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Abstract: To achieve efficient emergency response and
evacuation from building fires, the possibility of applying
object detection technology to building fire emergency
management is investigated. An application of object
detection algorithms in the early warning stage of fire is
proposed by combining a transformer, convolutional neural
network, and
(namely convolutional block attention module) to extract the
local and global features of flames and smoke,

lightweight attention mechanism module

thereby
improving the accuracy of the object detection algorithm and
achieving fast localization of fire occurrence. An improved ant
colony algorithm for path searching is proposed by improving
the heuristic function and pheromone evaporation coefficient.
A grid map model is developed in a case, and the effectiveness
of the proposed method is verified through simulation and
emulation by considering positioning information. The results
show that compared with the YOLOX algorithm, the YOLOX-
Swin model improves the average accuracy by 1. 5% . The
improved ant colony algorithm reduces the search range of the
traditional ant colony algorithm, improves the convergence
speed of the model, and avoids the problem of getting trapped
in local optimum solutions. By integrating early warning of
fire and personnel evacuation, a comprehensive building fire
emergency management plan is developed.
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ire is a symbol of progress in human civilization,
F which provides warmth and light to humanity. How-
ever, uncontrolled fire can yield huge disasters. Fire, as
used here, refers to catastrophic combustion that is un-
controlled during its spread, causing certain damage to
human life and property. Although the destructive power
of fires and the resulting degree of damage may not be as
large as those of natural disasters such as floods and earth-
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quakes, their frequency of occurrence is beyond compari-
son with other natural disasters. Therefore, compared
with other natural catastrophes, fires are significantly
more destructive over the long run, causing enormous
losses to human society in terms of property and life and
are a catastrophic issue currently faced by people all over
the world. The severity and diversity of building fires
have undergone significant changes, and in recent years,
they have become an increasingly important topic of con-
cern. According to statistics, in the past two decades, a
total of 86 million fires have occurred worldwide, resul-
ting in over one million deaths and an average economic
loss of up to $857.9 billion per year, representing 1%
of the world gross domestic product'" .

Building fires are characterized bythe rapid spread of
smoke, difficulty in controlling and extinguishing the
fire, and personnel evacuation'.
ties, rapid and effective fire warning and evacuation path
guidance are particularly important.
smoke detection methods use smoke sensors, temperature
sensors, and traditional smoke detection algorithms based
on artificial features like the color, edge, texture, and
other characteristics of smoke; however, these methods
suffer from several limitations, such as high false alarm

To minimize casual-

Early flame and

rates, poor real-time performance, and insufficient gener-
alization ability,
needs.
Following the development of deep learning (DL) al-
gorithms, DL-based flame-smoke detection models can
balance the relationship between real-time performance

which cannot meet actual industrial

and accuracy in a very efficient manner. Smoke detection
algorithms can be divided into classification network
methods (image and video classifications) and detection
network methods based on the different neural networks

used. He et al. "™

proposed the ResNet residual network
model, which could train deeper networks and solve the
problem of gradient disappearance in deep networks.
Their approach was to load the results of shallow net-
works onto the results of deeper networks. To study
smoke detection in foggy weather, Khan et al. '*! created
a foggy-smoke dataset and fine-tuned the VGG16 network
for four classification tasks: normal and foggy smoke de-
tections.

In addition to the classification-based methods, Zhang

et al. ” used an object detection network called a faster
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region-based convolutional neural network (CNN) to de-
tect wildfires in the wild and used synthetic methods to
obtain data labeled with target boxes to avoid manual la-
beling. Megvii Technology'® proposed a high-perform-
ance detection algorithm, namely, YOLOX, which was
based on the anchor-free network structure that relied on
YOLOv5. YOLOX adopted a decoupled head and the
leading label assignment strategy named SimOTA, which
effectively accelerated the convergence of the model and
Moreover,
Transformer (ViT)"" is a pioneering work that introduces
transformers in natural language processing tasks into a
visual field. ViT processes images in a block-like form
similar to text and achieves excellent results in image
applying the trans-
former to the detection of smoke and flames in fires is
confronted with two main challenges. Firstly, the entity
changes and shapes of the smoke and flames are large and
not fixed; thus, the performance of this method may not
be as good as required. Secondly, the detection of fire
scenes requires accuracy and speed; however, because of

greatly reduced its training time. Vision

classification problems. However,

high image resolution, the transformer based on the glob-
al self-attention mechanism requires a large computational
complexity and is not sufficiently fast.

