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Abstract: An improved inversion method for nuclear magnetic
resonance (NMR) relaxation signals with a low signal-to-noise
ratio (SNR) 1is proposed to solve the inversion problem of
weak NMR signals with short relaxation components. This
method selects a suitable filter factor for inversion by
combining the singular-value decomposition and Tikhonov
methods. Compared with existing inversion methods, the
relaxation-time spectrum based on the proposed method is
closer to the original spectrum of the NMR simulation signal,
especially in short relaxation components when the signal is
weak. The reliability of the proposed method under different
SNRs was proven by calculating the uncertainty of the
solutions. The ability to obtain precise relaxation times was
proven by experimental measurement and inversion analysis of
samples with multiple relaxation components. The changing
pattern of the components in a cement-hydration process found
the weak with
components was validated. In conclusion,

by identifying signal short relaxation
the proposed
inversion method can effectively distinguish a weak NMR
signal with short relaxation times, which plays an important
role in determining the key components of a sample and in
characterizing its physical properties, thus promoting the
application of NMR relaxation technology.
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T he 'HNuclear magnetic resonance (NMR) relaxation
measurement is an essential non-invasive and nonde-
structive detection method that is widely used in physics,

Received 2022-08-12, Revised 2023-03-12.

Biographies: Yu Qiaoming (1997—), male, graduate; Lu Rongsheng
(corresponding author), male, doctor, professor, lurs@ seu. edu. cn.
Foundation items: The National Natural Science Foundation of China
(No. 52075098), the National Key Scientific Instrument and Equipment
Development Project of China (No. 51627808) .

Citation: Yu Qiaoming, Lu Rongsheng, Chen Lang, et al. Inversion
method for NMR weak signals with short relaxation time[J]. Journal of
Southeast University ( English Edition), 2023, 39(2): 161 — 168. DOI:
10.3969/j. issn. 1003 —7985.2023. 02.007.

chemistry, biomedicine, and petroleum exploration. The
physical properties of samples, such as the composition
and pore-size distribution, can be characterized and quan-
tified using the relaxation-time distribution obtained by
inverse processing of NMR relaxation signals ™',
ther, the inversion of weak signals with short relaxation
components, which play a decisive role in representing
the characteristics of samples, has always been an intrac-

Fur-

table problem.

The inversion of an NMR signal is a typical ill-condi-
tioned problem in which the principle requires solving the
first Fredholm equation. Two main methods are available
to solve this problem: one is the singular-value decompo-
sition (SVD) algorithm, and the other is the regulariza-
tion algorithm '*”'. The SVD algorithm aims to reduce
the ill condition of an inversion problem by truncating the
smaller singular values in the coefficient matrix. The core
of the regularization algorithm is the penalty term added
to the original equation to suppress the instability of the
solution. The regularization algorithms mainly include the

Tikhonov regularization, CONTIN '*,| L -norm "
(0]

, and
hybrid L,/L,-norm algorithms The Tikhonov regu-
larization algorithm is most commonly used in NMR ow-
ing to its simplicity in terms of mathematics. The weight
of the objective function and penalty term is called a
smooth factor, which keeps the solution between distor-
tion and ill condition balanced. In addition, the subopti-
mal value of the smooth factor can be determined using
the Butler-Reeds-Dawson """ and L-curve algorithms "',
Li et al. " proposed a random SVD (RSVD) method,
which required lesser computing time and memory in
large-scale matrix decomposition. Thus, RSVD could
achieve high-resolution inversion of 2D and 3D NMRs
with higher computational efficiency than SVD. Zou et
U proposed a novel compression method that com-
bined the advantages of window averaging and SVD
methods,
NMR data compression. In addition, improved methods

based on the regularization method can be found in exist-
(151

al.

which achieved good application results in

ing research. Guo et al. chose a surrogate objective
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function that was based on least squares fitting to avoid
the process of choosing a regularization parameter. Ven-

kataramanan et al. "%

transformed the constrained optimi-
zation problem into an unconstrained optimization prob-
lem in a low-dimensional space whose dimension was de-
termined by the number of significant singular values. Lu

