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Abstract: A data-driven motion estimation approach based on
attention-based bi-directional gated recurrent neural networks
was proposed to adaptively estimate the motion of a cable-
First,
performed to obtain short-term temporal sequences as training
samples. The data were then processed using the bi-directional

driven distal end-effector. the data construction was

gated recurrent neural networks with self-attention modules for
building sequential models on the samples. Finally, based on
the motion dataset of the cable-driven distal end-effectors, the
estimation-performance comparison experiments were performed
using the motor’s position, speed, and input time sequence for
the system-control signal as the sample features. The results
show that compared with conventional sequence modeling
regression approaches, the proposed approach can achieve
better performance for estimating the motion of the end-
effector. Therefore, it can effectively estimate the motion of
cable-driven distal end-effectors under complex conditions.
Key words: cable-driven distal end-effectors; motion estima-
tion; bi-directional gated recurrent neural networks; attention
mechanism

DOI: 10. 3969/j. issn. 1003 —7985.2023.02.010

ompared to rigid links, flexible cables are conven-
Ctionally used in robots for minimally-invasive surger-
y!'"™', rehabilitation training!"™', and trajectory plan-
ning[ﬁ], thus benefiting from flexibility, low inertia,
and distant mechanical driving“fz“ﬂ. Nevertheless, cable-
driven robots may be influenced by nonlinear time-delay
factors such as cables’ flexibility, fatigue, mechanical
transmission, and external interferences'>®, which typi-
cally appear in complex surgical backgrounds'"”. There-
fore, estimating the motion of a distal end-effector driven
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by cables allow machines to perceive the movement of a
mechanical manipulator. Through the estimation proce-
dure, it is further useful in motion compensation for distal
end-effectors'"™" .

Estimating the motion of a distal end-effector is crucial
for the precise control of robotic arms or instru-
ments''”"*™ Due to the high stability in rigid cases,
early studies on rigid-link robots mainly use prior knowl-
edge in modeling an end-effector’s motion'"*™'. Addi-
tionally, to perform precise control and manipulation, ca-
ble-driven end-effectors require force estimation from in-

[16] [1]

ternal grasping ~ and external sensing Furthermore,

works on motion estimation resort to the inclusion of vari-

. .. 13
ous modalities, such as computer vision'"”!
[12]

and move-
ment-sensing measurements In addition to these

time-delay estimation is also
11

above-mentioned works,
considered in cable-driven end-effectors’ contro

However, despite theoretical accuracy, most existing
studies on motion estimation for cable-driven robots focus
on using prior knowledge mainly from cables’ deforma-
tion and mechanical friction™” "™
inaccurate estimation due to the adaptation to various con-
ditions. Furthermore, it is difficult to model a cable-driv-

, which may result in

en end-effector’s motion due to the nonlinear influence
within the mechanical system'** .

Therefore, a motion estimation approach for cable-
driven distal end-effectors is proposed, which uses atten-
tion-based bi-directional gated recurrent neural networks
(Bi-GRNNs) to jointly learn bi-directional and long-dis-
tance dependency in sequences. Gated recurrent neural
networks improve sequence modeling performance by
using specifically designed memory units for learning suf-
ficient sequential knowledge'”'. Moreover,

GRNN, the units can be chosen as long short-term mem-

within

ory (LSTM) or gated recurrent units ( GRUs), typically
used in speech analysis and natural language processing
(NLP)"™ ™ and can contain attention mechanisms to
further improve GRNN learning performance'” .

The proposed approach first segments three-dimension-
al motion series into samples with labels corresponding to
the end-effector’s real rotation angles, with the input ex-
pected rotation degree and the motor’s rotation degree and
speed. Subsequently, the samples are carefully fed to a
specifically designed deep Bi-GRNN to build the mapping



188 Xu Xinzhou, Chen Yongfa, Liu Guangming, Li Zigian, Zhao Li, and Wang Zhengyu

from these series to the end-effector’s real motion. Fol-
lowing that, the trained Bi-GRNN model is used for the
motion estimation task.

1 Proposed Strategy

1.1 Cable-driven series elastic actuator

Considering the end-effector for cable-driven surgi-
cal robots, Wang et al. 31 built a cable-driven series e-
lastic actuator ( CDSEA) as a simplified cable-driven
instrument prototype, as shown in Fig. 1. The actuator
includes a motor & cable-driven module, a back-spring
& cable-driven module, a cable-pulley system, and a
Specifically, the

long-distance driven revolute joint.