In the field of fire protection, researchers often use
computer simulation techniques to simulate fire develop-
ment and personnel evacuation behavior scenarios. How-
ever, traditional software simulation methods suffer from
many limitations, such as inaccurate simulation environ-
ments and significant errors compared with reality, which
lead to inaccurate results. Therefore, these limitations re-
strict the usefulness of fire evacuation simulation software
for research on fire escape planning. Moreover, building
information modeling (BIM) is a new technology that has
emerged in recent years and has allowed building digital
technology to reach higher levels™. BIM has become a
hotspot in the field of engineering construction. With the
advancement of this technology, combining fire simula-
tion and personnel evacuation behavior becomes possible,
in which accurate building structure, model information,
and environmental parameters are provided by BIM tech-
nology, making the research results more closely aligned
with reality. Furthermore, BIM technology can quickly
establish a building model in the event of a disaster and
coordinate with other numerical simulation software. At
this level, fire dynamics simulator (FDS) is a tool that is
developed by the National Institute of Standards and
Technology Building Fire Research Laboratory, which
consists of a fire-driven fluid flow model using computa-
tional fluid dynamics'. Zhao et al."” used FDS soft-
ware to study the characteristics of smoke movement dur-
ing a fire in a high-rise building staircase, including the
temperature and pressure distribution on a vertical sur-
face, the location of the neutral plane in the chimney

effect, and other related phenomena. In recent years, ant
colony optimization ( ACO) has achieved important re-
sults in the field of crowd safety evacuation'"!. By com-
bining BIM with the ant colony algorithms, the Revit
platform is used to construct building models, and the Py-
roSim dynamic fire simulation software is used to obtain
smoke temperature and smoke concentration data in a fire
environment, which provides the base data for parameter
values to the ant colony algorithm. This integration ena-
bles visualization of crowd evacuation, facilitating a bet-
ter understanding of the evacuation process in fire scenari-
os. To improve the global search capability of the algo-
rithm, Wang"?' proposed an improved ACO with a bidi-
rectional search strategy to optimize fire evacuation
routes. Xia et al. ' proposed an ancient village fire es-
cape path planning method based on improved ACO,
which introduced two factors, namely, path length and
path reliability, and added heuristic information to im-
prove search efficiency.

The flame smoke-detection model based on YOLOX
and Swin Transformer (ST)"* with sliding window oper-
ations and hierarchical design can achieve accurate detec-
tion of multiscale targets after satisfying the requirements
of real-time detection. To achieve an efficient emergency
response to fires, in addition to real-time and accurate fire
warning devices, research on fire spread mechanisms and
personnel evacuation path planning is required. There-
fore, the PyroSim fire numerical simulation software is
used to obtain the numerical values such as environmental
temperature and volume fraction of each major evacuation
node under fire scenes, and an emergency response plan
for fires in buildings is developed by combining the opti-
mized ACO.

1 Proposed Integrated Framework

The current study proposes a deep neural network-based
early warning system for building fires and smoke. By
utilizing an object detection model, the system can detect
flames and smoke and identify the source of the fire by
analyzing the location of the camera that captures it. The
system then employs pre-simulation fire dynamics soft-
ware to acquire data regarding the environmental tempera-
ture and concentration of harmful gases within the build-
ing. Subsequently, the system designs secure evacuation
pathways for those trapped using the ant colony algorithm
that is optimized for building fire environments. The best
evacuation route is obtained, which aids and directs
trapped individuals in their escape.

1.1 DL-based object detection of fire smoke

Following the development of object detection, the
YOLO series is pursuing an optimal trade-off between
speed and accuracy in real-time applications. Over the
past two years, anchor-free detectors, advanced label as-
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signment strategies, and end-to-end detectors have real-
ized major achievements in object detection academia.
However, they are not yet integrated into the YOLO fam-
ily. Because YOLOv4 and YOLOvV5 may be a little over-
optimized for anchor-based pipelines, YOLOX is im-
proved based on the YOLOv3 and provides these recent
advancements to the YOLO series with an experienced
optimization. Compared with previous YOLOvl to
YOLOVS, the accuracy of YOLOX in object detection has
greatly improved'””’. Therefore, the present study choo-
ses YOLOX as the basic algorithm for flame smoke detec-
tion, and improvements are made to it.
1.1.1 YOLOX network model structure

YOLOX algorithm is a high-performance one-stage ob-
ject detection network, which was proposed by the MEG-
VII Research Institute in 2021. It cleverly applies excel-

lent progress in object detection, such as decoupled
heads, data augmentation, and anchor-free methods, to
YOLO. The network structure is shown in Fig. 1, which
consists of three parts, namely, the CSPDarknet53 net-
work used as the backbone feature extraction network, a
path-aggregation network ( PANet) used to enhance the
feature extraction network in the neck part, and three de-
coupled heads used in the prediction part''”. The back-
bone part extracts the shallow features from an input im-
age to obtain three feature layers, which will be used by
the neck part to extract the deep features. Finally, each
of the three decoupled heads is used for the object box de-
tection to obtain the search results. The following im-
provements are primarily made by the YOLOX algo-
rithm: it separates the decoupling heads and separately
implements classification and regression''” .
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Fig.1 Network architecture of YOLOX

