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Abstract: A multilayer network model of the banking system is
constructed based on the Pearson, Spearman, and Kendall
correlations among stock returns. The three -correlations
correspond to the multilayer network’s Pearson, Spearman,
and Kendall layers. This paper empirically analyzes the
evolutionary characteristics of the multilayer network structure
of the banking system from 2011 to 2020, using data from
China’s listed banks. The following are the principal findings
based on empirical research. Firstly, the large state-owned
banks are more active within the banking system. Secondly,
the interlayer correlation of the multilayer banking network
exhibits volatility,
showing a higher correlation than the Pearson layer. Thirdly,
the constructed bank multilayer network exhibits small-world
characteristics. Fourthly, all bank nodes influence each layer
of the banking multilayer network. The present research

with the Spearman and Kendall layers

reveals the dependency structure between various correlations
of bank yield fluctuations, which has a specific theoretical
reference value for maintaining the banking system’s smooth

operation.
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ommercial banks are a significant part of the modern

financial system and an indispensable financial inter-
mediary for the economic system’s health and stability.
Commercial banks form intricate business associations
through various forms, such as interbank lending and in-
vestment'!. A complex network can represent the com-
plex credit and debt relationships among commercial
banks, with commercial banks serving as the network’s
nodes and the credit and debt relationships serving as the
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network’s edges. Complex network relationships between
commercial banks facilitate the efficient and rational allo-
cation of liquidities in the interbank financial market.
Simultaneously, however, it causes the risk of a single fi-
nancial institution to rapidly spread to other banks, thus
transforming it into a systemic risk for the entire banking
industry™'.
bank linkages from the perspective of complex networks
will aid in a deeper understanding of the banking system’s
complex microstructure. In addition, it has significant
reference value for preserving the stability of the interbank
market and enhancing the quality and efficacy of the de-
velopment of commercial banks.

Therefore, studying the complexity of inter-

The complex network theory is widely employed in the
study of the structural characteristics of the banking net-
work, and it is an effective tool for studying the correla-
tion between financial entities. Current research focuses
extensively on the single-layer correlation among banks.
Scholars have discovered that Japan’s interbank payment
network™, Brazil’s interbank risk exposure network'"
and Russia’s interbank loan network™ show scale-free
properties. Both the US interbank payment network'® and
the UK interbank payment network'” show small-world at-

Meanwhile, the structure of the Austrian™,
[10]

tributes.
Colombian'”, and German interbank lending networks
is hierarchical. Moreover, the Brazilian'"'" and the Dutch
interbank market interbank lending network'” have a
money center structure. Lastly, the interbank overnight

lending market network in Italy'"
(141

and the interbank risk
exposure network in Mexico' " show dynamic evolution
characteristics.

In addition, some scholars have begun studying the
multilayer relevance among banks. For example, Lang-
field et al. """ constructed the bank’s risk exposure net-
work and capital network, and they found that the risk
exposure network has a more pronounced core edge struc-
ture than the capital network. In Mexico, Poledna et
al. "' built a four-layered banking network comprised of
interbank deposits and loans, securities cross-holdings,
derivatives, and foreign exchange relations. They found
that the degree distribution of these four-layer networks

has a thick power-law tail, and the correlation between
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different network layers is distinct. Meanwhile, Bargigli
et al. """ built a multilayer network of Italian banks based
on interbank guarantee relationships and different maturity
dates. They discovered that medium-sized banks were oc-
casionally at the core, whereas large banks were always at
the core. Aldasoro and Alves'"* evaluated interbank assets
and liabilities and built a multilayer network of European
banks with varying maturities. They found distinct core-
periphery structures between different layers. Moreover,
Berndsen et al. """ constructed a three-layer network based
on the financial payment relationship between Colombia’s
sovereign bond, foreign exchange, and interbank mar-
kets. The average path length of these networks was
found to be short, whereas the aggregation coefficient
was large scale. Hiiser et al. ™ constructed a multilayer
bond cross-holding network based on the debt types and
debt grades of European banks. They showed that the
multilayer aggregation network has a high degree of ag-
gregation.

