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Abstract: Continuous beam bridges deteriorate during service
because of environmental conditions. The stiffness of the
supports of the continuous beam degenerates or even fails,
severely affecting normal use. To identify the damage to the
supports of periodic continuous beams, a damage identification
method for vertical stiffness of the joints
continuous beams based on the spectral element method
(SEM) is proposed. The beam element adopts an Euler beam,
with each cell comprising a beam unit and a joint. The
dynamic stiffness matrix of a cell in a beam element is
obtained using the SEM. Combined with the joint equilibrium
equations, the transfer matrix of a periodic continuous beam
can be established. The propagation constant is obtained by
solving the eigenvalues of the transfer matrix. An objective
function based on the propagation constant is proposed to
identify the vertical stiffness damages of the joints of a
periodic continuous beam using the interior point method. The
proposed method is extensively validated through numerical
Results
accurately identify the position and degree of damage to the
vertical stiffness of a joint for single- and multi-parameter
damage identification.
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wave

ecently, the structural damage detection of bridges

has received considerable attention with the increas-
ing occurrence of bridge safety incidents. The damage
identification ™ of bridges has always been a popular re-
search topic.
stiffness within the damaged area, affecting the static or
dynamic structural parameters. Traditional structural dam-
age identification uses these parameters to invert the loca-

Structural damage usually decreases the

tion and extent of structural stiffness reduction. Previous
research primarily focused on the frequency and modal
shape of bridges for damage identification. The applica-
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tion of natural frequency sensitivity analysis to structural
damage identification was first introduced by Cawley and
Adams"', enabling the identification of damage location
and severity in simple structures. Wahab and Roeck'"!
proposed a damage identification method based on mode
shape curvature sensitivity analysis and applied it to prac-
tical bridge structures. The traditional structural damage
identification method generally adopts the finite element
method, which requires the global element stiffness of the
structure. Applying this approach to large-scale periodic
structures results in high computational effort and ineffi-
ciency™.

Compared with traditional damage identification meth-
ods, computational efficiency can be considerably im-
proved by considering the periodic structural properties.
The most typical periodic structure is the continuous beam
bridge. The continuous supported beam bridge is one of
the most widely and highly used bridge types. It has geo-
metric and physical periodicity, particularly with periodi-
cally spaced supports ( supports are equally spaced and
have identical stiffness). For a continuous supported Eul-
er beam, each cell comprises a beam unit and a joint.
The adjacent cells are coupled by rotation and shear
springs at the joint; therefore, the structure can be con-
sidered a double-coupled system. In each cell, the beam
can be considered a simply supported beam. The calcula-
tion for the beam element is based on the Euler-Bernoulli
beam theory. By ignoring the effects of shear deformation
and rotational inertia, all transverse displacements are
generated by bending. This theory is suitable for continu-
ous beams with a large slenderness ratio. When the
boundary conditions of the beam or a bridge are periodic,
the simplified model can be considered an ideal periodic
continuous beam, and each span of the structure can be
considered an identical cell. Periodic structures require
only low-dimensional matrix computations,
considerably improve the computational efficiency com-

which can

pared to the traditional finite element method that requires
high-dimensional matrix computations. The -efficiency
improvement will be more obvious for large-scale engi-
neering. A beam or bridge exhibiting physical and materi-
al periodicity is highly suitable for this method.

Several similar periodic structures exist, and the dy-
namic characteristics of periodic structures have been ex-

tensively studied'®™ . The essential characteristic of peri-
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odic structures is the presence of frequency pass bands
and stop bands. When elastic waves or disturbances have
frequencies within the pass band region of the structure,
the waves or disturbances propagate throughout the struc-
ture without limitations, and their amplitude and energy
do not decay. Conversely, when the frequency of elastic
waves or disturbances is in the stop band region of the
structure, the amplitude and energy of the waves do not
propagate throughout the structure but will attenuate.
Band gaps can be described by the propagation constant.
When the real part of the propagation constant is equal to
0, it represents the pass band. Otherwise, the band repre-
sents the stop band. Potentially, an objective function
based on band gap characteristics can be established for
damage identification. The calculation method of elastic
wave band gaps is the basis for studying the wave propa-
gation characteristics of periodic structures. At present,
the transfer matrix'*>', plane wave expansionm] , finite-
difference time-domain, multiple-scattering, and finite el-
ement methods are typically used to calculate the band
gaps of periodic structures.