17
et al.

converted a minimum objective function with
nonnegative constraints into an unconstrained maximiza-
tion problem to reduce sensitivity to noise. In addition to
the above-mentioned methods, some advanced algorithms
are available, such as the Monte Carlo (MC) method "
and genetic algorithms ',
complexity and time requirements for searching for the
global optimal solution, they are not advantageous, espe-
cially in large-scale data processing, and cannot satisfy
the requirements of real-time processing.

In summary, the disadvantage of the SVD algorithm
comes from its difficulty in determining the position of
truncation, which destroys the continuity of the spectrum,
resulting in the loss of characteristic peaks of weak sig-
nals. Although the truncation value can be effectively de-
termined by the signal-to-noise ratio (SNR), the inver-
sion stability of the SVD algorithm in low SNR is not im-

However, because of the

proved, and the inversion accuracy of a weak signal can-
not be effectively guaranteed. With regard to the regulari-
zation method, searching for an appropriate smooth factor
is difficult. In addition, the smooth factor causes opposite
effects on short and long relaxation times, which leads to
the overfitting of small peaks ( short relaxation times) and
underfitting of large peaks (long relaxation times) under
the same smooth factor. In this paper, we propose an im-
proved inverse method for the accurate identification of
weak NMR short relaxation signals by combining the
SVD and Tikhonov methods. The idea of this method is
to select a more appropriate filter factor between the SVD
and Tikhonov algorithms based on the singular value.

1 Inversion Method of Short Relaxation and
Weak Signal in 1D NMR

The pulse sequences commonly used in 1D NMR relax-
include the Carr-Purcell-Meiboom-
Gill (CPMG), inversion-recovery, and saturation-recovery
pulse sequences. The kernel matrix in the inversion algo-
rithm must match the type of pulse to correctly separate the
relaxation components. The CPMG pulse sequence was
considered to illustrate the inversion method of 1D NMR.
The measured echo amplitude decayed according to the
sum of the exponential expansion as follows:

ation measurements

b, =Y fjexp( _;i

2j

)+g[ (1)

where b, is the echo-amplitude value at #,; T, is the relax-
ation time of the j component whose interval porosity is
fj; t; is an integer multiple of the time of echo(7T}),

which is equal to (iT;); &, is the stochastic white noise
that obeys a Gauss distribution'””’. When the sample con-
sists of n components and m echo points are collected,
Eq. (1) can be rewritten in a matrix form as follows:

b=Kf+¢ (2)

where b e R”, K R""", and fe R". We note that the
elements of density function f must be nonnegative be-
cause they represent the proportion that each component
contributes to the whole echo amplitude. The inversion
process estimates density function f from measured data m
under the condition of non-nonnegative constraints. The
solution of Eq. (2) can be expressed as

arg min = [ K7~ m 3

Inversion is an ill-conditioned problem, which means
that a small perturbation in the solution can lead to a large
variation in the final solution.
methods suffer from limitations in dealing with weak sig-
nals. However, the improved method combines the SVD
and regularization methods by analyzing their filter fac-
thus,
adopted with the change in the singular value.

The existing inversion

tors; the superior filter factor is automatically

1.1 SVD and Tikhonov regularization algorithm

According to the SVD theory, K, can be decomposed

mxn

into the product of orthogonal matrix U, B =
[u, u, u,l, V.. =1v, v, v,], and
nonnegative diagonal matrix 3, = diag(s,, s,, ..., 5,). It
can be expressed as
Ko =U 5 0 v 4)
0 o

mxn

where r is the rank of K s, represents the singular val-

1 " Thus, the solu-

mxn’

ues of K which decreases with i

mxn?

tion of Eq. (3) can be expressed as

" ulb
Siow = K'b = z —V, (5)

i S

[21]

where K* is the generalized inverse matrix of K.

