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Two-stage attention for rapid underwater image enhancement
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Abstract: A fast underwater image enhancement algorithm is
proposed based on a two-stage attention mechanism to improve
the quality of underwater degraded images. First, the proposed
algorithm adopts a self-attention mechanism within features for
enhancing the attention of the network to important
information. Subsequently, a physical prior-based underwater
transmission map is integrated into the network through a
cross-attention mechanism for further enhancing the feature
representation toward quality-degraded areas. Finally, a
multiple joint loss function is designed using subjective and
objective criteria for guiding the network to better visual
enhancement effects. The experimental results on three
benchmark datasets show that compared with five other
underwater image enhancement methods, the proposed method
obtains higher peak signal-to-noise ratio and structural
similarity scores, exhibiting better performance. Therefore,
the proposed method can effectively restore image color and
texture details along with possessing real-time processing
speed.
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A s an indispensable component of an autonomous
underwater vehicle (AUV)", the machine vision
system has been widely developed for ocean observation,
exploration, and extreme underwater environment opera-
tions. However, underwater images usually suffer from
severe quality degradation, such as color deviation, low
contrast, and blurred details, due to wavelength-depend-
ent attenuation”™ . These degraded underwater images
harm the development of high-level visual tasks, such as
recognition and tracking. Therefore, underwater image
enhancement (UIE) restores clear images from degraded
images and is crucial for vision-guided AUVs.

Numerous UIE approaches have been proposed over the

Received 2023-07-07, Revised 2023-10-13.

Biographies: Yu Jing (1982—), female, doctor, associate research fel-
low, yujing@ nwpu. edu. cn.

Foundation item: The Natural Science Basic Research Plan in Shaanxi
Province of China ( No. 2020JQ-208), Key Research and Development
Program of Shaanxi ( No. 2022GY-285, No. 2020SF-391), Foundation
of Key Laboratory of Road Construction Technology and Equipment of
Chang’an University( No. 300102259507) .

Citation: Yu Jing, Zhang Le, Wu Meng, et al. Two-stage attention for
rapid underwater image enhancement[J]. Journal of Southeast University
(English Edition), 2023,39(4):410 —415. DOI: 10. 3969/j. issn. 1003
-7985.2023.04.010.

years and can be coarsely categorized as traditional and
learning-based methods. Traditional methods tend to
adopt general image enhancement methods targeted at on-
shore scenarios, i. e., histogram equalization'”, Ret-
inex'™™, and the image fusion method'”, completely ig-
noring the large domain shift. In addition, physical mod-
el-based methods'™™ inverts the degradation process. Al-
though their underlying theory is sound, these methods
are usually unstable and sensitive in challenging underwa-
ter scenarios.

Recently, with the advancements in convolutional
neural networks ( CNNs), deep learning-based meth-
ods''”" have dominated the UIE field. U-color''" de-
signed a complex network comprising a multicolor space
encoder network and a medium transmission-guided de-
coder network, but it was computationally inefficient.
UGAN'"?" and FUnIE-GAN'"" used the generative adver-
sarial network ( GAN) or Cycle-GAN to generate clear
images. However, GAN-based methods are highly un-
stable and tend to produce undesirable artifacts. Re-
cently, for the first time, U-shape““ introduced a trans-
former to UIE, but its advantages in self-attention ( SA)
come at the cost of requiring many parameters. By con-
trast, the network architecture of Shallow-UWnet'"”’
concise and thus exhibits favorable processing speed;
however, its enhancement is inferior in quality. Moreo-
ver, most learning-based methods ignore the physical
priors assumed in the degradation process of the tradi-

is

tional methods.
and cons, herein, we attempt to integrate the concise ar-
chitecture, an attention mechanism, and a physical prior
into a single model for finding the balance between ef-
fectiveness and efficiency.

Considering the abovementioned pros

In this paper, we present a two-stage attention ( TSA) -
based network for UIE for exploiting the physical model-
based and data-driven methods. Specifically, SA in a
transformer is first employed for spatial interaction, and
the physical prior of a transmission map that can some-
what reflect the degree of regional degradation is further
involved via cross-attention. Lastly, various losses are
combined from restoration fidelity and visual similarity.
With these improvements, the proposed method balances
computational efficiency and modeling capacity.