The transfer matrix method was first applied to the
flexural wave characteristics of the periodic support pipe
beam system by Koo and Park"™, and the presence of
flexural vibration band gaps was experimentally verified.
When the excitation frequency range of the load is deter-
mined, a reasonable design of the position of periodic
support can effectively reduce the vibration propagation of
the structure. The transfer matrix method used to analyze
wave propagation in periodic structures can considerably
enhance computational efficiency. However,
condition damages may substantially affect the band gap
characteristics of periodic structures, possibly leading to a
modal localization phenomenon'* ™!
tion phenomenon is manifested as the modal jump occurs
and energy accumulates at the locations where damage to
B4 Although the principle of wave prop-
agation of periodic continuous beams has been extensively
studied, identifying the damages of periodic structures,
particularly the boundary conditions, remains challeng-
ing.

boundary

. The modal localiza-

the beam occurs

The spectral element method (SEM) is used to analyze
wave propagation. This approach is advantageous in at
least two aspects. In the SEM, the displacement function
can be expressed as the general solution of the wave equa-
tion, and the dynamic stiffness matrix can be obtained in
the frequency domain. The SEM provides high accuracy,
particularly when addressing problems involving irregular
geometries or complex boundary conditions. In addition,
it can achieve exponential convergence rates for smooth
solutions. For periodic structures, each cell is represented
by the same dynamic stiffness matrix, rendering the SEM
computation efficient and thus allowing for its wide appli-
cation. Considering a beam as an example, when analy-

zing wave propagation, the mesh size of the finite ele-
ment method depends on the wavelength, which may re-
quire tens of thousands of element nodes, whereas the
frequency domain spectral element rule only requires one
element and two nodes. This feature can considerably im-
prove computational efficiency, particularly for periodic
continuous structures.

In this study, the boundary conditions of the joints of a
continuous beam are the research focus. The boundary
conditions of the joints include the vertical and rotational
stiffness. Among these boundary conditions, this study
mainly focuses on the vertical stiffness of the support.
The objective function is established based on the propa-
gation constant. The dynamic stiffness matrix of an Euler
beam in one cell is established using the SEM, and the
equilibrium equation of the joints is obtained using the
boundary continuity condition. Combined with the dy-
namic stiffness matrix and the equilibrium equation of the
joints, the transfer matrix can be obtained. The propaga-
tion constant can be calculated by solving the eigenvalues
of the transfer matrix. An objective function based on the
propagation constant is proposed to identify the vertical
stiffness damages of the joints of periodic continuous
beams. The position and width of the wave propagation
band gap determined by the propagation constant are vali-
dated by analyzing the transfer properties and deforma-
tions of periodic beams. The proposed method is exten-
sively evaluated through numerical case studies. The re-
sults demonstrate that this method can accurately identify
the position and degree of damage of the vertical stiffness
of a joint for single- and multi-parameter damage cases.

1 Transfer Matrix Method Based on the Spectral
Element Method

1.1 Equation of the wave motion transfer matrix

Continuous beam bridges can be simplified as equiva-
lent multi-supported beams in dynamic analysis. If the
supports are equally spaced and have equal stiffness and
damping, the beam is referred to as a periodic supported
beam. As shown in Fig. 1, a periodic simply supported
Bernoulli-Euler beam comprises a few repetitively ar-
ranged subcells.

