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Abstract: To address the involvement of overdamped complex
modes that appear in a nonproportionally damped system, an
improved complex mode superposition ( ICMS) theory is
proposed for forced vibration analysis, which suggests the use
of exact modes in pairs for CMS-based dynamic analysis of
whether the modes are overdamped or not. A typical
nonproportionally damped system, namely, a cantilever beam
with attached multiple arbitrarily placed external dampers, is
considered an example because the first mode of the system is
likely to be overdamped with the increase in damping. First,
the relationship between the response in a complex modal
space and the actual dynamic response is elucidated, based on
which complete theoretical ICMS approaches for attaining
time-domain response, transfer functions, and variances are
expounded in detail. By decomposing the governing equation
into real and imaginary parts, the original equation of motion
in the complex domain is represented by an augmented state-
space equation with real-valued matrices, which considerably
reduces the difficulties observed in computing the time-varying
response using complex-valued matrices. Additionally, for
external excitations that can be regarded as filtered white
noise, an efficient method for evaluating the variance response
is proposed, which effectively reduces the computational cost.
The results from the application of the proposed CMS-based
methods are compared with those obtained by an assumed-
mode (AM) method and finite element analysis (FEA). It can
be found that the current results are closer to those obtained by
FEA than those by the AM method. Finally, the optimal
damping and optimal position of the dampers are investigated
using an enumeration method, which reveals that the use of
multiple dampers with small damping demonstrates a better
effect than that of a single damper with large damping.
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n the analysis of structures that exhibit natural modes
I of vibration, the presence of discrete energy-dissipa-
tion devices is recognized to disturb the mode shapes of
the original system'" and consequently leads to a nonclas-
sically damped system (NCDS) if the Caughey-O’Kelly
condition”™" is not fulfilled. Even today, the mode-su-
perposition method remains attractive in performing a
forced vibration analysis™ owing to its remarkable quali-
ties, such as conceptual simplicity and capability to re-
duce the order of a system by treating the vibration of the
system as a linear combination of finite modal vibrations.
The modal methods for NCDSs mainly fall into two cate-
gories: 1) Assumed-mode (AM) methods™ in which
approximate admissible shape functions, usually the mode
shapes of the undisturbed system, are adopted; 2) Com-
plex mode superposition ( CMS) methods'”™, which
conventionally utilize the exact modes formed in a com-
plex domain. The CMS method appears to be more prom-
ising because the complex eigenvalues and eigenfunc-
tions, which yield a modal vibration with varying config-
uration rather than a constant configuration found in clas-
sically damped systems, are more suitable for characteri-
zing the complicated dynamic behavior of NCDS'"'.

Earlier studies on the use of complex modes mainly fo-
cused on discrete structures. One can be traced back to
Foss'"”, who proposed a theoretical approach where a
structural motion could be expanded into a modal series,
and the nonhomogeneous solutions of the dynamic system
could thus be achieved. With regard to a nonclassically
damped multi-degree-of-freedom ( DOF) system, Velet-
sos and Ventura!” elaborated on the application of the
CMS method to free and forced vibration analyses in
which a shear-beam-type three-story structure was intro-
duced as an example. Recently, Zhao and Zhang''™ have
proposed an acceleration technique where the CMS meth-
od that used truncated complex modes could be compen-

18] -
U8 introduced two real-

sated. de Domenico and Ricciardi
valued measures to determine the number of complex
modes to retain in a reduced-order model.

Although extensive studies related to the application of
the CMS method to discrete structures have been conduc-
ted, the applicability of CMS for a continuous system re-

mains limited, and only a few relevant studies can be
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found in the literature due to the lack of exact complex
modes and natural
NCDS"™. ! derived the complex
modes of a soil-structure system, which was simplified as
two connected shear beams, and applied the CMS method

corresponding frequencies  of

Oliveto and Santini™

to its dynamic analysis. Oliveto et al. '™ then extended
the study to a simply supported Bernoulli-Euler beam with
two rotational viscous dampers that were individually atta-
ched at the beam ends and investigated the dynamic be-
havior of the system undergoing free and forced vibra-
tion. By considering a Bernoulli-Euler beam with viscoe-
lastic boundary supports at its ends, Fan et al. *"! demon-
strated the complex modes of the system using complex
stiffness coefficients, and the CMS method, in associa-
tion with the derived complex modes, was then applied to
obtain the dynamic response induced by harmonic excita-
tions. By introducing an independent representation of the
momentum for damped continuous systems, Krenk'*' for-
mulated a general motion equation in a state-space form
in which both the stiffness and damping operators were
self-adjoint and symmetric. He considered a cable with a
lateral viscous damper and a beam with two identical rota-
tional viscous dampers attached at its ends for their case
studies. For a pinned-pinned cable attached to rotational
dampers and springs at their ends, Impollonia et al. '
performed a CMS method-based time-domain dynamic
analysis by splitting the modal decoupled equation of mo-
tion into real and imaginary parts. For the axial vibration
of a rod with various arbitrarily placed viscous damping
devices such as external ( grounded), mass, and internal
spring dampers, Alati et al.'™ demonstrated the exact
closed-form eigenfunctions and characteristic equations
and revealed that the CMS method, compared with the
AM method, inherently satisfied the discontinuity condi-
tions at the locations of the damping devices. Neverthe-
less, for the incorporation of overdamped modes, rele-
vant development of the CMS method was not well eluci-
dated in previous studies. The exact modes are commonly
assumed to be complex conjugates; however, this is not
true when overdamped modes are involved™'.