1.1.2 YOLOX-Swin

In the YOLO series, YOLOX exhibits excellent detec-
tion performance and has exceeded the accuracy of
YOLOv3 to YOLOv5. However, the backbone of
YOLOX is based on traditional CNN. The convolution
kernel can effectively capture the local feature information
in the image, but it can easily ignore the global feature
information. To better detect small flames, a lightweight
attention-mechanism module, namely the convolutional
block attention module (CBAM), is added to the feature
pyramid network layer of YOLOX, which can effectively
enhance the detection ability of small target objects'* ™.
Moreover, the transformer structure with a self-attention
mechanism can well obtain global feature information of
an image, which helps the network greatly improve the
detection effect of large objects in the images. In the
flame-smoke detection process, smoke is usually large,
whereas flame is generally small. Therefore, this paper

proposes a YOLOX-Swin model for flame-smoke detec-
tion by combining the features of the convolution kernel
and transformer structure,
shown in Fig. 2.

The partial CSPLayer structure in the backbone of the
YOLOX feature extraction network has been replaced
with CSPSwin Block to enhance the model perception of
global information features. Fig. 3 shows that for a given
input feature X e R*“***" CSPSwin Block uses the Conv
_BN _SiLU basic convolution module to reduce the di-
mensionality of the input feature to C and then performs a
transpose operation to obtain X, € R™"*". Next, X

and the model structure is

atch
is fed into the ST module to obtain the global feature lBin—
formation. By implementing the transpose process, X,
e R " can be obtained with global feature informa-
tion.

CBAM is an attention mechanism that combines channel

and spatial attention. Fig. 4 shows that, given a feature
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map, CBAM can sequentially generate attention feature
maps in both channel and spatial dimensions. The two
feature maps are then multiplied with the original input
feature map for adaptive feature refinement to produce the
final feature map. As a lightweight attention mechanism
module, CBAM can be embedded in the backbone net-
work of an object detection model without greatly increas-
ing the number of parameters, thereby improving the
model performance.

1.2 Emergency evacuation model using ACO

The personnel evacuation path planning problem in
building fires involves finding the safest path for people to
escape in the shortest time. The evacuation time depends
on not only the actual length of the path but also the evac-

the
evacuation speed of the personnel is mainly affected by
factors such as temperature, fire products (such as carbon
monoxide), and crowd density. The influence of fire
products and crowd density on the evacuation speed of the
personnel can be quantified as temperature influence coef-

uation speed of the personnel. In a fire scenario,

ficient f,(7) and carbon monoxide concentration influence
coefficient f,(6,). By combining the actual length of the
path and the influence coefficient of the evacuation speed
of the personnel, the equivalent path length can be ob-
tained. The shorter the equivalent path length is, the
shorter the required evacuation time.
1.2.1 ACO

ACO is a bioinspired algorithm first proposed in 1992
by Italian researcher Dorigo M. It is inspired by the fora-
ging behavior of ants in nature. ACO provides the advan-
tages of positive feedback, heuristic search, and distribu-
ted computing and is widely used to solve optimization
problems in path planning with feasible solutions'*” .

During their movement, ants leave a substance on their
path to communicate information, which is called a pher-
omone. Ants can perceive pheromones during their move-
ment, which can influence their direction of movement.
Under initial conditions, i.e., at =0, m ants are placed
at starting point S, and ant k(k= 1,2, ..., n) moves from
S to endpoint E. When an ant encounters a path selec-
tion, it is more likely to choose the path with a higher
The probability of ant k
moving from node i to node j is given by

concentration of pheromone.

[7,(0]1°[n,(D]*
IRERGINEROIK

seN,

py (1) =
0 otherwise

(1)
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where 7,( ) represents the pheromone concentration be-
tween nodes i and j; 1, (1) denotes the heuristic function;
d; denotes the Euclidean distance between nodes i and j;
« stands for the importance factor of the pheromone,
which is usually set to 0. 5; B denotes the importance fac-
tor of the heuristic function, which is usually set to 0. 5;
and N, denotes the set of nodes available for the next
step. When each ant makes a path selection or walks
along a complete path, it needs to update the phero-
The rule for updating the pheromones is ex-
pressed as follows:

mones.