Wy, Wy

Oy Oy
% th cell B
M, Lj J-t e MR/

H H

Fig.1 j-th cell of a simply supported Bernoulli-Euler beam

Herein,
shearing deformation and rotational inertia are relatively

for low-frequency bending vibrations, the
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small and can be neglected. By adopting Bernoulli-Euler
beam theory, the differential equation of wave motion for
the beam of the j-th cell can be derived as
ow' ow’
El —+ +pA atzj =0 @))

4
X

where w(x, t) represents the transverse displacement; E
represents Young’s modulus; A and [ represent the cross-
sectional area and area moment of inertia about the neutral
axis, respectively; p represents the mass density.

The spectral form of the solution to Eq. (1) is assumed
to be

N-1

w(x, 1) = lﬁz W, (x;w,)e" (2)

Substituting Eq. (2) into Eq. (1) gives an eigenvalue
problem for a specific discrete frequency (such as w = w,)
as follows:

Jo
0x

i

W pAW =0 (3)

The general solution to Eq. (3) has the form as
W(x) =ae " (4
Substituting Eq. (4) into Eq. (3) as
k' -kl =0 (5)

where k. represents the wavenumber for pure bending,
which is defined as

174

k, =\E(%) (6)

Eq. (5) gives four roots, including two real roots and
two pure imaginary roots,

ko= -k =ky, k =—k, =ik, (7)

The general solution Eq. (3) can be then obtained as

w(x,w) =a,e ™ +a,e ™ +a,e +a,e™” (8)

where a, (n =1, 2, 3, 4) represent the constants deter-
mined by boundary conditions.

In the j-th cell, the vertical displacement and angular
boundary conditions at both ends of the Euler beam can
be expressed as

W, = W,(0), 6,=6,0), Wy, =W,(L), 0, =6,(1)
(9)

The spectral nodal displacements and slopes of the j-th
cell (see Fig. 2) can be related to the displacement field
by substituting Eq. (8) into the right-hand side of Eq.
(9), yielding the relation between the displacement vec-
tor d and the coefficient vector a as

d=H.a (10)

—oo--[  Celll H Cell2 § Cell3 § Cell4 []---+®
I i i H i

Fig.2 Simply supported Bernoulli-Euler beam

where
1 1 1 1
- ikg — ke ik kg
H 1= kL ) ik, L kL
€ € € €
. —ik,L kL sq kL kL
- ikpe —kee ke ke

(11)
a={a,, a,a,, a4}T
d= {WLj’ 014” WRj’ eRj}
The shear forces and bending moments at both ends of
the j-th cell can be expressed as

aW,(0) aW,(0)
QL/: —EIT, Lj:E17 (12)
oW (1. oW (L.
QR/‘= _El#7 Rszl# (13)
ox ax

Substituting Eq. (8) into Eq. (13) yields the relation
between the force vector F | and the coefficient vector a as

follows:
F,=Ga (14)
where
sz{QLjs ML./" QRj7 MRj}
- ik‘; - k’; ik‘; k;
O e
- ikf:e Tk kie et ik‘;e'kFL kiekFL
kzFe —ik,L kie — kL _ kie”‘*L kéek’L

The coefficient vector a can be eliminated from Eq.
(10) and Eq. (14) to obtain the relation between the
force vector F; and the nodal DOF vector d as follows:

B
F, =K d (15)
where
K =G(H)) ' (16)

where KlB represents the dynamic stiffness matrix for the
flexural vibration of the j-th cell,

B B B B
Kjll Kle Km Kjl4
B B B B
B K/2 1 K/"ZZ K/23 K/24
K = B B B (17)
! K K K K
731 732 733 34
B B B B
K 41 K 42 K 43 K ja4

1.2 Joint equilibrium equation of the transfer matrix

The dynamics of the Bernoulli-Euler beam in the j-th
cell are represented in terms of the dynamic stiffness
block matrix,
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P R
KRLj KRR./' de FR/

(g, r =L, R) represents the two-by-two parti-

(18)

where K,
tioned submatrices of K?
Eq. (18) can be transformed to relate the state vectors

at two ends of the j-th cell,

[de] _ [ _KLTI;/KLL/‘ KL_RI,‘ ][dLj] (19)
Fyl | Ky, -KyKoKy, KeoKglLFy

RRj LR/ L) RRj*MLR]
Eq. (19) can be rewritten as

Y, =T,Y, (20)

where Y, = [d,, Fy] and Y, = [d,;, F,] represent
the state vectors at the left and right ends of j-th cell of
the Bernoulli-Euler beam, respectively.