The current study presents theoretical approaches for
forced vibration analysis in both the frequency and time
domains using a multi-damper-beam system whose first
mode is prone to overdamping with the increase in exter-
nal damping'”'. An improved CMS (ICMS) theory is
proposed in the present study, in which the exact modes
should be strictly used in pairs to decouple the vibration
response, whether the modes are overdamped or not. A
pair of overdamped modes consist of the modes that cor-
respond to two real-valued solutions of the same charac-
Consequently,
must be adopted in converting the results in a complex
modal space into actual vibration responses. For the con-
venience of the forced vibration analysis,

teristic equation. pairwise exact modes

the relevant

methodologies presented herein are formulated in a state
space. Moreover, the original continuous system is trans-
formed into a reduced-order system by considering the
presence of overdamped modes. For time-domain analy-
sis, an augmented motion equation is proposed in which
all of the matrices are real-valued, where the real and
imaginary parts of the modal vibrations can be simultane-
ously obtained. For frequency-domain analysis, the trans-
fer functions are found using Laplace transformation in
association with modal decoupling techniques. An estima-
tion equation for variance response is presented in terms
of the variance response of a modal vibration. The modal
variance response can be approximated by solving a Lya-
punov equation in the modal space. The results are cor-
roborated by finite element analyses (FEAs). Finally, we
consider the random excitation by white noise located at
the midspan. The optimal damping and optimal location
are identified for two objective measures, namely, vari-
ance in dynamic response at the free end and spatial aver-
age variance. The formulas presented herein are nondi-
mensionalized, which enables the identification of mini-
mal sets of parameters that govern the inherent dynamic
characteristics and facilitate the comparison of similar sys-
tems.

1 Problem Formulation

For forced vibration analysis, we consider a general
damper-beam system, namely, a cantilevered beam with
multiple arbitrarily placed external dampers. The exact
complex modes of this system were presented in a previ-
ous studym] , and the transfer functions and variance re-
sponses of a single-damper-attached beam were investiga-
ted by constructing a closed-loop system in the frequency
domain'® ", Fig. 1 shows that a Cartesian coordinate
system is employed to describe the beam vibration, and
the origin is set at the clamped end of the beam. Thus,
the x coordinate is along the beam, and y denotes the dis-
placement of the beam undergoing vibration. The bending
stiffness of the beam is characterized by EI, where E is
Young’s modulus and / is the cross-sectional second mo-
ment of the area around the neutral axis. The length of
the beam is /, and m denotes the mass per unit length.
The number of viscous dampers is J, and the damping co-
efficient of the i-th damper is denoted as C?. The distance
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Fig.1 Cantilever beam with dampers and subjected to external
excitation
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from the i-th damper to the clamped end of the beam is
denoted by a,. We note that the installed dampers are se-
quentially numbered, i.e., 0<a,<a,<...<a,<!. The
distributed time-varying loading on the beam is f(x, ?),
where ¢ is the time. The beam is modeled as a Bernoulli-
Euler beam without internal damping.

By using d’Alembert’s principle, the governing equa-
tion of this system can be expressed as

EI Py +;ci o 5(x —a,) +

miay (x, 1) = flx, 1)

or (1o
0. Y50 0. Lyvenco Ly o
Y(0) =0, $¥(0) =0, [5¥(]) =0, T5¥() =0
(1b)

where 8( ) is the Dirac delta function, and Eq. (1b) ac-
counts for the boundary conditions. Without loss of gen-
erality, Eq. (1) can be nondimensionalized by

y=y/l, x=x/l, o, =0a,/l, t=tw,

Bl sl Cl
@o = ml*’ =G EI ~ mEI (2)

Thus, we obtain

(3a)
- d- & - & -
Y(0) =0, £¥(0) =0, “5¥(1) =0, - 5¥(1) =0
(3b)

where

_ ~ P - o !
Jx1) = o fx ), ormi wofof(x, Hdi = Lf(x, 1) dx
(4)
For free vibration, we obtain

9 y(x,7) +

4. J
4
0x i=1

ay(x, 1), - 3y (X, 7)
¢, TS —a) + S =0

(5)