Eq. (5) shows that the deviation of the solution is
greatly amplified by the near-zero singular values, which
undermines the reliability of the inversion results. Thus,
the main idea of SVD is to truncate the singular values to
obtain a stable and credible solution. In addition, the so-
Iution of Eq. (3) in the SVD method is expressed as

“ulb

Sfow = z s Vi (6)

i=0 5

Eq. (6) shows that the first k singular values are re-
tained and the remaining values are set to zero. Value k is
mostly determined by the SNR and condition number,
which decide the fidelity of the SVD method. An inap-
propriate truncated position can cause a serious loss in the
spectral components.
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The idea of the Tikhonov regularization method is to
add a penalty term based on the least square criterion. It
converts the inversion problem into the following:

arg min = [|Kf = b | + o | Lf I} (7)

where ||Kf -b|[ is the residual and ||Lf|]* is the smooth
function; « is the smooth factor that keeps the balance
between the residual and smooth function; matrix L is
called the regularization matrix, which can be a derivative
operator of the zeroth, first, or second order, represen-
ting the modular, curvature, or slope smoothness of the
solution, respectively. Eq. (7) is called the standard Tik-
honov regularization when matrix L is an identity matrix.
The solution of Eq. (7) can be expressed as

z": s; ub

2 2
i §; ta S

v, (8)

i

S =

1.2 Filter-factor fusion method

The principle of all the methods in solving the inverse
problem is the modification of the least square method,
which adds filter factors to reduce the noise effect. Ac-
cording to Egs. (5), (6), and (8), the filter factors of
the SVD and Tikhonov methods are

. 2
1 i<k s,

Fsvn = {0 Tik =

s +al
For SVD, the small singular value of K and the corre-
sponding eigenvector are eliminated to improve the inver-
sion stability. Although it ameliorates the ill-conditioned
problem, many components in the NMR spectra are left

(9)

otherwise ’

out, leading to serious distortion in the inversion when k
is small. In addition, the Tikhonov regularized filter fac-
tor introduces a large effect on the correction of singular
values, which affects the inversion accuracy. Thus, the
solution is modified by combining the filter factors of the
SVD and Tikhonov methods and is expressed as

! u'b
f;mpr = 2 Fi : vi
i=0 Si
1 i<k
F, = : , (10)
5 5 otherwise
s, +a

To solve Eq. (10), boundary value k£ must first be con-
firmed, which is similar to the truncation position-deter-
mination method of the SVD method. The general princi-
ple of determination is to retain as many original singular
values as possible on the basis of ensuring the stability of
the equation. The method adopted in this study makes the
reserved singular value greater than the ratio of the maxi-
mum singular value and SNR. The value of smooth factor
« is determined using the L-curve method.

The algorithm execution flow of the inversion method
proposed in this paper is described as follows:

1) The distribution of T, is set, and the coefficient ma-
trix K is solved.

2) Initial solution s* and convergence tolerance g are
solved.

3) Residual Am =m — Ks " is calculated.

4) Residual As is calculated from Am = KAs.

5) Solution s =s" + As is updated.

6) If |As|| <, thens” is the optimal solution; other-
wise, Steps 3) to 5) are repeated.

2 Experiments and Results
2.1 Numerical simulation

The NMR transverse relaxation time (7,) of liquid
(e.g., oil and water) greatly changed in different pore
structures. Thus, we constructed two typical oil-water bi-
modal 7, distribution models: Models A and B. T, of oil
was 200 ms in both models, and 7, of water was 15 ms in
Model A and 2 ms in Model B. Model A is shown in
Fig. 1, and Model B is shown in Fig. 2 The peaks represent
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the types of components, and the height of the peak indi-
cates the weight of the component in the total signal.
Model A, whose two peaks partly overlapped, and Model
B, whose two peaks were separated, are the most com-
mon models used in practice. In the numerical simula-
tion, the value of T, was logarithmically discretized with
64 points that ranged from 0.1 to 10 000 ms. The origi-
nal signals were collected from 1 000 echoes with the time
of echo being 0.5 ms. Gaussian noises at different levels
were added to the original signals to create NMR signals
with SNRs of 80, 40, 20, and 10 dB.