T7;(t+1) =(1 =p)7,() +A7,;(1) (2)

At (r) = Y ATi(D) (3)

where p is the pheromone evaporation coefficient, which
has a value range from zero to one; Ar,(?) is the total
change in pheromones from node i to node j; AT;(I) is
the number of pheromones released by ant k on the path
from node i to node j. The calculation of Aff;.( 1) uses the
ant cycle model, and its expression is shown as

0 . .
assing through segment i
Ari(n ={L, passing gl see / (4)
0 otherwise

where Q represents the constant of the pheromone; L, de-
notes the total distance traveled by ant & in the current cy-
cle.
1.2.2 ACO improvement

This study uses the grid method to establish an environ-
mental model of the first floor of a large building, as
shown in Fig. 5. The grid method is a global path plan-
ning method that divides the environment into free space
and obstacles using equally sized rectangular grids, which
offers the advantages of easy encoding and computa-

. [21
thIl[ ! .

Black grids represent obstacles such as walls and
pillars in the building, and each obstacle grid can have up
to eight neighboring grids,
grids. If the neighboring grids of an obstacle corner grid
are non-obstacle grids, then the corner grid is called a
vertex grid, as shown in the gray grids in Fig. 5. Person-
nel can freely move in the white and gray grids in the fig-
ure. Generally, buildings have large construction areas
and complex internal structures, and using their grid maps
for path searching can result in too many alternative
points and high computational complexity. To reduce the
computational complexity, the gray grids shown in Fig. 5
are extracted as candidate points for ACO. Then, the
connectivity among the vertex grids needs to be deter-
mined. When no obstacle or danger grid exists ( tempera-
ture exceeding 120 C or concentration reaching 2.5 x
107°) between two vertex grids, no connectivity exists
between the two grids.

four of which are corner

Fig.5 Grid map

The grid index is used to represent the position index of
a grid. For a grid map with a size of R rows and C col-
umns, the relationship between grid index i and coordi-
nates of the grid center point (x,,y,) is expressed as

(5)

i

x;, =mod(i,C) -0.5
C }

v, =R —ceil( ) +0.5
where mod ( ) denotes the modulo function and ceil ( )
denotes the ceiling function.

When a fire occurs, the temperaturerises due to the
convective heat of the smoke and the radiant heat of the
flame. An appropriate body-sensed temperature (30 to 60
C) will have a positive effect on the evacuation of per-
sonnel. However, as the body-sensed temperature contin-
ues to rise to 60 to 120 C, the evacuation speed of the
personnel will gradually decrease until they lose their abil-
ity to move. At this point, high temperature exerts a neg-
ative effect on the evacuation of personnel. Temperature-
effect coefficient f,(7) on the evacuation of personnel can
be calculated as

1 T<T,

T-T,
o =12 (7

T52_TSI

Ji(1) = 1.2 +1 T,<T<T,
max T_T<2 ?
12[1—(T_T)] T,<T<T,
d s2
(6)

where T is the temperature of the environment at the scene
of fire; T is the temperature at which a person feels un-
comfortable ( generally considered to be 30 C); T, is the
temperature that causes harm to the human body ( general-
ly considered to be 60 C); T, is the lethal temperature
(generally considered to be 120 C); V,__

maximum evacuation speed of personnel (usually consid-
ered to be 4 m/s).

The personnel evacuation speed is affected by not only
the body-sensed temperature at the fire scene but also the
concentration of toxic and harmful gases released during
the combustion of combustibles. Among them, carbon

stands for the
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monoxide is the main gas that causes casualties to the
evacuating personnel during fires. When the volume frac-
tion of carbon monoxide in the smoke is less than 0. 1%,
the effect on the personnel evacuation can be ignored.
However, when the volume fraction reaches 0.25% , the
evacuating personnel may suffer serious harm, and they
can experience difficulty in moving. The effect coeffi-
cient of the carbon monoxide volume fraction on the
evacuation of personnel at the fire scene can be calculated

as follows:
1 0., <0.1%
£(6,)={1-(0.2125+1.7886,,) 0.1% <6, <0.25%
0 0.,=0.25%

(7)

where 6, denotes the volume fraction of carbon monox-
ide.

When the abovementioned two fire-effect coefficients
are considered, the shortest geometric path at the fire
scene may not necessarily be the path with the shortest
evacuation time for the personnel. This study replaces the
Euclidean distance in the heuristic function with an equiv-
alent distance, which is calculated as follows:

_ Lijéi/‘
DD =30 (8)
M, (D) =f,(D)f,(0.) (9)

where D, (1) denotes the equivalent distance between
nodes i and j at time 7, 0; stands for the degree of diffi-
culty of passage between nodes i and j, usually set as
1.5; L, represents the Euclidean distance between nodes i
and j; M, (1) denotes the coefficient of the effect of a
high-temperature fire environment and carbon monoxide
volume fraction of the fire products on the personnel
evacuation.