By using separation of variables, the solution of Eq.
(5) has the following form'':

(X, 1) =D, p(w, ¥)e” (6a)
w=jA’ (6b)
j=v -1 (6¢)

where D, is an undetermined parameter in the complex
domain, ¢(w, X¥) is the complex mode shape, w is the
complex natural frequency, and A is the wave number.
Eq. (5) is solved by substituting Eq. (6) into Eq. (5) and

using the argument principle method'™'. The correspond-

ing wave numbers, natural frequencies, and mode shapes
are derived in the complex domain. For details, interest-
ed readers may refer to Ref. [25]. Note that the natural
frequencies and mode shapes are grouped in pairs'™'.
Symbols w and @ " are utilized to represent a pair of natu-
ral frequencies, whereas symbols ¢ and ¢~ represent a
pair of natural modes.

Subscripts n and k denote the sequential number of the
modes, natural frequencies, or wave numbers, which are
sorted using pseudoundamped natural frequencies in as-
cending order. Thus, Eq. (6a) yields

3,(%,1) =D¢,(w,, X)e" (7)

where y (X, ) is the time-varying displacement response
corresponding to the n-th natural frequency. Substituting
Eq.(7) into Eq. (5) yields the following for the n-th
mode:

d* !
St Y w8k —a) +o'p, =0 (8)
dx i=1
In a similar manner, the k-th mode expression is ob-
tained as
d* !
d)f;k + Y sk —a) e, =0 (9)
i=1

Subtracting the integration of Eq. (8) that is premulti-
plied by ¢, from the integration of Eq. (9) premultiplied
by ¢, yields the following:

J

1 ~
f {ow w0} ,ch‘a(x me) { ér }dx =0
0 1 ol L@@
w, # w, (10)

Similarly, subtracting the integration of Eq. (8) that is
premultiplied by w, ¢, from the integration of Eq. (9) pre-
multiplied by w,¢p, yields

w, # w,

4
' T0 7 e 1.
f {00} ax { }dx =0
0 0 _1 w’1¢’1

(1)

Egs. (10) and (11) are the first and second orthogonal-
ity conditions, respectively.

2 Reduced-Order System with Finite DOFs

Discrete systems with motion equations in a matrix
form, which are achieved by applying the CMS and AM
methods, are presented in this section. Note that the orig-
inal system has infinite DOFs. Both the CMS and AM
methods are capable of producing a reduced-order system
with finite DOFs using the truncated modes.
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2.1 CMS method

The CMS method lets the vibration response of the sys-
tem be expressed as a linear combination of modal vibra-
tions with corresponding natural frequencies. Thus, the
vibration of the system is approximately expressed as

5’ N ) N *
{ay}* Z{ e }p,(f) " 2{ e *}pi(n (12)

Py i=1 P i=1 lw,; ¢,

where p,(7) and p,” (7) in Eq. (12) are the generalized
coordinates of the i-th associated mode ¢, and its counter-
part ¢,", respectively. For underdamped complex modes,
@, denotes the conjugated complex mode of ¢,.

Let the following equations be true:

U={d by} =
(D 1s Doy coes Dis ey @ns @1 s eoes @f 5 oees @y } (132)

q={q,(D,q,(D),....,q,(0), ..., q,u(D }T =
P, (D, p, (D, ..o p, (D, (D, p (D, up (D, py (D)
(13b)
A={A,A,, ....A,, ..., Ay} =

(W, W5 oy Wy ooy Oy @] Wy 5 ey @] 5 ooy Wy}

(13¢)

where ¢, ¢, and A are the modal, generalized coordi-
nate, and frequency vectors, respectively. Thus, Eq.
(12) can be rewritten as

[l S0 oo =L

otd "7

(14)

o

where notation is the Hadamard product operator.

The displacement response can be computed using

y=iq (15)

The motion equation represented by Eq. (3) is thus re-
expressed in the state space as

RIS
0 -—-1-toar

The operators in the coefficient matrices are found to be
self-adjoint. Thus, Eq. (16) can be diagonalized by its
eigenfunctions.

Substituting Eq. (14) into Eq. (16) and integrating Eq.
(16), which is premultiplied by {,, A, }, yield the
following:

Y edx-a) 1|0
=t 0 ot

1

- )

(16)

2 =

iq"ﬂ{‘/’k’/‘k%}[:){‘ 0 ]{ v,
4 -

}d)”c +
AHI/III

> 2 g aan) [ ;C"S(f m ) (1)] ALE

[t A { s (17)

Then, by applying the orthogonality conditions given
in Egs. (10) and (11), we have