Considering the wave propagation between the j-th and
(j +1)-th cells, the joint equilibrium equation in the fre-
quency domain can be expressed as

Oy k, 0 -k, 0 Wy,
My, 0 0 0 -k, O
Qi |- k, 0 k, 0 WG
M., 0 -k, k, Ouien

(2D

where & and k, represent vertical and rotational stiffness
of the j-th joint, respectively.
Eq. (19) can be further rewritten as

Wi 1 0 -k,' 0 Wy
O _ 0 1 0 —k;l O (22)
QL(j+l) 0 0 -1 0 QRj
M., 0 0 0 -1 My,

Eq. (19) can be simplified as

Y =T,Yy (23)

L(j+1)

Substituting Eq. (23) into Eq. (20), the relation be-
tween the state vectors of the j-th and (j + 1) -th cells can
obtained as

Y,

LG+

=T.Y

i Rj

=T.T.Y,

s T L

=TY,

it

(24)
where

Tj =T.T.

Qi s

(25)

where T, represents the transfer matrix between two adja-
cent cells.

1.3 Propagation constant

For harmonic periodic structures, the transfer matrix
between all adjacent cells remains the same.
Eq. (24) can be simplified as

Y, =T, (26)

The wave propagation in the infinite periodic structure
is governed by the eigenvalues of the transfer matrix T.
Therefore, Eq. (26) can be given as

Y.

j+1 :Can (27)

where ¢, represents the eigenvalue of the transfer matrix
T. These eigenvalues are in pairs, with a pair represen-
ting the same wave but in opposite directions. Therefore,
¢, defines the relation between the state vectors at two ad-
jacent cells of the infinite periodic structure. The propa-
gation constant ¢, can be given as

Va+iB,

c,=e" =e (28)

n

The amplitude decay of wave propagation between the
adjacent cells and g
stant,
cells. According to the definition of the propagation con-
stant, the real and imaginary parts represent the attenua-
tion and phase constants, respectively. When y, =0, the
wave can propagate without attenuation, and the phase
changes when crossing every cell; meanwhile, the corre-
sponding frequency region is called the pass band. In
contrast, when y, #0, the wave will decay and can be
identified by analyzing the real parts of the propagation
and the corresponding frequency region is

which is called the phase shift con-

n’

denotes the phase difference between adjacent

constants,
called the stop band. Among these pairs of propagation
constants, only a pair with the least attenuation is focused
on in this paper because it represents the most dominant
form of attenuation. The frequency band characteristics of
the infinite periodic structure are analyzed using the prop-
agation constant to study the law of wave propagation.

2 Damage Identification Based on the Propaga-
tion Constant

2.1 Determining the occurrence of damage

For a finite periodic simply supported Bernoulli-Euler
beam, the transfer matrix and the joint equilibrium equa-
tion remain the same, and the transfer matrix T for the
entire beam comprising n cells can be expressed as fol-
lows:

T=TT, T, TT, (29)

If no damage occurs, T,(i=1,2,...,n) is unchanged.

According to the derivation process in Section 1.3, the
propagation constant for the beam can be gained from
Egs. (26) to (28) as follows:

w=lInc, (30)

If no damage occurs, the original propagation constant
w will not change for a periodic structure with a certain
parameter N. If damage occurs, the beam transfer matrix
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T will change, and the propagation constant gy, will
change accordingly. Comparing u and u, can determine
whether damage has occurred.