Micro magnetic
encoder

Cable-driven series
elastic actuator

“J Driving cable

|

implified
joint

Tension
B sensor
I
. Returning cable

Raster displacement detection system

tension sensor at the end of the back-spring is used to
adjust the initial cable tension. Note that the joint uses
a micromagnetic encoder to measure the rotation angle
in a 2D space and the gratings to collect the initial dis-
placement information of the drive and reset cables, re-
spectively. Furthermore, Fig. 1 illustrates the overall
experiment system, including CDSEA, host comput-
er, and dSPACE real time control system. dSPACE
controls CDSEA to execute the running track and col-
lect the data information of each sensor in real time.
Therefore, relevant experiments are performed based
on CDSEA to obtain real-world data for end-effector
control.

motor

Elastic coupling

Backspring and cable-driven module

Fig.1 Overview of the cable-driven series elastic actuator

Additionally, the actuator uses a DC servo motor
(Maxon 118752 RE 25 with the incremental encoder
Maxon 225780 and planetary reducer Maxon 406764 GP
26A) driven by a Copley ACJ-055-09 driver. The driver
communicates through the RS232 interface, with the con-
trol system as dSPACE/MicroLabBox connected by
MATLAB/Simulink for signal input'*.
of the servo motor and ball screw ( SFKR, pitch 2 mm
and diameter 6 mm) takes into account GCPSW20-6-6
double diaphragm elastic coupling. The cable type is set
as Carl Stahl TECHNOCABLES CG719045 (nominal di-

Input:Expected
L joint angle

The connection

|_ —— |
| DC servo || |
motor |

Ball screw

Backspring and cable-driven
module

Cable-pulley driving
simplified module

ameter 0.45 mm), the sliding module as MISUMI SSE-
BV8G-130, and the back-spring as MISUMI DS8723.
The simplified dynamic model based on CDSEA is de-
picted in Fig. 2, in which the cable-pulley driving module
and the cable-pulley returning module are simplified into
mass-spring-damping systems'”. The system driving
mechanism is as follows. Input the theoretical angle to
the system. The ball screw-motor module drives the cable
to realize the single-direction rotation of the joint, which
is the system’s actual joint angle output, and the motor
encoder feeds back the motor position and speed informa-

Rotation joint

Cable-pulley returning simplified module

Fig.2 Simplified dynamic model based on CDSEA
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tion in real time. The motor drives the cable in reverse,
and the back-spring provides the reverse driving force for
the system to realize the reset function.

The control system receives a periodic sinusoidal signal
of the expected rotation angles ( with fixed maximum an-
gles), and the sequential data of the input signal, motor’s
position, with a
sampling rate of 100 Hz. The resultant three time series
are inputted into the estimation system as feature se-
quences. The system also records the real rotation angles
corresponding to each time point of the input as the output
of the estimation system; these angles are collected by the

and speed are recorded accordingly,

rotation-measure Sensor.

1. 2 Attention-based bi-directional gated recurrent

neural networks

When obtaining the feature sequences, the proposed
approach first segments these sequences into the samples,
each with 7'=50 time points (0.5 s), using the last time
point within these 7 points in the corresponding output se-
quence as the sample’s annotation. Note that it is optional
to add a time-delay operator to perform temporal compen-
sation'"” . This results in the motor-state features and cor-

responding output motion depicted in Fig. 3.

7 Sso
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Fig.3 Overview of the proposed attention-based Bi-GRNN for motion estimation

The training samples’ features are denoted as y = {x,,
X, Xy} CR™, with the annotations ¥ = (v, vy -esy
vy} CR, where N refers to the number of the training
samples.
using min-max normalization on each sample’s features
for x. Afterwards, the sequence-reshaping procedure aims
to set the input time series to the network by reshaping a

Moreover, the approach includes pre-processing

d
scale. Hence, the attention-based Bi-GRNN’s input train-
. XN} c R4+><3d.
the approach employs a self-attention layer using
4 as the first layer of the at-
resulting in its output for the

sequence to — x3d, where d=1 represents the reshaping

ing set can be obtained as y = {¥,, %, ..

Next,
scaled dot-product attention
tention-based Bi-GRNN,
i-th sample X, in a batch including N samples as fol-
lows:

K ;

Jm )V[ eR

setting the self-attention layer’s query, key, and value for

(0", = softmax( (D

X, to
Q,‘ Zif W(Q) T xm
K =x,w® eR" (2)
V.=x,W"” eR o
with the corresponding learnable linear-mapping matrices
of W2, W¥®, W" e R*", considering an m-dimen-

sional space for (0'”) ..
Afterwards, the component at time ¢ of the batch’s ini-
tial input for the first Bi-GRU layer O'” is noted as 0'”

=10, (0", (0/) ] e ™1™, and

the output of the three Bi-GRU layers can be written as
follows:

0 = fires o ot (0))) CR™Y 0 (3)

where f!oeo () s foreru()s and fiige, () indicate the output
mapping of the three Bi-GRU layers with n'", n”,
n dimensions, respectively. Note that for the k-th of the
three Bi-GRU layers in Fig.2 (k =1, 2,3),

output for f., () can be represented as follows:

and

the time-t

Ofk) - [Hl( +)T Hj 7)1'] T c anXNmy (4)

where H! " and H! ™’ are the backward and forward direc-
tional hidden outputs of a Bi-GRU layer,
For either of the two directions, its hidden outputs (Hﬁ )

respectively.

or H, ") can be represented as follows:

H =UOGH, +(E-U)OH eR ™ (5)

tx]

considering ¢ + 1 for the two directions, where © repre-

sents element-wise product operator and E e R**" is an

all-one matrix. Note that the two directions’ outputs are
calculated separately, without shared learnable variables.
Within the equation, the candidate hidden state is defined

with the input x(o) as follows:

H{ =tanh( W(h,)xi()) +W<h:)(R,®H,t]) +b(h)) (6)
in which the linear welghts obey w e R”TX"M( n'® =m
for k=1) and W" e R**", and the bias 5" e R™*"".

The update gate U, and reset gate R, can be obtained

through
U = W(’h)j(o) + W(Mz)H L+ b(‘l)
t g( t t+1 ) } (7)

R =g(W"x" +W"H,_ +b")

tx1
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with the weights (W™, W™ W' and W) and the
biases (b and "), setting the activation g(-) as a sig-
moid function.

When using the three Bi-GRU layers’ output O, the
dense layer’s output motion corresponding to the current
batch can be presented as follows:

0=w0" +bcR"™ (8)

1xn™

with the dense layer’s weights w e R and biases b e
Rl x N )

square error (MSE) and perform optimization using the

Then, it is possible to calculate the loss of mean

adaptive momentum ( Adam) operator.
2 Experiments

2.1 Experimental setups

This study uses the data collected from Hefei University
of Technology’s Cable-driven End-effector’s Motion
(HFUT-CDEM) dataset using the designed cable-driven

23
system"”’

in the experiments, consisting of 23 input peri-
odic sinusoidal time sequences corresponding to the maxi-
mum rotation angles from 2.5° to 57.5° with fixed inter-
vals of 2.5°, respectively. Each sequence contains 200 s
using the sampling rate of 100 Hz (20 000 sampling
points), with additional 11 measured time sequences from
the two gratings’ position and speed ( four sequences),
four tension sensors ( four sequences), the motor’s posi-
tion and speed (two sequences), and the effector’s posi-
tion (one sequence), in which the effector’s position is
set to the target estimated motion. Note that for each rota-
tion angle, this work uses the motor’s position and speed
and the input periodic sinusoidal time sequence ( three se-
quences in total) to form the features.

These 20 000 sampling points are divided into 12 000
and 8 000 points as training and test sets for each rotation
angle. This can be seen as a procedure for imitating the
estimation of the end-effector’s future motion in real-
world cases, considering the nonlinear time-varying fac-
tors for the cable-driven system. Furthermore, every 50
time points are defined as a sample, leading to 150-di-
mensional features (50 x 3). Considering the head and
tail interference, a total of 11 250 training and 7 250 tes-
ting samples are chosen for each angle, resulting in 23
training-test trials. Prior to further processing, a min-max
normalization on each feature is first employed. For the
parametric setups of the proposed approach, n'”, n®,
and n® are set to 32, 32, and 16, respectively, while the
dimensionality m for the self-attention layer is set to the
range of {5, 10, 15}. For the sequence-reshaping proce-
dure sets d =2, obtaining a 25 x 6 shape. The batch size
and maximum epoch number are further set to 256 and
30, respectively, with the initial learning rate of
{0.000 1, 0.001, 0.01, 0.1} to record the best results.

2.2 Experimental results

First, the proposed approach can be compared to con-
ventional applicable regression approaches, which include
support vector regression ( SVR), LSTM/GRU, atten-
tion-based LSTM/GRU, Bi-LSTM/Bi-GRU, attention-
based Bi-LSTM, and the proposed attention-based Bi-
GRNN (using GRU). Note that the SVR considers the
best performance when using a linear kernel with the reg-
ularization parameters ranging from {0. 000 1, 0. 001,
0.01, 0.1}. The LSTM and GRU-based networks used
in the comparison all use the three recurrent layers with
the same setups as the proposed approach. The MSE and
Pearson’s correlation coefficient (PCC) is among the in-
dicators compared ™", Therefore, the average MSE and
PCC results across the 23 angles’ training-test trials are
presented in Tab. 1. Note that the table presents both the
average and best-average results across the range of the
attention dimensionality. The table shows that the pro-
posed approach achieves better performance in most cases
by jointly considering the bi-directional structure careful-
ly. Further one-way analysis of variance for the 23 expec-
ted maximum rotation angles and the corresponding post
hoc results using Scheffé multiple comparisons™ show a
significant difference between the proposed and SVR ap-
proaches (p <0.005). Considering the close performance
between the proposed approach and Bi-LSTM with a fo-
cus on the PCC indicator, the results for the 23 expected
maximum rotation angles are analyzed separately. The re-
sults show that the proposed approach performs better on
15 angles out of 23 ones, specifically for large-angle ca-
ses (over 40°).