! 841/’k - 2 ! 2 3~
qk{fol//k 8)64 dx - Akj(]‘/lkdx}-’-
J

(’)q 1 ~ ~ 1 ~ 1 o
4§{L;q&x—WWﬁwﬂmLﬁM}=L%ﬁu
(18)
We note that
1 ‘34 1
[0 e - 22 s =
0 ox 0
1 J 1
~ 2 1~ 2 1~
_ Ak{fo Y ed0x — a)uidy + 2Akf0¢kdx} (19)
Eq. (18) yields
1
. [ i
g = Aqu + — | (20)
2 Ciwk(ai)z + 2Akf ‘ﬂidi
i=1 0
As Eq. (20) holds for all k=1,2, ...,2N,
d =0q + Bu (21)
ar? =
where
£ =diag(A)) k=1,2,...,2N (22)
B =diag(B,) k=1,2,...,2N
1
B, = —; (23)

z ci‘/lk(ai)z + ZAIJI‘//kl/’kdx

i=1

1
W= (U s ooy s ooy iy} Uy = L,,/,k}dx (24)
where €2 and B are the state and input matrices of the sys-
tem in a complex modal space, respectively; u is the in-
put vector of the system in a complex modal space.

Eq. (21) represents a governing motion equation in a
complex modal space and states that the original system
can be decoupled. Then, the dynamic response governed
by Eq. (3) can be approximated by solving Eq. (21).

We need to note that the response must be computed
using Eq. (15) instead of the following:

N
3(xD) = 2Re( X e, (0p.(D) ) (25)
which is frequently used in accordance with the assump-
tion that the natural frequencies and modes are in conju-
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gate pairs™ . This assumption does not hold for every

NCDS because, overdamped modes with
low natural frequency will appear.

in some cases,

2.2 AM method

The orthogonality conditions for the modes of a cantile-
ver beam with no attached damper (the undamped/undis-
turbed system) are expressed as

1

f@(k)@k(fc)dx =0 n#k (26a)

[Eineindc=0 wxk  (ob)

fgo (D@ (Hdx = @ fgon(x)gon(x)dx 40 (260

where w, is the n-th natural frequency of the undamped
system; ¢, is the n-th mode of the undamped system;
symbol “ ~ 7 in the variable denotes that the variable is
for the AM method.

The vibration of a beam may be approximated using a
truncated series of N modes as follows:

N
21D = Y e (0q,() = ¢q (27)
n=1
where ¢,(7) is the n-th generalized coordinate; ¢ is the
AM-method-based modal matrix that comprises N un-
damped modes; ¢q is the generalized coordinate vector of
the AM method. They can be expressed as

4=1{q, @0 - 4y} (28)

and
k) &N } ( 29)

Substitution of Eq. (27) into Eq. (3) yields the follow-
ing:

o={@, ¢, -

N J aa alé\ B
o"q, + Y 08X —a) " +¢ ”}= (%, 1)

; { (2 Qn ; thn ( az) af an (,ﬁz f
(30)

Integration of Eq. (30) that is premultiplied by ¢, re-
sults in

5 ([

[ adar] &

aqll

+ | zcma)ma) | %

a qll

n=

=g G

Because Eq. (31) holds for all p,, k=1,2, ..., N, Eq.
(31) yields a modal reduced system, i.e.,
dZ
P

Q)

m&9,.cY% . ki-F

9:\»-:)

(32)

o

where 112 s 6 , and E are the mass, damping, and stiffness

—~

matrices of the system in a modal space, respectively; F

is the force vector in the modal space. By taking advan-

tage of the orthogonality conditions of Eq. (26), the ma-
trices can be computed as follows:
—~ — —_ 1
M = diag(M,)) k =1,2,...N; M, = | ¢,0,dx
0
(33)

LN;n=1,2,..,N

z o la)e,(a) (34)
K =diag(K,) k=1,2,...N; K, =o:M,, (35)
F = {F.F, ...F, .., F)" (36)
~ o
k=1,2 Fk=f&kfdx
0

The damping matrix in which not all off-diagonal terms
are zero implies that this system is NCDS. Accordingly,
the eigenvalues and eigenfunctions obtained by Eq. (32)
have complex values, and the natural frequencies ob-
tained by Eq. (32) are approximations of those of the
original system. Furthermore, the eigenfunctions of the
original system can be approximately computed by

v=ex. x=In n ... mn Nl (37)

where y is an N x 2N complex-valued modal matrix and

7, is the k-th complex mode vector of the reduced sys-
tem.

3 Methodologies for Dynamic Response

The formulations for the responses in the time and fre-
quency domains based on the CMS and AM methods are
presented in this section. Furthermore,
the variance analysis are provided.

We assume that the external excitation is separable,
i.e., in the following form:

f(x, 1) =w(2) (D)
where w(Xx) is the shape function and ¥(7) is the time-va-
rying load.