2.2 Objective function based on the propagation con-
stant

This section combines the transfer matrix method with
the SEM, which is more efficient for calculating the fre-
quency domain characteristics of periodic structures and
more effective at identifying the position and degree of
damage of the joint. As mentioned above, the main focus
of this paper is on the damage to the joint. Assume that
the dynamic stiffness matrix for the beam T, remains the
same. The joint equilibrium equation T, involves the var-
iables k, and k,. The rotation of the structure is primarily
controlled by the beam unit and is minimally influenced
by the rotation stiffness of the joint. Therefore, k, is the
key discussed in this paper.

Assuming the periodic structure has 10 cells, the steps
for damage identification of variable k, are as follows:

1) Establish the dynamic stiffness matrix of beam cells
based on the SEM.

2) Based on the boundary conditions, obtain the equi-
librium equation of the joint between the two cells.

3) If the periodic structure is undamaged, the transfer
matrix can be expressed as

T=T (3D

When the periodic structure is damaged, the transfer ma-
trix where the damage occurred is changed. Assume that
the undamaged vertical stiffness of the joint in the j-th el-
ement is expressed as kwj(j =1,2,...,10). Similarly, as-
sume that the stiffness factor of the vertical stiffness of the
J-th joint is expressed as 6,(j =1, 2, ..., 10); for exam-
ple, the damaged equilibrium equation of the first joint
can be expressed as

1 0 -6k, O
-1
r,=r,r,=° " 0 TR (3
0 0 -1
0 0 0 -1

and the transfer matrix of the entire structure can be ex-
pressed as a multiplication of every transfer matrix of 10
cells,

r=r.r.,1.17,7.1,T,T,T,T, (33)

4) Calculate and compare the propagation constants of
the undamaged and damaged states. The presence of
damage is proved by a substantial difference between the
two propagation constants.

5) The structural parameters that should be identified
are the stiffness factors of the vertical stiffness of the
joints 6,(j=1,2,...,10). The unknown substructural pa-

rameter ¢, can be estimated by minimizing the discrepancy
between the original and damaged states, and the objec-
tive function for iteration is shown as

fnbj = 2,1(70 _'Yd)z (34)
where vy, and vy, are the real parts of the propagation con-
stant in the original undamaged state and the damaged
state, respectively. Every frequency has a corresponding
value of the real part of the propagation constant.

6) The algorithm adopts the interior point method for
solving linear programming or nonlinear convex optimiza-
tion problems. The iteration of the objective function
continues until

‘fobj,n+l _fobj.n‘$8, nsN

fnbj. n -

where n is the number of iterations; ¢ is the allowable er-
ror; g is the allowable residual; N
number of iterations.

7) For every parameter 0, there is a real part of propa-
gation constant y. The most commonly used update meth-

Join <6 (35)

is the maximum

max

od is the sensitivity-based update. Assuming m frequen-
cies are taken in the range of O to 1 000 Hz, the vector g
can be expressed as

g0 ={y1, Y2 ¥l (36)

The model update process involves minimizing the
weighted residual g(60), aiming to ideally reduce it to ze-
ro. However, because of errors in the model and the
damaged model, it can only be minimized. Because the
real parts of propagation constants depend nonlinearly on
the update parameters, a linear approximation must be

used,

g(0) =g(0) +S6 (37)

where S denotes the sensitivity matrix or Jacobian. The
residual is then

r(0) =r, - S0 (38)

dama

where r, =g"" — g(0) is the difference between the dam-
aged values and the values from the undamaged model; S
is the sensitivity matrix, which can be obtained using the
finite-difference method.

g = 98(6)
a6

s
11
=)

(39)

The update can be performed by minimizing the linear-

ized residual as follows:
min||S6 - r, ||, (40)

Setting the derivative with respect to an equal to zero
leads to the well-known least-squares solution as follows:
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9=(S"'S) 'S"r, (41)

3 Numerical Case Studies

In this section, the effects of various parameters on the
wave propagation characteristics of a periodic simply sup-
ported Euler-Bernoulli beam and various detuning states
are studied in terms of the vertical stiffness of the joint.
The numerical predictions are validated by evaluating the
transfer property and the deformation of the periodic sim-
ply supported beam through a finite element analysis. The
material properties and geometric parameters used in the
numerical analysis are listed in Table 1.