The aforementioned research focuses primarily on the
direct relationship between the banking system’s single-
layer network and the multilayer network. In fact, direct
correlations exist among financial institutions. However,
many indirect correlations, such as common asset correla-
tions and yield volatility correlations, also exist. Li et
al. "' built an interbank common loan network based on
the banks-enterprise loan relationship. They determined
that the co-loan network always shows a core-peripheral
structure and a small-world property with a nine-year li-
fespan. The multiple constructed from financial data by
Musmeci et al.'™ reveals significant changes in the
network’s internal multiplex properties that are associated
with periods of financial stress.

Considering that studies on the indirect correlation be-
tween banks are scarce, this present paper aims to analyze
in depth the micro-dependency structure of the indirect
multilayer correlation between banks from the perspective
of different yield fluctuation correlations. Accordingly,
this study focuses primarily on the three correlations of
bank return volatility: Pearson correlation'””, Spearman
correlation™', and Kendall correlation'”'. The micro ba-
sis of complex multilayer bank correlations is deconstruct-
ed by analyzing the dependency structure between the dif-
ferent correlations of bank yield fluctuations. Compared
with existing research, this study contributes to the exist-
ing literature in the following ways. First, a method for
constructing the bank multilayer network model is pro-
posed. Second, it investigates the structural features and
evolutionary characteristics of the bank multilayer net-
work. Third, this article reveals the inherent relationship
between multilayer correlations between banks and stock
market prices.

1 Model

This study develops a multilayer network model for

banks using bank stocks as nodes and the correlation of
returns between stocks as edges.
kinds of correlations between stocks are mainly consid-
ered, namely, the Pearson, Spearman, and Kendall corre-
lations, which are represented by the Pearson, Spearman,
and Kendall correlation coefficients, respectively.

Among them, three

1.1 Correlation calculation

1.1.1

The Pearson correlation coefficient is one of the most
commonly used linear correlation coefficients suitable for
continuous variables; the data obey normality'”’. The

following equation presents the Pearson correlation coeffi-
.
iLj "

Pearson correlation

cient p

m _ <YY >-<Y ><Y >
v _/( <Yi>-<Y,>7) (<Y;>-<Y>%)
(1)
where <Y, > denotes the mathematical expectation of the
sequence {V\", ¥, .., Y\"}.
cient is always between —1 and 1. Variables approaching

The value of the coeffi-

0 are uncorrelated, whereas those close to 1 or — 1 are
strongly correlated.
1.1.2 Spearman correlation

The Spearman correlation coefficient is a rank correla-
tion coefficient, also known as the rank correlation coeffi-
cient, which is suitable for continuous variables and does

not necessarily obey normality'**!

) . 5
tion coefficient p| j)

. The Spearman correla-
is as follows:

6y &
@ _q =l

e n(n® —1)

(2)

where d, is the rank difference between Y™ and Y;m.
The rank difference of a number is the position of the
number in a column after it is sorted from small to large.
The value of the coefficient is always between —1 and 1.
Variables approaching 0 are uncorrelated, whereas varia-
bles close to 1 or —1 are strongly correlated.
1.1.3 Kendall correlation

Kendall correlation coefficient is a rank correlation co-
efficient, also known as a rank correlation coefficient,
which applies to categorical variables'”'.
is the Kendall correlation coefficient p

The following
3.
ij

Pl =P LYY —¥) (¥ -1 ) >0] -
PLOYY ¥ ) (¥2 -y ) <0] (3

where P[ (Y” -Y” ) (¥} =Y” ) >0] denotes the
probability when Y, and Y, change in the same direction,
P (Y -Y") (Y” -Y"”) <0] represents the prob-
ability when Y, and Y, change in the opposite direction.
The value of the coefficient is always between —1 and 1.
Variables approaching 0 are uncorrelated, whereas those
close to 1 or —1 are strongly correlated.
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1.2 Multilayer network construction

Assume there are N bank stocks on the market, and the
period is T days. Let Y,(k) be the log-return series of the
stock 7 in the k-th window. This study develops a multi-
layer network model for banks using bank stocks as nodes
and the correlation between stock returns as edges. It con-
structs three-layer banking networks based on three corre-
lations of banking the Pearson,
Spearman, and Kendall layer networks. The corresponding

correlation matrices are p’ = [p” (k)], p¥ =[p; (K)],

and p“) = [pfj} '(k)], respectively.