The motion equations for both the CMS and AM meth-
ods can be generally formed in the state space as follows:

the formulas for

(38)

EZ’ =Az, + B (1) (39a)

¥, =Cz, (39b)

Thus, for the CMS method, the matrices in Eq. (39)
are

%.=q. A, =0, B, =BB,
1 1

= {flplm,fl/lzwax,
0 0

T

j;l//mvudx} ,C =1
(40)
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where I is an identity matrix. For the AM method, the
matrices in Eq. (39) are

1 0 1 0
Ll e elsts]
o MK -M'C .
s 1 1 1 T
B, = {f%wx,f@wax,...,f%wax} ,C. =1 0]
0 0 0
(41)

3.1 Time-domain analysis

In the CMS method, the initial conditions of the sys-
tem satisfy the following requirement:

¥(x,0)
R
{;fj/(x, 0) }‘ [A°.p]q(0)

where ¢(0) is the corresponding initial condition in the
modal state space. Integration of Eq. (42) premultiplied

(42)

by [" (A°)"] leads to
¥(x,0)
[ o ]{aN( o) [
q(0) = — (43)
T ° T lﬂ ~
[ (e ][A°¢]dx
Thus, the vibration in the modal space induced by the

initial condition can be expressed as

q =exp(£2)4q(0) (44)

In the AM method, the initial conditions of the system
satisfy the following:

¥(x,0) =¢q(0) (45)
where ¢(0) is the corresponding initial condition in the
AM-method-based modal space. Integration of Eq. (45)

premultiplied by ¢' results in

f @"3(x, 0) dx
q(0) = (46)
~T ~
J¢¢M
In a similar manner, we can obtain
so *y(x 0)dx
d~ ot
*11(0) == (47)

~T ~

¢ dx

Eq. (41) shows that the reduced-order system in a mo-
dal space obtained via the AM method is described by re-
al-valued matrices. the response of the system
subjected to external excitation can be obtained via con-
ventional means.
of the reduced-order system derived via the CMS method

Hence,

In comparison, obtaining the response

is more difficult because of the presence of complex-val-
ued matrices. The following presents a transformation
technique whereby the motion equation with complex-val-
ued matrices can be transformed into one equation with
real-valued matrices.

Eq. (392a) can be reformulated as follows:

Ccllf[Re(z) +jIm(z,)] =[Re(A,) +jIm(A,)][Re(z,) +

jIm(z,)] + [Re(B,) +jIm(B,)]v(7) (48)
Rewriting Eq. (48) in a state-space form yields
Re(z)1 [Re(A) -Im(A)qrRe(z)
E[Im(zg] ) [Im(As) Re(A,) Hlm(zg
Re(B)) 7. A
i) |7 (49)

As the matrices in Eq. (49) have real values, Eq. (49)
can now be easily solved. Accordingly, the output gov-
erned by Eq. (39b) is expressed as

Re(z,)

Im(z,) G0

5. =IC. jcb][

3.2 Transfer function

As the system is linear, the multiple-input-multiple-
output (MIMO) response can be regarded as the sum of a
series of single-input-single-output ( SISO) responses.
Thus, the methodologies presented in the following for a
SISO problem can be easily extended to that for a MIMO
problem.

Let us consider a SISO problem in which the input is a
concentrated excitation located at X =3 and the output is
the response at point ¥ = X_,. Corresponding transfer
function H(S) obtained by the CMS method is then ex-
pressed as

H(S) = Zz!/ (X)) H," () (51)
H™(S) is the
transfer function in the complex modal space. H™(S)
can be obtained by

where S is a nondimensional frequency;

L(q,(1)

1S =16a)

(52)
where L( ) indicates the operation of Laplace transforma-

tion. In a similar manner, transfer function H™ ()
based on the AM method can be obtained as

N
H(S) = Y QD,,(XOU[)HWM(S) (53)
n=1
where ﬁ:“’d“'(S) is the transfer function in the AM-based

modal space, which is given as
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ﬁnmdal( S) _ L( qn( z) )

Bk A 54
" L) o

The transfer functions can be easily obtained by apply-
ing Laplace transformation to Egs. (39) to (41). For a
SISO problem, the shape function of the excitation in
Egs. (40) and (41) is

W(x) =8(% - ) (55)

We note that the nondimensional concentrated load
shown in Eq. (55) corresponds to a dimensional concen-
trated load, i.e., w(x) =ml’w,8(x —Bl). Furthermore,
matrix B, in Eq. (40) is

By ={,(B). h,(B) s (B} (56)
and matrix EF in Eq. (41) is
B, ={6.(B).¢:(p): s en(B) (5T

3.3 Variance

Provided that an external force is in a separable form of
Eq. (38) and its time-varying part v(%) is a white noise
with a noise intensity of W, the covariance matrix of the
system is then expressed as

E(3,3.") =C,0.C" (58)

where Q can be obtained by solving the Lyapunov equa-
tion

AQ +Q A" +BWB =0 (59)

Thus, in the CMS method, the variance in the output
can be computed using the following:

E{y(xouw t) y(xcut’ Z) } = E{lpll(xoul)ys(w(xout)ys)l-} =
trace {¢(¥,,) " P(Xo) E(3, 3.1 } (60)

For the average of the variance response of the entire
beam, namely, spatial average variance, we can obtain

E{f;y(x,t)y(x,z)dx} =E{f;;/;yx(ﬁ)de} -

trace { (fJ,Tl/,dx)E(ysyfT) I} (61)

0

When the AM method is used, ¢ can be substituted for
¢ in Eqgs. (60) and (61).