Before the inversion operation was performed, the
SVD method was employed to compress the NMR signals
to improve the inversion efficiency. Then, we compared
the improved algorithm with the Tikhonov and SVD algo-
rithms by inverting the echo signals with different SNRs.

For Model A shown in Fig. 1, the results from the
three methods were identical to the original NMR 7, dis-
tribution when SNR is 80 dB. However, the inversion re-
sult deviated from the real curve with the increase in
noise. The left peak of Model A was seriously disturbed
due to its short 7, and small semaphore when the SNR
was lower than 40 dB, and its value exhibited a gradual
decrease. The bimodal distribution of 7, in the Tikhonov
and SVD algorithms coalesced into one peak at a low
SNR level. The number of singular values omitted in the
SVD algorithm was large when the SNR was less than 10
dB, and it seriously damaged the accuracy of the inver-
sion result and caused the loss of characteristic informa-
tion of the original peaks. In addition, the Tikhonov al-
gorithm without truncation of the singular values per-
formed better than the SVD method at low SNR. The im-
proved method truncated the larger singular values and
modified the smaller singular values, which assimilated
the advantages of the SVD and Tikhonov methods.

For Model B shown in Fig. 2, the two characteristic
peaks could be clearly recognized when SNR was high.
When SNR was lower than 40 dB, a significant drop in
the characteristic peaks and an obvious shift in the short
relaxation peak to the right occurred. By comparing the
inversion results of the three methods based on the two
general models, the effectiveness and reliability of the
improved inversion method in the case of low SNR were
fully demonstrated.

The deviation between the solution obtained by the im-
proved algorithm and the true value was less than 20%
when SNR is 4 dB in Model A or 6 dB in Model B.
However, the solution calculated by the Tikhonov method
exhibited three peaks, and the solution obtained by the
SVD method had no visible peak. Compared with the
Tikhonov and SVD methods, the relative error in the
short relaxation part could be reduced by 8.9% to 21%
below 40 dB using the improved method, which demon-
strated the effectiveness of the improved method at low

SNR, and short relaxation was demonstrated.

The performance under different SNRs of the improved
method could be determined based on the coincidence be-
tween the confidence interval of the solution and the true
curve. A method to calculate the confidence interval was
proposed by Prange et al. '
pling to generate a large number of 7, spectra according
to Bayesian inference. The noise in the 7, signals often
presents an uncorrelated normal distribution 31 Further,
the uncertainty of 7, could be calculated using the trun-
cated multivariate normal distribution, as expressed in the
following equation:

using enhanced Gibbs sam-

f=0
(11)

where b is the collected signal; f is the distribution spec-

7(f) = exp| —%(b—Kj)TA"(b—Kj)]

trum to be calculated; K is the kernel matrix with ele-
ments k; = exp( - t,/T,); and 7 (f) is the probability
density function of f. A represents a diagonal matrix con-
taining the noise variance versus time, which is always
expressed as oI, where o is the measured noise variance
and I is the identity matrix.

According to the MC method, the characteristics of a
system can be obtained through a large number of random
samples. The uncertainty calculation of the solution was
transformed into a collection of a huge number of trun-
cated multivariate normal-distribution samples from Eq.
(11). The 2D slice sampler proposed by Philippe could
sample from the truncated multinormal distribution ex-
pressed in Eq. (11) in high dimensions using the inver-

24 . .
P4 The inversion curve

sion curve and covariance matrix
represented the inversion solution generated by the im-
proved method, and the covariance matrix could be ex-
pressed as (o “K'K) ~'. Thus, the uncertainty of the T,
spectra could be obtained from the statistical properties of
the samples drawn from 77(f) without a complex formula.