Table 1 Geometric and material properties in the analysis

Description Value
Length of the beam L/m 7
Number of spans N 10
Dimensionless vertical stiffness of the joint k,,/(N » m~") 3.4
Dimensionless rotational stiffness of the joint k,/(N - m -
rad™") T
Moment of inertia I/m* 1.637
Mass density p/(kg + m %) 2 500
Young’s modulus E/(N - m~2) 34.4
Transverse cross-sectional area A/m?> 2.8

3.1 Propagation constants for the ordered periodic

supported beam

According to the method in Section 3, the propagation
constants can be obtained using Eqgs. (26) to (28). The
transfer matrix T can be obtained according to the struc-
tures of the numerical case, and then the eigenvalues c, of
matrix T can be gained by solving the characteristic equa-
tion. The propagation constants u, are the logarithm of
c,. The real part of y, is the attenuation constant y,, used
to consider the influence of different parameters on the
propagation and localization characteristics of the periodic
supported beam model.

Fig. 3 shows the effects of the vertical stiffness of the
joint between adjacent cells for flexural vibration. As the
vertical stiffness of the cell joint increases from 0. 034 to
3.4 GN/m, the number of stop bands in a specific fre-
quency range remains constant. The width of the stop
bands consistently begins to increase. In every frequency
stop band, the lower limit of the range remains constant
while the upper limit continuously increases. For a specif-
ic vertical stiffness of the cell joint, the width and the up-
per limit of the range of stop bands continuously increase
at high frequencies. For different vertical stiffnesses, it is
relatively small when k, =34 MN/m, and the amplitude
increases very slowly compared to the case when k, =3.4
GN/m. In the first band gap, the peak value at k, =3.4
GN/m is 0. 848, over 16-fold larger than the correspond-
ing peak value of 0.051 at k, =34 MN/m. Nevertheless,
the peak value at k, =3.4 GN/m gradually increases with

frequency, ranging from 0. 848 to 0. 880, whereas the
peak value at k, =34 MN/m undergoes rapid escalation,
soaring from 0. 051 to 0. 794.

k“/(GN . m"):

e
5
T

<
w
T

Real part of

f=
—_
T

0167200 200 600 800 1000

Frequency/Hz
Fig.3 Real part of the propagation constant versus frequency
for different vertical stiffnesses of the joint of a cell

Clearly, altering the vertical stiffness of the joint chan-
ges the width of the stop bands of flexural waves.

3.2 Transfer property and deformation of the peri-
odic beam

The results of the previous section can be verified by
evaluating the transfer characteristics of a finite number of
periodic supported beam cells, where the external force is
located at one end of the periodic beam, thus generating a
transverse displacement of the cell, and the response at
the other end is evaluated using the transfer matrix meth-
od. The transfer matrix is obtained using Eq. (25). For
example, the total transfer matrix for the ten periodic

10
cellsis T = H T, and the state vectors at the two ends
j=1

, T ,
are Y, = {1, 6,,, O, 0} and Y., = {wgy, Ogy> O,
0}".

The relation between the state vectors can be represen-

ted as
Weio T, T, T, T, 1
émo _ T2’1 T2’2 T£3 T2’4 9“ (42)
0 T3,1 T3’2 T3,3 T3,4 Oy
0 T, T, Tz:_z T, 0

where T, (a, b =1,2,3,4) are the components of T".
The transverse displacement at the other end can be ob-
tained using Eq. (36).