Egs. (60) and (61), in which white noise is consid-
ered as an external excitation, can be easily applied to va-
riance estimation of many stationary random processes,
which can be regarded as filtered white noise. Subse-
quently, we introduce an example in which the random
excitation is a band-limited white noise (BLWN).

BLWN can be regarded as white noise filtered by a
band-pass filter in the following form:

(62a)

;= C,at, (62b)

where A;, B,, and C, are the state, input, and output
matrices, respectively; #, is the state vector of the filter;
v:(#) is the white noise with noise intensity W to be fil-
tered; y; is the output vector of the filter. Thus, v =7y,.

The combination of Eqs. (62) and (39) leads to an
augmented system, i.e.,

4 Az +B(D

EZ“ (63a)

y.=C.z, (63b)

Zﬂ A: Bﬂcf 0

) = ’ = =[C, 0
i I T S P S
(64)

Thus, the covariance matrix of the beam-damper sys-
tem herein subjected to BLWN is

E(3,3,") =C,0,C!

where Q, is the solution of the Lyapunov equation, i.e.,

(65)

A,0,+0Q,A" +BWB, =0 (66)

Thus, the BLWN-induced response can be easily ob-
tained by substituting Eq. (65) into Egs. (60) and (61).

4 Numerical Study on the Dynamic Response

FEA is employed in this study to validate the proposed
theoretical approach. The element utilized in FEA is an
ordinary in-plane beam element. Thus, in FEA, the mo-
tion equation of the beam with attached dampers is formu-
lated as

2

M $y(0 +C Sy +Ky(n =F(n  (6)
where M, C, and K are the mass, damping, and stiffness
matrices, respectively; F is the vector of the external
nodal excitations; y is the vector of the nodal displace-
ments. The function of the dampers is introduced by revi-
sing dimensional damping matrix C according to the rela-
tionship between the dimensional and nondimensional
damping expressed in Eq. (2).

Furthermore, Eq. (67) yields the following relationship
using nondimensional 7 and the nondimensional external
load expressed in Eqs. (2) and (4), respectively:

& d. ] .
;M 3 (1) +0,C 3(D) + Ky (D) = miwF(7)  (68)

where y(7) is the nondimensional displacement vector and
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F(7) is the nondimensional force vector. The i-th entry of
w0 = J e
#)dx, where F,(1) is the i-th entry of F, and L, is the rati-
o of the length of the i-th element to that of the entire
beam.

F(7) can be computed by F (1) =

Nondimensional static deflection y(x) due to static con-
centrated forces can be obtained by solving the following:

d S -
() = Y [k ~y) (69)
dx i=1

where J is the number of concentrated forces; f; and vy, are
the size and location of the i-th external static concentrat-
ed force, respectively. Thus, the theoretical solution of

¥(X) can be expressed as

S HH(x —y)(k —y)' =X (X =3y))
(70)

We consider an example where two identical dampers
are employed, which are located at x =0.2 and x =0. 8,
i.e., a; =0.2 and a, =0. 8, respectively, as shown in
Fig. 2. This arrangement is also used in the other cases in
this study. The theoretical static deformation of a cantile-
ver beam subjected to a unit concentrated force at its mid-
point is compared with the numerical results obtained u-
sing Eq. (68), as shown in Fig. 2. The results by FEA
are found to very well match the exact results of Eq.
(70). We note that the stiffness produced by the dampers
in terms of static response is zero.

0.15¢ Theoritical results
*  FEA results (50 elements)
0.10
1
i 179 5‘ 7
0.05
1 1 1 1 J

0 0.2 04 06 0.8 1.0
X
Fig.2 Static deformations caused by a unit concentrated force
at the midpoint

The static deformation shown in Fig. 2 is set as the ini-
tial condition of the system. For the corresponding free
vibration caused by the static deformation of the system
shown in Fig. 2, the time histories of the selected points
are shown in Fig. 3. The CMS results shown in the figure
are those obtained by Eq. (44), and the FEA and AM re-
sults are those computed using the “lsim” function of
MATLAB. The curves obtained by FEA and the CMS
and AM methods are found to be very close, which vali-
dates all these three methods. Note that no overdamped
mode is found in the case of small damping with a value
of ¢ =1.0. The existence of overdamped modes in the
large damping case (¢ =50.0) slows down the process of

—— FEA (50 elements)
,,,,,,, CMS (4 modes)
........... AM (4 modes)

_%=10

(a)

0.12 ~ —— FEA (50 elements)
CMS (4 modes)
AM (4 modes)
0.08 X=0.
N
0.04 \M\
0 L L ' ' '
0 1 2 3 4 5

(b)
Fig.3 Time histories of the free vibration due to initial dis-
turbance. (a) ¢=1.0; (b) ¢=50.0

approaching the original equilibrium position from the ini-
tial disturbance.