The T, spectrum model with bimodal 7, shown in Fig.
3 represented the above mentioned Model A. We drew
10 000 samples from the data in Model A, and every
sample could be considered a potential solution to the
Fredholm integral equation. Then, the uncertainty of 7,
could be calculated by performing mathematical statistics
on a large number of samples. The mean 7, spectrum was
computed from 10 000 samples for the data in Model A,
and the confidence interval represented the mean plus or
minus one standard deviation. Fig. 3 shows that the confi-
dence interval was narrow at high SNR with little devia-
tion from the original data, which satisfied the expecta-
tion. The width of the confidence interval and the degree
of deviation increased as SNR decreased. The confidence
interval composed of one standard deviation could contain
almost all the original data even in very low SNR, which
proved the reliability and availability of the inversion
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spectra inverted by the improved inversion method. Ac-
cording to the physical significance of f, the samples
were non-negative constrained, which forced their mean
value to be positive and generated an upward deviation of
the confidence interval.
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Fig.3 Uncertainty of 7, obtained by the improved method at

different SNRs. (a) Mean at 80 dB; (b) Confidence interval at 80
dB; (c¢) Mean at40 dB; (d) Confidence interval at 40 dB; (e) Mean at
20 dB; (f) Confidence interval at 20 dB

2.2 Inversion of the standard sample signal

The NMR 7, distributions varied with the concentra-
tions of CuSO, -5H, O solutions. The NMR signals ob-
tained through sealing and introducing CuSO, -5H, O so-
lutions in one probe represented the superposition of NMR
signals of CuSO, -5H, O solutions in various concentra-
tions. Three groups of samples were used in the experi-
ment, and each group was composed of three concentra-
tions of CuSO, -5H, 0O solution. The T, types of each com-
ponent were denoted as 7,,, T,,, and T,,. The NMR signal
was detected using a low-field NMR instrument independ-
ently developed in the laboratory. In the experiment, the
scanning times were four, the measurement time was 500
ms, and the number of collected points was 2 048.

The T, distributions of the three types of standard sam-
ples obtained by the improved, SVD, and Tikhonov
methods are shown in Fig.4. Three inversion peaks were
obtained by all methods. In the NMR inversion, the
smoothness of the peak indicated that several components
with similar relaxation times existed nearby, whereas the
composition near the steep peaks was relatively alone. By

comparing the mentioned inversion methods, the 7, distri-
bution obtained by the improved method exhibited three
steeper and clearer peaks, which was consistent with the
actual condition of the standard sample. In addition, the
accuracy of the improved method in multicomponent in-
version was verified by the atlas, where the abscissa of
each peak obtained by the improved method was closer to
that of the standard samples.
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Inversion results of the NMR signals of three different

Tab. 1 lists the specific values of 7, for each component
in the standard sample that were configured and compared
with the standard 7, values. According to Tab. 1, the rel-
ative error between the estimated and standard values of
T, was minimum, which objectively confirmed the accu-
racy of the inversion method proposed in this paper.

2.3 Signal inversion of the cement-hydration process

The transformation of the pore size and the pattern of
water migration during cement hydration are very impor-
tant for the research on the mechanical properties of ce-
ment materials. The improved method was applied to
identify the variation in the pore size and content of the
interlayer water, gel water, and capillary water during the
hydration and maturation of cement samples, which are
correlated with 7,, as well as the process of capillary-wa-
ter migration to other pores.
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Tab.1 Comparison of the inversion results of the standard samples from different inversion methods