Fig. 4 shows the transfer property of the ordered peri-
odic beam with 10 cells. Two localization drop curves are
within the frequency range of 0 to 200 Hz in Fig. 4, in
which the frequency ranges of the first two drops are fe
(33.582,35.969) Hz and f e (134. 486, 165. 680) Hz.
The wave cannot propagate within these frequency ran-
ges. The locations and widths of the frequency stop bands
agree with the predictions based on the propagation con-
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stants shown in Fig. 3.
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Fig.4 Transfer property of the ordered periodic beam with 10
cells

3.3 Damage identification

If the vertical stiffness of every cell joint is expressed
as one parameter, 6;, then §, =6, =... =6,,, the damage
identification can be solved in one cell by only modifying
one parameter, and every stiffness coefficient of the verti-
cal stiffness is reduced simultaneously. Five damage sce-
narios are considered in this paper, and the detailed dam-
age configurations are shown in Table 2.

Table 2 Numerical simulation cases for the 10-cell periodic

beam
Case No. Case description
1 0, =1(i=1,2,...,10)
2 0, =0.5(i=1,2,...,10)
3 0,=0.7,0,=1(i=2,3, ..., 10)
4 0s=0.7,0,=1(i=1,2,3,4,6,7,8,9,10)
5 0,=6,=0.5,0,=1(i=1,3,4,5,6,7,8,10)
6 0,=0;=0.5,0,=0.7,0,=1(i=2,3,4,7,8,9,10)

For Case 1, 6, =1(i=1,2,...,10), representing a
healthy, damage-free structure. For Case 2, 0, =0.5(i =
1,2, ..., 10), representing simultaneous damage to the
same degree to every cell of the structure, which means
that only one variable needs to be modified for the entire
structure. For Case 3 and Case 4, only one parameter is
to be set for damage identification, and damage occurs in
the 1st and Sth cells, representing the different conditions
of side span and mid-span damage, respectively. For
Case 5 and Case 6, more than one instance of damage oc-
curs in the structure: In Case 5, the 2nd and 9th cells are
damaged to the same degree; and in Case 6, the 1st,
5th, and 6th cells of the structure are damaged to simulate
a multiple damage condition.

3.3.1 Single-parameter damage identification

When the damage of each cell is identical, i.e., §, =a
(i=1,2,...,10), where a is a constant, then it becomes
a single-parameter damage identification problem. Con-
sidering Case 2 as an example, a is equal to 0.5, and it
is clear that @, is the parameter to be modified. Eq. (34)
shows that the objective function f,, is related to the fre-

quency. For a certain frequency, the real part of the
propagation constant of the undamaged and damaged con-
ditions are y, and vy,, respectively, and the objective
function is expressed as the sum of the squares of the
difference between vy, and vy, for a certain frequency
range. The initial value of the vertical stiffness coefficient
0,is 1.0, and the convergence condition of the objective
function is shown in Eq. (35). The values of the allowa-
ble error ¢ and the allowable residual & are 1 x 10",
Fig. 5 clearly shows that the uncertain scaling parameters
eventually converge to constant values, indicating that the
stiffness coefficient of the vertical stiffness is 0. 5 after
three iterative estimations. The figure shows that the sin-
gle-parameter damage identification considerably quickly
converges.

0.60r

o

W

N
T

e

[

)
T

<

'S

3
T

Identified result

=

~

=
T

0.40

6 7 8 9 10
Itertion

Fig.5 History of iterative simultaneous estimation of the verti-
cal stiffness coefficient for Case 2

3.3.2 Multi-parameter damage identification

In this section, the most complex situation of the nu-
merical study is considered: Each vertical stiffness coeffi-
cient of each cell 9,(i=1,2,...,10) is a parameter to be
modified.

The damage identification process can be summarized
as follows: 1) calculate the transfer matrix for the entire
structure; 2) calculate the propagation constant for the
transfer matrix; 3) follow the process in Section 2. 2 to
obtain the objective function f,,; about 6,; 4) obtain the
target-identified value based on the objective function.

Case 3 is considered as an example. It simulates the
damage occurring at the side span. The vertical stiffness
coefficient of the joint of the first cell is reduced to 0.5,
and other cells are healthy. This result illustrates that the
damage of the single support occurs in this case. Similar-
ly, in Case 4, the damage occurs in the fifth cell of the
structure.