At the same time, the concept of “distance” is intro-
duced. At time ¢, the distance matrix d = [d, (k)] and
the weight matrix w = [w, ;(k)] of the distance between
stock i and stock j in the k-th correlation network are

shown in the following equations.

d, (k) =/2(1~-p, (k) (4)

w, (k) = e (5)

return  volatility:

where p,, (k) denotes the correlation coefficient and
pi.;(k) el -1,11,d, (k) €[0,2],i=1,2,...,N and j =
1,2,...,N. Letp, (k) =p;) (k), p,;(k) =p}” (k), and
p., (k) =pi” (k) in the Pearson, Spearman, and Kendall
layer networks, respectively. For the k-th stock correla-
tion network, the starting and ending times are 1 + (k —
1)6 and (k—-1)6 + E, respectively.

Based on the preceding calculation process, this paper
constructs the aforementioned three network layers. Nota-
bly, we are constructing a fully interconnected network,
so network edges are inevitable. In addition, this article
constructs a weighted network, so the degree of nodes is
not an integer. The weight matrix corresponds to the
weights of the network’s edges. The banking multilayer

network model has been constructed thus far.
2 Empirical Analysis
2.1 Data

We initially selected 37 banking stocks based on the
Wind database. In addition, we eliminated 16 stocks sus-
pended for less than 30 consecutive trading days and
whose daily log return is not zero for 30 consecutive
trading days. Therefore, we collected 16 stocks of Chi-
nese listed banks in 2 432 trading days from January 1,
2011 to December 31, 2020. Using forward weighting,
we processed all stocks’ daily closing price data. Follow-
ing the initial data processing, we can obtain the daily
log-return data for 16 stocks for a total of 2 431 trading
days. In this study, the time window E is 1 month, the
network interval § is 1 month, and there are 120 total
stock correlation networks. We divide the 16 stocks into
three categories based on the Wind database’s bank classi-
fication standard: large state-owned banks, national joint-

stock banks, and regional banks.
2.2 Node degree of multilayer network

The bank multilayer network’s node degree is a simple
and essential concept for describing the characteristics of
bank nodes. The larger the node degree, the more influ-
ential the node is in the banking system. Referring to

T work, the node degree of the multi-

Boccaletti et al. ’s
layer network adopts the vector form. Vector k;, is the de-
gree of node i in the multilayer network, and k, = {k,m,
KL, kMY, where kI is the degree of node i in layer
«, and M is the number of layers in the multilayer net-
work. The total degree of node i in the multilayer net-
work can be expressed as follows:

M
0, = 3 K (6)

a=1
Tab. 1 measures the node degree of the bank multilayer
network and its sub-networks in the Chinese interbank
market’s 120th stock correlation network. As shown in
Tab. 1, the mean value and volatility of the Pearson layer
network are high, whereas those of the Kendall layer net-
work are low. This indicates that the Pearson layer net-

work shows a better degree of correlation.

Tab.1 Node degree of banking multilayer network

Network classification Min Max Mean Std
Pearson layer network 6.2270 8.1983 7.4424 0.5423
Spearman layer network 5.9242 7.3297 6.9059 0.3483
Kendall layer network 5.4608 6.4173 6.1054 0.2275

Multilayer network 17.6120 21.9454 20.4537 1.0555

To better describe the internal characteristics of the
bank multilayer network, we show in Fig. 1 the node de-
gree distribution of the bank multilayer network in the
120th stock correlation network, where the abscissa and
the ordinate represent the bank number and the node de-
gree, respectively. Among them, numbers 1-5 represent
large state-owned banks, 6-13 represent national joint-
stock banks, and 14-16 represent regional banks. The
large state-owned banks have relatively high node degrees
of the banking multilayer network, whereas the national
joint-stock banks and regional banks have relatively low
node degrees. It also indicates that large state-owned
banks have a greater level of banking system activity.