1 Proposed Method

1.1 Network architecture

Fig. 1 illustrates an overview of the proposed network
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Fig.1 Overview of the proposed network architecture

architecture. Obviously, the framework is extremely con-
cise, although it is slightly more complex than Shallow-
UWhnet, i.e., it includes the proposed TSA before three

fully convolutional blocks in series. In addition, skip-
connection is used to avoid overfitting.
In particular, for an underwater image I € R"*"** as

input, the network applies a convolution layer with three
kernels and a ReL.U operation for extracting its shallow
features F, e R"*"** . Subsequently, these features F,
pass through the TSA module, chained with three convo-
lution blocks and output deep feature maps. This module
includes two main components: SA and transmission-
based attention (TA). An instance normalization layer is
added to the convolution blocks to ensure the feature in-
dependence between each image. Lastly, a final convolu-
tion layer with three kernels generates the enhanced un-
derwater image.

1.2 Two-stage attention

Unlike convolution, SA excels in capturing long-range
dependencies and aggregating discriminative features. We
introduce SA"” to our framework for reinforcing the at-
tention of the network on more serious color channels.
The basic idea of SA is to adaptively select a small
amount of useful information from input features and fo-
cus on that important information.

Given the features F, from the first Conv-ReLU, SA
calculates the correlation of the same set and outputs the

features F, e R”*"**, as indicated by

F, =F, +softmax(Q"(F)K(F,))V(F,) (1)

where @, K, and V represent 1 x 1 convolution for facili-
tating computation.

SA treats images indiscriminately regardless of the im-
age quality in different regions, neglecting the uneven
distribution of quality degradation in underwater images.
Hence, to mitigate this issue, the physical prior is added
to the degradation process.

Jaffe-McGlamery imaging model'"”

is widely used in
traditional underwater image restoration, which can be

simply expressed as

I'(x) =J(x)T(x) +A°(1 -T(x)) ce{r, g, b}

(2)

where I°(x) is the degraded underwater image captured at
point x; ¢ represents the color channel; J°(x) is the radi-
ance of clear image; A‘ is the homogeneous background
light; T(x) is the medium transmission map indicating
the degree of quality degradation in different regions. In
this paper, the medium transmission map is estimated
based on the general dark channel prior'™*™”,
be computed by

which can

T(x) = max ‘AC —I'(y)

(A€ 1 _ ACY ,g, b} (3
vean \ max(A°, 1 —A°) cefr, g b} (3)

where T (x) is the estimated medium transmission map
and £2(x) represents a local patch of size 15 x 15 centered
at point x.

With the estimated transmission map, the problem is
the way to utilize this physical information.
cross-attention is introduced for incorporating the physical
prior into the network because it enables the effective cap-
ture of the dependence between image and transmission

Here, a

map features by the network. To summarize, our TA can
be formulated as

F, =F, +softmax(1 - Q"(F,)K(F,))V(F,) (4)

where F, e R"*"** is the feature map obtained from the

HxWx64 -
7% is the feature

estimated transmission map and F, e R
refined through cross-attention. The product Q' (F,) -
K(F,) computes the weight of the quality-degraded re-
gions. The function softmax (1 - Q" (F,)K(F,)) indi-
cates that the larger attention weights should be assigned
to regions with higher quality degradation. The use of in-
consistent attenuation in different space areas further im-

proves image enhancement. Therefore, we suppose that
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TSA can improve the network adaptability at different tur-
bidity regions of underwater images, thereby making our
model more adaptable to diverse underwater scenes.

1.3 Loss function

To achieve a good balance between subjective and ob-
jective qualities, we design an integrated loss function in-
cluding the objective criteria of MSE loss L, and Char-
bonnier loss L, and subjective criteria of SSIM loss L
perceptual loss L

ssim

»er » and color loss L, for training. The
overall loss is expressed as

cha

L=AL,+A,L,, +AL,, +A,L_+AL, (5)

cha ssim per

The balance between the overall performance and local
texture details is determined by the hyper-parameters. In
our implementation, A,, A,, A,, and A, are empirically
set to 1, while A, is set to 1 x 10 ~° considering the loss
range.

L, loss measures the difference between the enhanced
image J and reference image J as

L, = 2 2 [JCij) =J(i))]1° (6)

Charbonnier loss™ adds a regularization term to L,
loss and is expressed as

L,, = ; ; [JGij) =JG) ] +e  (T)

This
loss function is sufficiently robust to handle outliers and is
thus stable during training. These objective criteria also
tend to be global, which is easily observed.