Fig. 4 shows the variance in the tip-displacement
response and spatial average variance, which varies with
the strength of the damper, with respect to the system
shown in Fig. 2. A concentrated force and a uniformly

100 ___FEA (50 elements), free end
----CMS (4 modes), free end
10°F —-—-- AM (4 modes), free end
-------- FEA (50 elements), averaged
10 CMS (4 modes), averaged

e AM (4 modes), averaged

éw(;?)=5(3?—045)

Variance of displacment response

100 FEA (50 elements), free end

----CMS (4 modes), free end
100 - -~ AM (4 modes), free end
-------- FEA (50 elements), averaged
CMS (4 modes), averaged

I\ -——- AM (4 modes), averaged

wX)=1

Variance of displacment response

(b)
Fig.4 Variance response induced by external forces. (a) Con-
centrated force; (b) Uniformly distributed force
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distributed force, which varies with time in accordance
with a white noise with a noise intensity value of unity,
are individually employed to excite beam vibration. We
can observe that in terms of the variance response, the re-
sults obtained by the FEA, CMS, and AM methods are
rather close. The curves of the variance in the free-end
response exhibit a trend similar to those of the spatial av-
erage variance, although the former is naturally higher
than the latter. Generally, as shown in Fig. 4, the mono-
tonically decreasing variance responses indicate that high-
er damping of the dampers can result in a smaller dynam-
ic response. However, the efficiency of suppressing the
vibration by increasing the damping decreases with in-
creasing damping.

Fig. 5 shows the transfer functions of a SISO system in
which the damped beam shown in Fig. 2 is considered.
The input is a concentrated force at the midpoint of the
beam, and the output is the displacement response of the
the transfer functions
obtained by the three methods are almost identical. How-
ever, when the damping is large, the transfer functions

free end. At small damping,

—— FEA (20 elements)
0 -~ CMS (3 modes); ----CMS (4 modes)
...... AM (3 modes);

————— AM (4 modes)

Magnitude/dB

bt
2
~
—1200 I 1 1 1
107! 10° 10! 102 103
s
(a)
—— FEA (20 elements)
R CMS (3 modes) ; ----CMS (4 modes)
20 AM (3 modes); ----- AM (4 modes)

-40
m
3

S  -60
2
‘=

g -80
=

-100

-120

. 0

2 =500
<
=

-1 000 . .

107! 10° 10! 10? 10°

(b)
Fig.5 Selected transfer functions. (a) ¢=1.0; (b) ¢=50.0

realized by the CMS method remain close to those ob-
tained by FEA. However, the AM-method-based results
show a large difference, implying that the CMS method
performs better than the AM method in the frequency-do-
main analysis.

In the time domain, we find that the CMS method also
provides a more accurate result than the AM method, es-
pecially when large damping results in the appearance of
overdamped modes. Fig. 6 shows the time histories of the
tip vibration in the case of large and small damping,
which considers the damped beam shown in Fig.2. A si-
nusoidal excitation with an amplitude of unity is applied
to the midpoint in which the circular frequency of the ex-
citation is equal to the imaginary part of the natural fre-
quency that corresponds to the second mode. We find that
the results of the three methods are very close in the case
of small damping. However, in the case of large damp-
ing, the peak values of the curve obtained by the AM
method are obviously smaller than those obtained by
FEA. Meanwhile, the results based on the CMS method
agree well with the FEA results.

0.6 0.3
‘020 10 __—20
0.3
> 0 F
=03+
————— CMS(4 modes); - AM (4 modes)
0.6 ——FEA (?O elements) ) .
185 190 195 20.0

t
(a)

00—
-0.02 ]

0\, 10 20
0.01 -
IS 0
-0.01 -
————— CMS(4 modes); - AM (4 modes)
—0.02 -——FEA (50 elements) ,
0 0.5 1.0 1.5

[i
(b)
Fig.6 Time histories of the free end. (a) ¢=1.0; (b) ¢=50.0

A random vibration analysis is performed using a ran-
dom excitation in the form of BLWN to further show the
effectiveness of the CMS method. BLWN is generated by
filtering a white noise with unit noise intensity. The non-
dimensional central frequency of BLWN is 27.5, and the
bandwidth is 15; thus, the natural frequency correspond-
ing to the second mode is covered. The filter is a Butter-
worth band-pass filter. The variance responses of the free
end are shown in Fig.7, in which the employed system is
the same as the damped beam shown in Fig. 2. Once
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again, in the case of small damping, the results from the
CMS, AM, and FE methods are very close, while in the
case of large damping, the curves resulting from the FEA
and AM methods are inconsistent. The divergence be-
comes more significant as the damping increases. In con-
trast, the difference between the results via the CMS
method and FEA remains very small, which again high-
lights the superiority of the CMS method.