2 o o . ® R
3 18+ o
& = Pearson layer network
3 14r » Spearman layer network
L « Kendall layer network
2 10p ° Multilayer network
= 3 2 2 i . g o o 'Y
L N O T
1 23 45 6 7 8 91011 1213 1415 16

Bank numbers

Fig.1 Node degree distribution of banking multilayer network
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2.3 Degree correlation of multilayer network

The degree correlation of the bank multilayer network
is a crucial indicator for characterizing the relationships
between various network layers. Specifically, the degree
correlation of the bank multilayer network describes the
correlation strength between different layers in the multi-
layer network. The higher the interlayer correlation val-
ue, the stronger the positive correlation between the two
layers. Referring to the research of Battiston et al. "',
we expressed the degree correlation of the multilayer net-
work W as follows:

z (R'™ _klrx])(Rl_[iJ _ k[ﬁJ)

«/2 (REaJ _R[(XJ)ZZ (R][»BJ _R[BJ)Z
i J

where R!*! is the moderate rank of node i in layer o, R'

[e Bl

(7)

and R are the average rank of nodes in each layer, re-
spectively.

Fig. 2 depicts the 120-period evolution of the degree
correlation of the bank’s multilayer network over time. It
primarily illustrates the correlation between the degree of
any two of the three network layers (i.e., the Pearson,
Spearman, and Kendall layer networks). As shown in
Fig. 2, the interlayer degree correlation of multilayer net-
works shows volatility. The mean value of the Pearson-
Spearman interlayer degree correlation curves is 0.848 1,
most of which are above 0.5. Meanwhile, the mean val-
ue of the Pearson-Kendall interlayer degree correlation
curves is 0. 853 9, most of which are above 0.5. Moreo-
ver, the mean value of the Spearman-Kendall interlayer
degree correlation curve is 0. 996 1, and most are above
0.95.

—_
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Fig. 2  Degree correlation of banking multilayer network.

(a) Pearson-Spearman; (b) Pearson-Kendall; (c) Spearman-Kendall

This indicates that the overall correlation between the
three-layer networks is positive, and the interlayer degree
correlation between the Spearman and Kendall layer is
higher. This could be due to the fact that both correlation
indicators are rank correlations. In addition, the interlayer
correlation of the multilayer network between banks pres-
ents a degree of volatility; in June 2014, in particular,
the interlayer correlation showed a significant decline, in-
dicating that market conditions may have a notable impact
on it. Similarly, Poledna et al. " constructed a multilay-
er financial network in Mexico and found that the inter-
layer degree correlation demonstrates a certain degree of
volatility. The bank multilayer network structure con-
structed in the present paper replicates this characteristic
of actual financial networks, thereby validating the
model’s rationality.

2.4 Clustering coefficient of multilayer network

The clustering coefficient of a multilayer network is
used to describe the proximity of clustering among nodes
in a multilayer network. In particular, it is used to de-
scribe the degree of interconnection between neighboring
nodes of any node in a multilayer network. The aggrega-
tion of multilayer networks should consider not only the
aggregation of intralayer connections but also the aggrega-
tion of interlayer connections, which have a greater ap-
parent multilayer complexity than single-layer networks.
1. we de-
note N(i) as the set of all neighbor nodes of node i in the

Referring to the research of Boccaletti et al. '

projection network proj( W), and I_ia( i) as the set of cor-
responding edges. Then, for any network layer a € {1, 2,
..., M}, its subgraph in the projection network is repre-
sented as S_ (i) = (N, (i), E,(i)), where N_(i) = N(i) N

X, and fia(i) satisfies the following equation.

E (i) ={(kj) €E,; k jeN, (i)} (8)

The clustering coefficient of node i in the multilayer
network W is expressed as:

2% |E(D) |
Cp(i) =— o=l (9)
SN ICING) =D

a=1

Further, the clustering coefficient of the entire multi-
layer network can be defined as the average value of all
nodes.

Fig. 3 depicts the evolution curve of the multilayer
network’s clustering coefficient from 2011 to 2020. As
shown in Fig. 3, the mean value of the clustering coeffi-
cient throughout the entire evolution process is 10. 255 2
and fluctuates in the range of 5-20. The average cluste-
ring coefficient of the random network at the same scale is
1.463 8, which explains why the banking multilayer net-
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work constructed in this study has a high clustering coeffi-
cient. This demonstrates that the whole multilayer net-
work of the banking system has maintained a high level of
aggregation throughout its evolution. It also shows the

close relationship between bank businesses.