Because of the absence of large differences in the con-
centration of pheromones among the different paths and
lack of orientation toward the target point in the early
stage of the algorithm, a high degree of randomness oc-
curs in the ant path selection, resulting in a slow conver-
gence rate of the algorithm and a decrease in the search
efficiency and ability to find the optimal path. The use of
equivalent distance instead of the Euclidean distance can
effectively reduce the randomness of the ant path selec-
tion. The equivalent distance is expressed as

1

=— 10
=D, +d, (0

where D, denotes the equivalent distance between nodes i
and j; d stands for the Euclidean distance between node
J and endpoint E.

The pheromoneevaporation factor p largely affects the
convergence speed and search efficiency of the algorithm.

Therefore, the size of the evaporation factor p is dynami-
cally adjusted. Initially, a high pheromone evaporation
factor is set, and the pheromone evaporation factor is then
reduced as the number of iterations increases to update the
pheromones and improve the convergence and global
search capabilities of the algorithm. The specific method
is expressed as

p(1) =Min[0.95p(1 = 1), p,..] (1)

2 Results and Discussion
2.1 Fire-smoke recognition based on YOLOX-Swin

2.1.1 Acquisition of flame smoke image dataset
and data augmentation

This study used two different types of data sources, in-
cluding an image that was open data on the web and a
video, which were transformed into a video image se-
quence, and some highly similar pictures were removed.
Finally, 2 500 images of fire and fireworks were re-
tained. The dataset contained 3 552 flame and 1 347
smoke targets. The Labellmg dataset annotation software
was used to label the flame and smoke in the images.

Data augmentation can generate more data from limited
datasets, increase the diversity of the dataset, and en-
hance the robustness of the model. Because the dataset
used in the present study was relatively small, the meth-
ods of Mosaic and Mixup data augmentation could effec-
tively expand the training dataset.

Mosaic is animage data augmentation method that com-
bines four different images by randomly cropping and
splicing them together to create a larger image. The posi-
tions and sizes of the crops and splices are random, which
makes the generated images more diverse and complex.
Mosaic data augmentation helps expand limited datasets
and improve the performance of object detection models,
which makes the trained models more adaptable to com-
plex scenes and environments. In this study, Mosaic data
augmentation was used in the first 85% of the epochs,
and the last 15% of the epochs were used for closing. In
the later stages of training, when the learning rate de-
creased, disabling Mosaic could reduce the batch size of
the training data, thereby fine-tuning the model and im-
proving its performance.

Mixup is an image data augmentation method that gen-
erates new images by blending the target objects from two
different images. Specifically, for two randomly selected
images, their pixel values are weighted and fused accord-
ing to a random ratio, generating a new image. The cor-
responding target labels are then linearly interpolated ac-
cording to the same ratio. Mixup data augmentation is
commonly used in image classification and object detec-
tion tasks, especially on small datasets, to improve model
performance by increasing the diversity and size of the
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dataset. The advantage of Mixup data augmentation is
that it can increase the diversity of the dataset and im-
prove the generalization ability of the model without in-
creasing any computational cost. Additionally, Mixup
can reduce the risk of overfitting and enhance the robust-
ness of the model.

2.1.2 Model training

Because of the modification of the backbone feature ex-
traction network in this study, the pretrained network on
the ImageNet dataset could not be used during the training
phase; thus, the model needed to be trained from
scratch. During the training, the dataset was divided into
a 9:1 ratio for the training and validation sets as well as
for a separate testing set. Within the (training + valida-
tion) set, the dataset was divided into a 9: 1 ratio for the
training and validation sets. The input image resolution
was 640 x 640, and the stochastic gradient-descent opti-
mizer and cosine annealing learning rate were used for the
training. The batch size was 16, the initial learning rate
was 0.01, and the model was trained for 400 iterations.

The training and testing were performed using the plat-
form of an Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20
GHz, 128 GB DDR4 RAM, CUDA Toolkit 11. 6, and
GPU NVIDIA Tesla T4. The operating system was the
CentOS 7 workstation.

2.1.3 Evaluation

In the object detection classification problem, the ob-
jects to be classified were positive samples, and the other
objects, including the background, were negative sam-
ples. IOU represents the ratio of the intersection over the
union between the predicted bounding box and the actual
labeled bounding box. The classification of the predicted
results into positive and negative samples was based on
the IOU threshold. For a given object, the predicted posi-
tion by the model was usually represented as a rectangular
box, also known as a bounding box. The actual labeled
position was also a rectangular box. The IOU threshold is
usually set to 0.5. When IOU=0. 5, the predicted box
was considered a true positive; otherwise, it was consid-
ered a false positive.