Tab. 1
proposed approach

Comparison between conventional regression and the

Approaches/ Indicators MSE PCC

W/O estimation 9.168 4 0.990 500 7
Linear SVR 0.318 8 0.999 049 1
LST™M 0.216 1 0.999 781 0
GRU 0.0719 0.999 834 5
Bi-LSTM 0.067 1 0.999 841 7
Bi-GRU 0.040 0 0.999 844 2
Average LSTM + Attention 0.1115 0.999 810 5
Best-average LSTM + Attention 0.048 7 0.999 839 7
Average GRU + Attention 0.0550 0.999 808 0
Best-average GRU + Attention 0.043 7 0.999 839 7
Average bi-LSTM + Attention 0.034 1 0.999 841 6
Best-average bi-LSTM + Attention 0.028 6 0.999 855 5
Average proposed approach 0.0322 0.999 837 1
Best-average proposed approach 0.0217 0.999 855 8

This study presents the rotation angle fitting curves of
the proposed approach for different expected rotation an-
gles in Fig. 4 to investigate the detailed performance for
each maximum rotation angle. The results show a well-
fitting performance for the proposed approach. Further-
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Fig. 4 Rotation angle fitting curves of the proposed approach
for expected maximum rotation angles. (a) 12.5° (b) 27.5°;
(c) 42.5°; (d) 57.5°

more, Fig.5 also shows the line charts for the proposed
approach. The comparison results show that the proposed
approach outperforms the other approaches for most of the
expected maximum rotation angles. Furthermore, both
the MSE and PCC indicators tend to increase with the in-
crease in the expected maximum rotation angle, which is
possibly due to the rotation angle scales. Due to this tend-
ency, the proposed approach is more likely to achieve

better performance when confronting larger expected max-
imum rotation angles.
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Fig. 5 Line charts for the proposed approach considering the
maximum rotation angle ranging from 12.5° to 57.5°. (a) MSE

compared with SVR, GRU, and Bi-GRU; (b) PCC compared with
GRU and Bi-GRU

Finally, it is critical to focus on examining the effect of
different setups on the proposed approach. The setups
considered include the reshaping scales (d € {2, 5, 10})
and the locations of the self-attention layer (at the first,
second, and third Bi-GRU layers), with the correspond-
ing MSE and PCC presented in Tab. 2, resulting in a
comparison between nine setups in total. These experi-
mental results show that the current setups contribute to
the performance of the proposed approach ( attention at
the first Bi-GRU layer with d =2) when used for motion
estimation for a cable-driven distal end-effector. The re-
sults also show that an appropriate reshaping scale can im-
prove the performance of the motion estimation task.

Tab.2 Parametric comparison between the proposed approach
and possible setups

d Attention position MSE PCC
1st bi-GRU layer 0.0217 0.999 855 8
2 2nd bi-GRU layer 0.022 6 0.999 852 3
3rd bi-GRU layer 0.027 2 0.999 847 1
1st bi-GRU layer 0.026 4 0.999 850 3
5 2nd bi-GRU layer 0.025 1 0.999 852 4
3rd bi-GRU layer 0.024 2 0.999 852 5
1st bi-GRU layer 0.0296 0.999 848 2
10 2nd bi-GRU layer 0.028 3 0.999 842 5
3rd bi-GRU layer 0.023 4 0.999 849 0




192

Xu Xinzhou, Chen Yongfa, Liu Guangming, Li Ziqgian, Zhao Li, and Wang Zhengyu

3 Conclusions

1))

This study proposed an approach focusing on esti-

mating the motion of a cable-driven distal end-effector
using attention-based Bi-GRNNs to support adaptive mo-
tion estimation.

2)

The proposed approach used short-term data from

input signals and motor motion, which were fed into a
network containing three Bi-GRU layers with self-atten-

tion.

The experimental results indicated that the proposed

approach outperformed conventional regression approa-

ches.

3)
sible

Despite the works completed in this study, our pos-
future direction may lie in exploring cross-domain

motion estimation considering more complex practical ca-

SEs.
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