20
— Multilayer network

§ 16k Random network
E
=
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Fig.3 Clustering coefficient of banking multilayer network

2.5 Average path length of multilayer network

The average path length of the bank-firm multilayer
network represents the distance between any two nodes in
the bank-firm system. Referring to Boccaletti et al. ",
we expressed the average path length of a multilayer net-

work W as

L(W) = 2 d,
u ve Xy
u#v

N(N (10)

where N denotes the number of nodes in the network, and
d, is the shortest path connecting u and v.

Fig. 4 illustrates the evolution curve of the multilayer
network’s average path length from 2011 to 2020. It also
demonstrates that the mean path length throughout the en-
tire evolution process is only 0. 388 6. Moreover, the dis-
tance between any two nodes in the entire 16-node bank-
ing system is approximately 0.4. Meanwhile, the average
path length fluctuates smoothly between 0. 25 and 0. 5.
The average path length of random networks of the same
size is 0. 882 2, indicating that the average path length of
the banking multilayer network constructed in this paper
is short. In a similar vein, Berndsen et al. ' found that
the average path length of the multilayer network is mini-
mal in an empirical study of the Colombia multilayer fi-
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Fig.4 Average path length of banking multilayer network

nancial network. Based on the clustering coefficient and
average path length, the banking multilayer network con-
structed in this paper appears to exhibit small-world char-
acteristics.

2.6 Participation coefficient of multilayer network

The participation coefficient of the bank multilayer net-
work can be used to describe the participation degree of
bank nodes in each layer network. Referring to the re-
search of Battiston et al. ™, we express the multilayer
participation coefficient P, of the multilayer network W in
the following equation.

( k[al )-]

P —1[1_

Moreover, the participation coefficient of the whole mul-

(11)

tilayer network W is the average value of all nodes’ multi-
layer participation coefficient.

Fig. 5 illustrates the multilayer participation coefficient
of the banking multilayer network node in the 120th
month. The abscissa and ordinate represent the bank
numbers and the nodes’ multilayer participation coeffi-
In addition, numbers 1-5, 6-13, and
14-16 denote large state-owned banks,
stock banks, and regional banks, respectively. According

cient, respectively.
national joint-

to statistical analysis, all bank nodes’ average multilevel
participation coefficient is 0. 997, and they are all above
0.994. Fig. 5 demonstrates that each bank node in the
banking multilayer network has a higher multilayer partic-
This indicates that all bank nodes
have increased activity across all layers in the banking
multilayer network.

ipation coefficient.
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Fig.5 Participation coefficient of nodes in banking multilayer
network

To further characterize the activity of the banking mul-
tilayer network throughout the entire evolution process,
we show in Fig. 6 the evolution curve of the bank multi-
layer network’s participation coefficient from 2011 to
2020. Fig. 6 depicts the average value of all bank nodes
for the multilayer network participation coefficient of the
banking system. It also indicates that the average multi-
layer participation coefficient in the evolution of the entire
banking system is significantly greater than 0. 985. This
demonstrates that all bank nodes have the potential to in-
fluence all layers in the multilayer network.
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Fig. 6 Participation coefficient of banking multilayer network
3 Conclusions

1) The correlation between large state-owned banks is
high, whereas that between regional banks is low. The
Pearson layer network demonstrates a greater correlation.
In banking multilayer networks, the large state-owned
banks have relatively high node degrees, whereas the na-
tional joint-stock banks and regional banks have relatively
low node degrees. This indicates that the large state-
owned banks are more active within the banking system.

2) The interlayer correlation of the multilayer banking
network exhibits a degree of volatility. A higher interlay-
er degree correlation exists between the Spearman and
Kendall layers. This study presents a multilayer banking
network with a high clustering coefficient and a short av-
erage path length, exhibiting apparent small-world char-
acteristics. All bank nodes in the bank multilayer network
exhibit a higher multilayer participation coefficient, indi-
cating that all bank nodes have the potential to influence
all network layers.

3) From the perspective of multilayer network theory,
this study investigates in depth the evolution characteris-
tics of the multilayer relevance of banking system. For
deconstructing the interbank dependency structure between
linear and nonlinear correlations, this study is of great
reference value. This paper’s findings not only advance
the research of multilayer network theory in the banking
system but also have practical implications for preserving
interbank market stability.
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