Recall refers to the proportion of positive samples that
were correctly identified by the model among all positive
samples. It is one of the most important metrics for eval-
uating a model’s performance in recognizing targets be-
cause it measures the proportion of targets that are missed
by the model during recognition. Precision refers to the
proportion of predicted positive samples that were correct-
ly predicted as positive by the model among all samples
predicted as positive. Precision is one of the metrics used
to measure the accuracy of model predictions. The specif-
ic equations are

(12)

T,
P. =
T, +F,

(13)

Average precision ( AP) represents the area under the
precision-recall curve. High AP indicated that the object
detection model maintained a good precision rate while
keeping a high recall rate. For multiclass classification
problems, mean AP (mAP) is commonly used to charac-
terize the performance of object detection models.

The training loss of YOLOX-Swin is shown in Fig. 6,
which shows that the model gradually converged after 250
rounds of training according to the loss curve. Because of
the cessation of the Mosaic data augmentation at the epoch
of 340, a significant decrease in the training loss occurred.
Overfitting did not occur during the training process.
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Fig.6 Loss curve

In this study, a series of ablation experiments was me-
ticulously designed to systematically evaluate the effect of
YOLOX improvements on the network performance utili-

13

zing the lightweight network structure “-s.” Three com-
prehensive experiments were conducted to rigorously vali-
date the effects of the improvements on the performance
of the YOLOX model, where all training parameters were
consistently maintained. The model performance detec-
tion outcomes are listed in Table 1, where “\/” denotes
the strategy employed in the improved model and * x”
signifies the strategy that was not incorporated in the im-
proved model. Meticulous analysis of the experimental
results revealed that Improvement 1 involved the modifi-
cation of the original CSPLayer module to the CSPSwin
module, which effectively fused both CNN and sliding
window transformer modules to enable extraction of local
and global features from the image in the backbone fea-
ture extraction network. This modification resulted in an
increment of 7 x 10° in the number of parameters and a
noteworthy improvement of 0. 9% in mAP. Furthermore,
Improvement 2 entailed the addition of the CBAM ( chan-
nel and spatial) lightweight attention module based on
Improvement 1, which greatly enhanced the model ability
to extract informative features in both channels and spatial
dimensions. Despite a slight increment of 1 x 10° in the
number of parameters, this improvement led to a consid-
erable improvement of 0. 6% in mAP.
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Table 1 Comparison of the algorithm performance

Method CSPSwin ~ CBAM  Parameters/10° mAP/%
YOLOX X X 9.0 68.8
Improvement 1 VvV X 9.7 69.7
Improvement 2 vV VvV 9.8 70.3

2.2 Numerical simulation of fire smoke

The biomedical building under investigation in this
study was limited to the main building, which spanned a
single floor with a total construction area of approximate-
ly 1 800 m® and a height of 57.3 m. The detailed floor
plan of the building is shown in Fig. 7, which indicates
the location of staircases on the east and west sides, along
with three passenger elevators on the west side and one
fire elevator on the east side. Fig. 7 also shows the back
and front elevation views of the building, providing a
comprehensive visual representation of its structural char-
acteristics.

(b)

Fig.7 Front and rear elevation views. (a) Front-elevation view;
(b) Rear elevation view

2.2.1 Model establishment

This study presents a numerical simulation study of
fire-smoke dynamics during the construction phase of a
building, considering the limitations of software modeling
and the nonoccurrence of actual fires. To simplify the

model, the underground structure, structural beams, and
columns were omitted. The walls were assumed to have a
uniform thickness of 200 mm, whereas the slabs were set
at a consistent thickness of 150 mm. The installation of
external glass curtain walls was not completed on any
floor, and only shear walls were constructed indoors.
Filling walls and lightweight partition walls were not in-
cluded in the model. The walls and slabs were assumed to
be constructed of nonflammable concrete materials, and
wooden templates were piled up in the room where the
fire occurred, in which the wooden template material re-
mained on the walls as per the main construction phase.
Doors and windows were not installed during this phase,
and in the model, windows and doors were represented as
reserved holes to allow for automatic ventilation. No fire
facilities such as smoke exhaust, fire hydrant, or auto-
matic sprinkler systems were assumed to exist in the
building. The mesh size used in the simulation was set at
0.5 mx0.5 mx0.5 m, resulting in a total of 682 000
grids.

2.2.2 Fire scene and prerequisites

As a combustible material commonly used in concrete
pouring during the construction period of buildings, wood
formwork material is often the cause of fires that occur
during the main structure phase. Therefore, in this study,
wood formwork material was selected as the combustible
material for simulation. The fire room was surrounded by
wood formwork material, and piles of wood formwork
were present in the room.

