
ligence and the in-depth research on emotion recognition
will bring new breakthroughs in the field of human-com-
puter interaction. Therefore, the study of SER has impor-
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tant theoretical value and significance.

In recent years, traditional networks, such as convolu-
tional neural networks ( CNNs) or recurrent neural net-
works (RNNs), have been greatly explored in SER. In
common practice, Mel-scale spectrogram, Mel-frequency
cepstral coefficients (MFCCs), or other audio characters
will be used as input features for SER. Most of these fea-
tures are two-dimensional, making it natural to use the
CNN model to process these image-like features. Further-
more, these features are extracted from speech frames,
which exert a temporal meaning on them that can be trea-
ted like a sequence by an RNN'". Issa et al. ' performed
a one-dimensional CNN on the combination of five differ-
ent audio features, achieving a high recognition rate of
86.1% on the EMODB dataset. Ref. [2] also mentioned
that the use of an additional long short-term memory
(LSTM) layer may lead to a good performance. As Chen
et al. ' did, a three-dimensional convolutional RNN was
employed to reduce the emotionally irrelevant factors,
which also shows superiority in terms of the unweighted
average recall.

Although using these traditional strategies can achieve a
pretty good performance on recognition and has become a
consensus, researchers still attempted to use novel ap-
proaches in studies of speech signals. As such, the atten-
tion mechanism is the mainstream method™ . Since the
proposal of the transformer model by Google™, it was
In the be-
ginning, they were used in the field of natural language
processing and then gradually applied to computer vision
tasks.

In this paper, we propose the speech-emotion-trans-
former (SET) model, which uses the fusion feature as an

received considerable attention from all fields.

input. We compare the accuracy of using MFCC, Mel-
scale,
datasets. Then, we compare the average accuracy among
the different settings of attention heads and transformer-
encoder layers. The comparison of the performance be-
tween the SET model and the traditional CNN model is
also mentioned in this paper.

and fusion features with this model in different

1 Proposed Method

In this section, we will introduce the preprocessing
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steps before model training and the fusion feature method
first. Then, our SET model will be presented in detail.

1.1 Fusion feature

Before extracting features, we normalized each speech
signal to a zero mean and unit variance so that the ampli-
tude will have the same distribution range. Then, each
speech was split into several frames of a 25 ms time span
with Hanning windows, and a 10 ms time span was also
applied. Next, we calculated the log Mel-scale spectro-
gram and limited the frame count to 300, which makes
the size of the model inputs consistent. In detail, the
number of Mel-filter banks was 80.

In natural language processing, for any language, the
position of words in a sentence and the order in which
they are arranged are very important, not only as part of
the grammatical structure of a sentence but also as an im-
portant concept for expressing semantics. If a word is
placed or arranged in a different order in a sentence, the
meaning of the whole sentence may deviate. Because the
transformer discards the CNN or RNN structure, position-
al encoding is necessary. Hence, to highlight the varia-
tion between speech frames in the emotion recognition
task, we did not focus on semantics. Instead, we are
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concerned about the variation of intonation.
adding positional encoding to the input may introduce
perturbations to the input information. Hence, we calcu-
lated the first-order differential of the extracted Mel-scale

Directly

spectrogram and concatenated them together. In this way,
we can finally obtain a tensor of size [ 160, 300] as a
model input. The formula for calculating the differential
feature §,(i =1,2, ...,300) is given by

N

Z f’l( mi+n

n=1
5 = .

22}12

n=1

- ’71i—n)

(1)

where m,(i =1,2, ...,300) denotes the Mel-spectrogram
vector of the i-th frame and N is the differential width.

1.2 Model structure

As shown in Fig. 1, SET contains two main parts:
transformer-encoder layers and a CNN model. The en-
coders are used to extract different levels of feature repre-
sentations from the input. In addition, the CNN module
may downsample high-level representations produced by
encoders and correctly distinguishes different emotions.

Batch
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Multi-head
attention
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num

Fig.1 SET model

1.2.1

The transformer architecture encodes an input sequence’s
context vectors as a set of key-value pairs with the same
dimension as the input sequence length. The keys (in-
puts) and values (inputs’ hidden states) comprise the
encoder’s hidden states. The output predicted at the previ-
ous timestep by the decoder is computed into a “query”,

Transformer encoders

and the next term in the decoder’s output sequence is a
mapping from the key-value pairs plus query'®. Each
output term of the decoder is a weighted sum of all values
from the key-value pair’s encoded representation of the
input. Similar to a regular attention mechanism that de-
codes a weighted sum of hidden states, self-attention as-
signs the (alignment) weights to each value ( hidden
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state) as a sequence-length-scaled dot product of the que-
ry with all the keys. That is, the weighted sum of all the
inputs’ hidden states is computed by the previous ( last)
term in the output sequence and the entire input sequence.
This is where the global attention ability of the transform-
er originates'"' .