Sample Method T,,/ms T,, relative error/ % T,,/ms T,, relative error/ % T,;/ms T,; relative error/ %
Standard 210.0 90.0 24.0
: SVD 213.4 1.62 90.9 1.00 22.5 6.25
Tikhonov 212.1 1.00 88.7 1.44 23.2 3.33
Improved 209.4 0.29 91.0 1.11 24.3 1.25
Standard 90.0 55.0 24.0
5 SVD 90.4 0.44 54.8 0.36 24.5 2.08
Tikhonov 90.1 0.11 54.6 0.73 24.2 0.83
Improved 90.2 0.22 55.0 0 24.1 0.42
Standard 90.0 10.0 5.0
SVD 91.4 1.56 11.9 19.00 5.2 4.00
3 Tikhonov 91.1 1.22 12.9 29.00 5.3 6.00
Improved 90.4 0.44 11.1 11.00 5.0 0
The low-field NMR instrument used in the experiment 20 - | ‘ .
was independently developed in our laboratory. The in- 10+ : : : -
strument consists of a permanent magnet for generating a 0 ! /K_\ ! ! L
static main magnetic field (0. 5 T field intensity), a 10 - I | 10d
probe for transmitting radio-frequency (RF) field and re- 0 : , —— : : :
ceiving NMR signal (diameter 30 mm and probe death 10 - ! TN\ 6d
time 15 ws), and an electronic control system for gener- N 18 I I : i : I ' I
ating pulse signal and processing nuclear magnetic reso- E . . /I/-I\ . . 3d,
nance signal (RF amplifier power 250 W). ;;_% .

The cement used in the experiment was white cement
with a water-cement ratio of 0.4 and a height of 30 mm,
which was sealed in a glass tube with a diameter of 30
mm to prevent the evaporation of water in the cement.
The NMR relaxation signals in the cement samples were
mainly derived from various bound-water signals. The
state of moisture and the pore-size information in the ce-
ment were reflected using the discrepancy in the trans-
verse relaxation time of the bound water. For instance,
the minimum relaxation time of the interlayer water was
only tens of microseconds with weak signal intensity,
which is a typical sample with a short relaxation time.

The NMR transverse relaxation-time distributions ob-
tained by the SVD and improved methods at different
stages of cement hydration are shown in Fig.5. The im-
proved method inverted a more valuable atlas that
showed distinguishable peaks, whereas the SVD method
failed to clearly identify the type of bound water in this
experiment. According to the transverse relaxation time
and cement composition, the left peak signifies the signal
of interlayer water, the middle peak denotes the signal of
gel water, and the right peak represents the signal of cap-
illary water. From the change in the transverse relaxation
time in the cement-hydration process, the transverse re-
laxation time of the capillary and gel water gradually
shifted to the left with the increase in the cement setting
time, whereas that of the interlayer water tended to be
stable after one day. From the height variation of the
peak in the inversion map, the content of capillary water
decreased with the increase in time, and that of gel water
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Fig.5 Distribution of 7, different periods in the cement-hy-
dration process. (a) SVD method; (b) Improved method
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increased with little change in the content of interlayer
water. These trends were also consistent with the ce-
ment-hydration process mentioned in Ref. [25], which
effectively explained the correctness of the inversion
method in practical applications.

3 Conclusions

1) Compared with the SVD and Tikhonov methods,
the proposed method leads to more accurate results in
low SNRs, which is crucial for the precise identification
of unknown weak components in samples.

2) The experimental results show that the component
types of the sample identified by the proposed method
are more accurate. In addition, the 7, value estimated in
each component is closest to the standard value with a
small relative error, which proves the correctness and ac-
curacy of the proposed method in the multicomponent
sample signal inversion.

3) The proposed method is applied to identify the vari-
ation trend of each component in the hydration process of
cement samples. Further, the changes in the peaks with
the increase in the cement curing time corresponding to
the interlayer, gel-pore, and capillary water are consist-
ent with the conclusion in the relevant literature on ce-
ment research.

4) The proposed method realizes the inversion of
NMR signals with multicomponent samples at low SNRs
and correctly and accurately identifies the weak signals
with short relaxation components, which plays an impor-
tant role in the discovery of key components in the sam-
ples and the characterization of their physical properties.
It also promotes the wide application of low-field NMR
relaxation techniques.
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