The fire source size was 1 m x 1 m, and the central co-
ordinate was (36, —12.5,1). The fire rapidly developed
in a square form, and the maximum heat release rate of
the fire source was 3 2906 kW/m’. The prerequisites were
as follows. 1) The combustion reaction of n-heptane,
which was more suitable for actual conditions, was select-
ed. 2) The ignition material was yellow pine from the
software material library, and the default parameters of
the software were used. 3) The airflow caused by the
movement of construction personnel was not considered.

The boundary conditions were as follows: 1) No tem-
perature difference exists between the building indoors
and outdoors. The initial environmental temperature was
set at 20 C, and the atmospheric pressure was standard
atmospheric pressure. 2) The gas inside the building and
the smoke generated by the fire were both ideal gases. 3)
The simulation time of the model was set to 600 s. 4)
Only a vent was set at the top of the model at z =54 m.
2.2.3 Results

During the construction phase of the main building
structure, the absence of installed exterior glass curtain
walls and interior doors and windows created favorable
conditions for the fire, including ample oxygen supply,
stable combustion environment, and efficient ventilation,
as shown in Fig. 8. As the fire progressed, the resulting



380

Xu Zhao and Dai Tianqi

smoke rapidly propagated within the building space. At T
=60 s, the smoke primarily extended outside of the
building on the north-facing facade and quickly ascended
toward the upper floors due to the lack of external glass
curtain walls. At T=90 s, the smoke began to spread to-
ward the third and fourth floors while continuing to rise.
At T =140 s, the smoke reached the ninth floor, with
some infiltrating the seventh, eighth,
while the rest continued ascending. At 7 = 180 s, the
smoke diffused to the top floor, with some also extending
to the twelfth floor, while the remaining smoke was dis-

and ninth floors

charged through the ventilation openings. At this stage,
the smoke started to disperse along the corridor in both di-
rections through the reserved holes on the third and fourth
floors, which filled the upper part of the corridor and
spread toward the upper floors on the east-facing facade.
At T =240 s, the smoke had already occupied the corri-
dors on the third, fourth, seventh, eighth, and ninth
floors and began to spread toward the upper part of the
building on both the east-and west-facing facades. Final-
ly, at T=500 s, the smoke had fully spread throughout
the entire building.

_____'__
—— =
==& —[ =
==k b
B Y e
T e e T
= EE
== LL,
e
== T TTT VT
Jol:d
P T
.
)

]:::;‘

(e) (H)

Fire-smoke diffusion on the front facade at different

Fig. 8
times. (a) T=60 s;(b) T=90s;(c) T=140s;(d) T=180s;(e) T
=240 s; (f) T=500 s

The temperature profile of the smoke at a distance of 2
m above the floor on the first, third, and fourth floors at
T =400 s when the smoke temperature has reached a
steady state was analyzed in this study. The selection of a
2-m height was comparable to the average height of a
person’s head during normal walking. On the first floor,
the high-temperature smoke was primarily concentrated
close to the fire source with a maximum temperature of
98.5 T, which posed potential risks to human health.
Hence, during the evacuation procedures, rescue person-
nel should avoid traversing areas close to the fire source.
As the smoke propagated to the third and fourth floors
along the building facade, the temperature distribution of
smoke on these floors was similar. The graphical repre-
sentation showed that the high-temperature smoke was
predominantly concentrated in four small rooms, and the
smoke subsequently spread to the corridors and adjacent
rooms through the reserved holes, which led to an in-
crease in temperature in the central hall. Notably, be-
cause of the extensive spread of the smoke, the smoke
temperature on the fourth floor was higher than that on
the third floor.

The distribution of carbon monoxide concentration at
the height of 2 m above the floor on the first, third, and
fourth floors at 7 =400 s when the carbon monoxide con-
centration has achieved a steady state was analyzed in this
study. Fig.9 shows that the distribution pattern of carbon
monoxide closely resembled that of the smoke tempera-
ture on these three floors. On the first floor, areas with
higher volume fraction of carbon monoxide were primari-
ly concentrated close to the fire source, reaching a maxi-
mum of 0.25% . Carbon monoxide spread through the re-
served holes on the first floor and along the vertical sur-
face to the adjacent rooms and upper part of the building.
Upon reaching the third and fourth floors, carbon monox-
ide infiltrated through four small rooms and rapidly dis-
seminated throughout the entire floor via the holes. Nota-
bly, Fig.9 shows that the carbon monoxide concentration
on the fourth floor was very much higher than that on the
third floor, and the spread of carbon monoxide was more
extensive, practically filling the entire floor. Consequent-
ly, personnel on the fourth floor faced a greater risk of
On the
third and fourth floors, carbon monoxide predominantly

carbon monoxide exposure during evacuation.

accumulated in the four small rooms and central hall.
Thus,
trapped individuals,
much as possible.