The 10-cell periodic beam is a symmetrical structure
(see Fig. 6), and damage at a symmetric location pro-
duces a very similar effect for wave propagation such that
the propagation constant exhibits similar properties. The
vertical stiffness coefficient of the joint to be modified has
a similar situation. In Fig. 6, the damaged cell is the first
cell, but the identification result reveals that the last cell
is the damaged cell.
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Fig.6 Identified results of iterations for Case 3 in the numeri-

cal study

Fig. 7 shows that the 10-cell periodic beam is a sym-
metrical structure. In Case 4, the damaged cell is the 5th
cell. This case simulates damage occurring near the mid-
span. Fig. 7 shows the identified value plotted against the
element number. The identified value of the 5th cell is
about 0.7, and those for others are in the range of 0.9 to
1.0, with the exception of the identified value of element
10, which is about 0. 94, and the identified values of oth-
er elements are close to 1. 0. The numerical case proves
the accuracy of multi-parameter damage identification.
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Fig.7 Identified results of iterations for Case 4 in the numeri-

cal study

Damage is often unpredictable in practical engineering.
The location and degree of damage are random. There-
fore, it is meaningful to simultaneously identify the de-
gree and location of multiple damages to the structure.

In this section, Case 5 simulates the damages to the
2nd and 9th cells, and Case 6 simulates the damage to the
Ist, 5th, and 6th cells. The damage identification process
is similar to the previous cases. In Fig. 8, the identified
values of the 2nd and 9th cells are about 0.5, which is
very close to the true value. For the other healthy cells,
the identified value oscillates, ranging from 0.9 to 1.0,
but the identified value of the 7th and 8th cells ranges
from 0. 9 to 0. 95, which is smaller than that of other
healthy cells. In Fig. 9, the identified value is about 0.5
for the 1st and 5th cells and 0. 6 for the 6th cell; mean-
while, the identified value of other healthy cells is very

near to 1.0. This result shows the good damage identifi-
cation accuracy of damaged and undamaged cells. Com-
pared with the finite element method, the most remarka-
ble benefit of this approach is its ability to enhance com-
putational efficiency. For a 10-cell continuous beam, the
transfer method of the cell involves only a 4 x4 matrix.
If the finite element method is used, there will be 60
DOFs, and the dimensions of the global stiffness matrix
will be 60 x60. If the mesh density in the finite element
method is higher, the computational workload will be
considerably greater than that of the SEM. The iterative
process of the objective function takes more computation-
al resources. More time and computing resources can be
saved for large-scale engineering.
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Fig.8 Identified results of iterations for Case 5 in the numeri-
cal study
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Fig.9 Identified results of iterations for Case 6 in the numeri-
cal study

4 Conclusions

1) The dynamic stiffness matrix of an Euler beam in
one cell is established using the SEM, and the equilibri-
um equation of a joint is obtained from the boundary con-
tinuity condition. By combining the dynamic stiffness
matrix and equilibrium equation of a joint, the transfer
matrix for the periodic continuous beam can be obtained.

2) The real part of the propagation constant is intro-
duced to measure the degree of detuning. As the joint
vertical stiffness of the cell increases, the number of stop
bands remains constant. The width of the stop bands con-
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sistently increases. In each frequency stop band, the low-
er limit of the range remains constant while the upper lim-
it increases rapidly.

3) A damage identification method for identifying joint
vertical stiffness in periodic continuous beams based on
the SEM is proposed. The objective function of the dam-
age identification method is based on the propagation con-
stant.

4) The proposed method is extensively evaluated
through numerical case studies. The results demonstrate
its effectiveness in identifying single- and multi-parameter
damage cases. The proposed damage identification meth-
od based on the propagation constant has good computa-
tional efficiency and accuracy.

5) The position and width of wave propagation band
gaps determined by the propagation constant are validated
by analyzing the transfer properties and deformation of
periodic beams. The good qualitative agreement between
transfer properties and band gap results obtained from the
transfer matrix method verifies the correctness of the
transfer matrix method and the presence of band gaps.
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