8 10() -

g

2 | ——FEA (50 elements)

=10 ----CMS (4 modes)

5 | --- AM (4 modes)

2

E— 102 éw(f)=o'(f—0‘5)

o

=}
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§ _______________________ =

&

4 1 1 1 1 |
10 10 20 30 40 50

il
mEl

Fig.7 Variance of the displacement response of the free end

5 Optimal Damping and Locations under Ran-
dom Excitation

The optimal locations and optimal damping of the
dampers have been recognized to strongly depend on what
types of optimization objective and external excitation are
considered. For illustrative purposes, the optimization
problem herein is related to a cantilevered beam with two
attached identical dampers. The beam is subjected to a
concentrated time-varying random force, which is a white
noise with unit noise intensity. The enumeration tech-
nique is employed to perform this study in which the in-
crements of the damping and damper location are 0. 10
and 0. 02, respectively. In other words, all the combina-
tions of the nondimensional damping coefficients and lo-
cations of the dampers are investigated.

With regard to the variance response of the free end,
the optimal installation that minimizes the variance is that
the two dampers should be identically installed at the free
end. For a spatial average variance, the variations of the
least average variances from the nondimensional damping
are shown in Fig. 8(a), and the corresponding optimal lo-
cations are shown in Fig. 8(b). The case of «, = «, indi-
cates that two identical dampers are installed at the same
location, which is equivalent to the case of using a single
damper but with double damping. The curves resulting
from the CMS and AM methods are fairly close. We find
that in the case of small damping (¢ <2.4), no large
difference exists between the strategies of using one large
damper and using two small dampers; these two strategies
yield almost the same optimal location and effectiveness
in vibration control. When ¢<2.4, installing the damp-
ers at the free end produces a minimum average variance.

When c¢=2.4, installing two dampers at distinct locations
is better than installing them at the same location, i.e.,
the use of two small dampers demonstrates better perform-
ance than the use of one large damper for vibration sup-
pression. Moreover, as shown in Fig. 8, the least average
variance decreases with the increase in damping, provided
that the optimal damping and optimal damping location
are considered.
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——CMS (4 modes)
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—»— CMS (4 modes),a,=a,
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----AM (4 modes),a,=a,

Least variance of displacment response

1.0
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g ' --- CMS(4 modes), a,=a,
E L AM(4 modes), a,=a,
o
= 06 =
=
o
o
04 1 1 1
15 30 45
&}
mEl

(b)
Fig.8 Optimization problem. (a) Least variance; (b) Optimal lo-

cation

6 Conclusions

1) Compared with the AM method, the CMS method
can better reflect the inherent complex dynamic character-
istics in NCDSs and results in a reduced-order model with
higher accuracy, provided that the same number of modes
are considered for orthogonal decomposition of forced vi-
bration. Nevertheless, once the overdamped modes,
which are not complex conjugate, are involved, the con-
ventional CMS theory for NCDS needs to be further mod-
ified. An ICMS theory is proposed in this study where the
underdamped complex modes are complex conjugates,
and a pair of overdamped complex modes consist of the
modes that correspond to two real-valued solutions of the
same characteristic equation.

2) Methodologies associated with the AM and CMS
methods are presented in detail for the time-domain, fre-
quency-domain, and variance analyses to facilitate the
forced vibration analysis of NCDSs. With reference to the
time-domain analysis, the original complex-valued state-
space equation is transformed into an augmented real-val-
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ued state-space equation by splitting the original matrices
into real and imaginary parts and reassembling the equa-
tion so that many existing methods for time-history analy-
sis can be utilized. With regard to the response induced
by the filtered white-noise excitation, a Lyapunov equa-
tion-based variance analysis method is proposed, which is
capable of rapid computation.

3) A cantilevered beam with two attached identical ex-
ternal dampers is used for the numerical case study. The
results from the ICMS method are compared with those
from the AM method and FEA. We find that the results
from the CMS method are closer to those from FEA,
which highlights the superiority of the CMS method over
the AM method in dealing with NCDSs. The study of op-
timal damping and optimal damper location using the enu-
meration method shows that given small damping of the
damper(s), no difference is observed between the use of
a single damper and multiple dampers; however, the lat-
ter performs better provided that the damping of the
dampers is relatively large.
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