to ensure safety during rescue operations for
these areas should be avoided as

2.3 Simulation of fire evacuation of personnel

2.3.1 Establishment of the simulation environment
The present study used the main building of a biomed-
ical facility as the engineering context for the investiga-

tion. Specifically, the first floor of the building, which
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Fig.9 Distribution of flue gas temperature and carbon monox-
ide at T=400 s. (a) Temperature distribution of smoke on the ground
floor; (b) Carbon monoxide distribution on the ground floor; (¢) Tem-
perature distribution of smoke on the third floor; (d) Carbon monoxide
distribution on the third floor; (e) Temperature distribution of smoke on
the fourth floor; (f) Carbon monoxide distribution on the fourth floor

encompassed an approximate construction area of 1 800
m’, was considered, assuming the presence of a single
designated safe exit. The scenario of a fire outbreak in
Optical Clean Room 2 on the first floor was postulated as
the focal point of analysis. To facilitate the simulation ex-
periment, a grid map with dimensions of 27 x 68 was
constructed where each grid cell measures 1 m. The sim-
ulation was implemented using the Matlab software. No-
tably, because of the sensitivity of the ACO algorithm to
its parameter settings, a cautious approach was taken to
ensure reliable results. Prior to conducting the simulation
experiment, the initialization of each parameter was me-
ticulously controlled by altering only one parameter at a
time while keeping the others constant in a series of 10
simulation runs. Subsequently, the results were averaged
to obtain the optimal parameter values for subsequent ex-
periments. This systematic approach guaranteed the ro-
bustness and accuracy of the simulation outcomes. Opti-
mal parameters a =1,8=1.4, 0 =12, m =50, and p =
0.9 were obtained in this manner.

« denotes the importance factor of the pheromone. 8 is
the importance factor of the heuristic function. Q repre-
sents a constant indicating the strength of the pheromone.
m denotes the number of ants. p is the pheromone
evaporation coefficient.

2.3.2 Results

In this study, the experiment was conducted using two
groups: one simulating personnel evacuation before the
occurrence of fire and the other simulating evacuation af-
ter changes in the site environment due to fire. The start-
ing point for personnel evacuation was set at (66. 5,
3.5), whereas the coordinates of the exit were (1.5,
13.5). The improved ACO algorithm was employed to
identify the shortest path for personnel evacuation toward
a safe exit before the fire outbreak. The simulation results
are shown in Fig. 10, where the dotted line indicates the
shortest evacuation path, START represents the starting
point, and GOAL represents the endpoint.

el
START

Fig.10 Simulation results before the fire

Furthermore, information such as the environment tem-
perature and carbon monoxide volume fraction at the fire
scene was obtained, and the red area in Fig. 10 represents
the dangerous grid that was impassable due to the occur-
rence of the fire. The starting and ending coordinates for
evacuation remained the same as those before the fire,
and the results of personnel evacuation path planning are



382

Xu Zhao and Dai Tianqi

shown in Fig. 11, which evidently illustrate that the
growth of fire and its spread rendered nodes (48.5, 7.5)
and (48.5, 8.5) as dangerous grids because of the ele-
vated environmental temperature and carbon monoxide
volume fraction. The algorithm intelligently avoided the
path with the shortest Euclidean distance and instead se-
lected a path with a relatively shorter equivalent distance,
circumventing the fire area and imminent spread area.
This process ensured a more favorable evacuation path
that prioritized personnel safety.

”

GOAL START

Fig.11 Simulation results during the fire

3 Conclusions

1) We implement a fire-smoke detection method based
on the YOLOX-Swin object detection model. At an IOU
threshold of 0.5, the achieved mAP reaches 70.3% . No-
tably, compared with YOLOX,
demonstrates a 1. 5% improvement in mAP while main-
taining a similar parameter volume, indicating superior
performance in flame-smoke detection.

2) We performed a numerical simulation of fire and

our improved model

smoke in construction sites using the PyroSim software.
A model based on the biomedical-building plan is estab-
lished using the PyroSim software. This study analyzes
the probability of fires caused by different combustible
materials at various construction stages and simulates the
combustion of template wood materials during the main
structural construction stage, which is most susceptible to
fires. The obtained smoke temperature and carbon mon-
oxide volume fraction information provides critical data
for path planning for the safe evacuation of trapped indi-
viduals.

3) We propose improved ACO for fire evacuation path
On the basis of basic
ACO, this study enhances the heuristic function and pher-
omone update coefficient by incorporating the characteris-
tics of building fires. This process enables rapid planning
of safe evacuation paths for trapped personnel based on
the on-site fire environment once a fire occurs in a build-

ing.

planning of trapped personnel.
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