The equation behind the self-attention mechanism is
given by

Attention(Q, K, V) = softmax( ) |4 (2)

n

The attention can be computed by a set of queries,
keys, and values packed into the matrices O, K, and V,
respectively. The scaled dot product is obtained by just
scaling the dimension n of source hidden states for the se-
quence output at the timestep 7.

The scaled dot-product self-attention (@, K, V) is com-
puted over multiple “representation subspaces”. There-
fore, each query, key, and value have its own weight
matrix. In this way, multihead (multilayer) self-attention
can compute a term in the output sequence weighted dif-
ferently according to a region (subspace) of the input se-
quence. Each attention head in multihead self-attention
still computes a scaled dot product over the entire (K, V)
encoded input, just weighted differently to the input values.

The output of all the attention heads is concatenated
and multiplied with a weight matrix that puts the dimen-
sion of the encoded state back to that of a single attention
head. Then, a single feedforward layer can operate on the
encoded latent space regardless of the number of attention
heads, and a softmax prediction is computed from a
weighted sum of all layers in the multihead attention ar-
chitecture. The multihead attention layers are the meat of
the transformer.

For the same d__ . -dimensional queries, keys, and val-

model
ues, multiple learnable linear projections are performed to
linearly project queries, keys, and values to the d,, d,,
and d, dimensions, respectively. The equation behind the

multihead self-attention mechanism is

Multihead( Q, K, V) =concat(h,, h,, ..., h,) w°
h, = Attention( QW?, KW¥, VW) (3)

where the projections W,.Q e R4, Wf( e R, W,.V IS
R*%  and W’ e R"" *" are the parameter matrices to
be learned, and H is the number of heads.

In this study, we implemented a multilayer transform-
er-encoder framework. Then, we extracted and concate-
nated the outputs of all encoder layers. As shown in Fig.
1, we denote the number of adopted transformer-encoder
layers as L which obtains multilevel emotion represen-

num >

tations with L

num

feature maps. Meanwhile, we denote the
feedforward dimension as C, and the number of attention

heads as H, H and L are two important factors af-

num * num

dim

fecting the final recognition effect. The impact of their
various values will be discussed in the experimental sec-
tion. Finally, C,  was fixed to 1 024, whereas 768 is al-
SO appropriate.
1.2.2 Convolution module

Given a multilevel emotional representation output by
the CNN
downsample the representations and learn the spatial fea-

tures from them. In this study, the CNN block contains

transformer encoders, module was used to

four similar convolutional layers. From the first convolu-
tional layer to the last, the number of acquired feature
maps increased from 16 to 128 exponentially by 2. The
size of the convolution kernel of each layer was fixed to 3
x 3. After each convolution layer, implementing a batch
normalization operation can improve the recognition accu-
racy. To achieve downsampling, a max-pooling layer
was added, and the first two pooling sizes were both 2 x
2, whereas the latter two were 3 x 3. Finally, the output
resulting from the CNN module was flattened into a one-
dimensional vector and then passed through a fully con-
nected layer.

2 Experiments

To evaluate the performance of the transformer on SER
tasks, we performed SER experiments on five databases,
namely, ABC, CASIA", DES"™, EMODB",
IEMOCAP"".

We split all the datasets into a training set and test set

and

at a ratio of 7: 3. To ensure that the data for each emotion
can be balanced-distributed between the training set and
test set, we divided each emotional data into the same pro-
portion instead of splitting randomly throughout the entire
dataset. Then, each audio was divided into 3 s segments.

The SET module was implemented with the PyTorch
toolkit.
cross-entropy loss function with a mini-batch of four par-

The model was optimized by minimizing the

allel samples using the Adam optimizer. The learning rate
dropped from the initial 104 to 10-5, and the epoch num-
ber was set to 50. The remaining parameters were set as
default values.

2.1 Feature comparison

As mentioned above, instead of using MFCCs, Mel-
scale spectrogram, or other audio characters, we fused a
log Mel-scale spectrogram and its first-order differential
feature as the input of SET.

We compared the accuracy of using the MFCC, Mel-
scale, and fusion features with SET in different datasets.
We fixed the number of attention heads as 8 and the num-
ber of transformer-encoder layers as 8. The results are
shown in Fig. 2.

Evidently, using the fusion feature achieves a good
performance.
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Fig.2 Line chart of the accuracy of SET with different feature

inputs on different datasets. (a) ABC; (b) CASIA; (c¢) DES;
(d) EMODB; (e) IEMOCAP

2.2 Key hyperparameter comparison

As mentioned before, our proposed SET model has two
vital hyperparameters: the number of attention heads H
and the number of transformer-encoder layers L, . In
this section, we will discuss the influence of the variation
of the two parameters on recognition accuracy. As shown
in Tab. 1, when we used a combination of parameters of
eight-layer transformer encoders and eight heads of multi-
head attention, we achieved the best performance on the
ABC and DES datasets. Meanwhile,
combination of parameters of 10-layer transformer en-
coders and 10 heads of multihead attention, the model
achieved the best performance on the CASIA and
EMODB datasets.

when we used a

Tab.1 Accuracy of various settings of L,,and H ., %

Lym Hum ABC  CASIA DES EMODB IEMOCAP
4 68.00 61.00 39.45 64.97 62.71
6 63.20 76.83 42.20 71.97 63.83
6 8 60. 00 71.36 47.71 73.25 64.57
8 8 66.40 73.31 50. 46 68.15 64.42
8 10 66.40 76.30 44.40 72.80 62.88

10 10 64.80 79.39 46.79 73.89 63.97
10 12 60.20 71.36 42.40 70.20 63.24
12 12 62.40 72.33 44.66 66. 83 62.20

Meanwhile, with the combination of the parameters of
6-layer transformer encoders and eight heads of multihead
attention, the model achieved the best performance on the
IEMOCAP database.

The result also reveals that using more encoders and
heads can get a better overall performance, but quite large
values may also cause the opposite effect. Eventually, we
obtained the best SET models on two datasets, and we
will show their recognition effect in multiple experiments
in the next section.

2.3 Experimental results

We compared our method with the other methods using
traditional networks. We recorded the accuracy using
MFCCs as features while using the RNN, CNN,
transformer and the accuracy while using SET. The com-
parison results are presented in Tab. 2.

and

Tab.2 SER performance comparison among the RNN, CNN,

transformer, and SET %
Method RNN CNN Transformer SET
ABC 32.56 41.86 52.42 66. 40
CASIA 53.80 61.48 71.25 79.39
DES 30.36 25.89 26.12 50. 46
EMODB 44.72 46.58 65.73 73.89
IEMOCAP 25.94 34.17 43.67 64.57

Tab.3 presents the performance of our approach to
emotion recognition compared with other methods using
fusion features. The baseline model is based on fully con-
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volutional networks. Attention-based convolutional recur-
rent neural network ( ACRNN) cascade CNNs with LSTM
applies attention mechanisms on the LSTM output. We
also included the model recognition rate when using posi-
tional coding and not using positional coding.

Tab. 3  SER performance comparison among the baseline,
ACRNN, and SET %
SET
Method ~ Baseline ~ ACRNN With Without
positional positional
coding coding
ABC 60. 34 63.25 60. 54 66.40
CASIA 56.24 61.20 72.32 79.39
DES 28.58 30. 66 45.26 50. 46
EMODB 67.68 54.88 70. 64 73.89
IEMOCAP 58.38 53.84 63.24 64.57

As shown in Tab. 3, the recognition rate is lower when
using unlearnable sinusoidal-based positional coding com-
pared to not using positional coding. This fixed-position
coding approach only provides absolute position relation-
ships between frames and does not reflect changes, such

g b 7 (b)
(a)

(e)
Fig. 3

as pitch and formants, from frame to frame.
3 Discussion

To investigate the role that the transformer encoder
plays in the proposed model, we extracted the output of
each transformer-encoder layer when using the trained
model for the identification of a random sample. The out-
puts of the encoders constitute a multilevel representation
of sentiments. Fig. 3 shows the input feature of the fear
sample “03a04Ad. wav” in the EMODB database and the
output representation after passing through each encoder.

Interestingly, the output of the encoder basically main-
tains a rough outline of the input feature. In other words,
the output of each encoder is still a spectrogram-like rep-
resentation. Although the output representation of each
encoder layer is more abstract and ambiguous than the
previous one, the lateral grain of the input features is still
preserved. We attribute this to the encoders increasingly
focusing on the parts that have the potential to contain
sentiment information.

(©) (d)

() ()

Input features and multilevel emotion representation of the proposed SET model. (a) Input representation; (b) Multilevel repre-

sentation 1; (c) Multilevel representation 2; (d) Multilevel representation 3; (e) Multilevel representation 4; (f) Multilevel representation 5;

(g) Multilevel representation 6

4 Conclusions

1) In this study, the possibility of applying a trans-
former to SER is proven. SET was built with three steps:
First, we fused the log Mel-scale spectrogram and its
first-order differential feature as the input. Next, trans-
former-encoder layers were applied to extract multilevel
feature representations. Finally, a common CNN module
enabled the emotions to be correctly distinguished.

2) Based on the experimental results, the transformer
with MFCCs as features achieved better performance than
the RNN and CNN. The accuracy of the SET model in-
creased by 13.98%, 8. 14%, 24.34%, 8. 16%, and
20.9% compared with the transformer with MFCCs as
features on the ABC, CASIA, DES, EMODB, and
IEMOCAP databases, respectively.

3) Positional coding is not necessary for SET.
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