We consider local structures and details that comple-
ment the abovementioned objective losses. To measure
these factors, the similarity index ( SSIM) loss is incor-
porated to impose structural similarity between the recov-
ered and reference images. S represents SSIM. The loss
function for the SSIM can be written as

In our implementation, & is set to be 1 x 10 ~°.

Lssimzl_S(j’J) (8)

In addition, the discrimination on high-level semantic
feature representation is also considered important. We
compute the perceptual loss on the VGG-19"" network
pretrained on the ImageNet dataset ™', as indicated by

L = X X [ 0,(JG0)) -~ [ (9)

where @, is the [-th convolution layer of VGG-19.

To remove the color deviations of underwater images,
we also introduce color loss in Lab space'"*’ because Lab
space makes the color better distributed. It is defined as

L, = (LGi.) =1,3i,j)" = Y, ala;) xlog(q(a,)) -
D, a(b;) xlog(q(b,)) (10)

where ¢ stands for the quantization operator. Lab image J
is divided into three channels, including lightness /,, com-
ponent a,, and component b,. It is quantized to calculate
the cross-entropy loss between the enhanced and reference
images on different channels in Lab color spaces.

2 Experiments
2.1 Experimental settings

To evaluate our approach, three publicly available
benchmarks are used: UIEB!" s LSur* , and UFO-
12'%'. UIEB contains 890 real-world underwater images
with manually selected reference images. The LSUI data-
set includes 5 004 natural underwater image pairs and in-
volves highly diverse underwater scenes, object catego-
ries, water types, and lighting conditions. The UFO-120
dataset comprises over 1 500 images collected from oce-
anic explorations from multiple locations.

Following U-shape "', we randomly divide LSUI into
Train-14500 (4 500 images) and Test-L504 (504 ima-
ges) for training and testing, respectively. Similarly, we
divide UIEB into Train-U800 (800 images) and Test-
U90 (90 images). Meanwhile, UFO-120 is only used for
cross-dataset testing (1 500 images) .

We evaluate using PSNR and SSIM metrics, reflecting
the proximity to the reference. A higher PSNR score indi-
cates closer image content, while a higher SSIM score re-
flects a more similar structure and texture.

Our network was implemented using the Pytorch
framework with an NVIDIA GeForce RTX 3080 Ti
GPU. We trained the network using an Adam optimizer
with a learning rate of 2 x 10 ™* and a layer dropout of
0.2. The model is trained for 500 iterations with a batch
The detailed architecture of our network is
shown in Table 1.

size of 1.

Table 1 Detailed architecture of the proposed network

Layer In channel  Out channel Kernel size  Stride Pad
Convl 3 64 3 1 1
Conv2 1 3 3 1 1
Conv3 64 64 3 1 1
Conv4 64 3 3 1 1

2.2 Experimental results
2.2.1 Quantitative comparison
Quantitative results of different UIE algorithms on Test-
U90 and Test-L504 are presented in Table 2. On these
two datasets, the proposed method clearly outperforms all
other competing methods in terms of PSNR and SSIM
metrics. Our model trained on a larger dataset, namely
LSUI, can achieve much higher PSNR and SSIM scores.
Furthermore, we conduct a cross-dataset experiment.
These methods are trained on Train-L4500 and tested on
UFO-120. Table 2 indicates that among all these meth-
ods, our approach obtains the highest PSNR and SSIM
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Table 2 Evaluation of various methods on UIEB, LSUI, and
UFO-120 datasets

Test-U90 Test-L504 UFO-120

Method PSNR SSIM PSNR SSIM PSNR  SSIM
UGAN 20.68 0.86 22.13 0.81 22.76 0.76
FURIE-GAN 19.45 0.86 23.72 0.78 23.45 0.74
U-color 20.78 0.87 23.47 0.80 21.87 0.74
Shallow-UWnet  21.27 0.81 22.81 0.85 24.70 0.73
U-shape 22.54 0.82 26.45 0.85 24.20 0.76
Ours 24.96 0.88 28.15 0.88 25.55 0.79

scores, revealing the model’s superior generalization ca-
pability over other methods.
2.2.2 Qualitative comparison

Fig. 2 shows a visual comparison of various methods on
Test-L504. The numbers presented in the top-right corner

(a) (b) (¢) (d)

Fig.2 Visual comparison of underwater images from TEST-L504. (a) Raw images;

GAN; (e) U-color; (f) U-shape; (g) Our method; (h) Ground truth

(b)
Fig.3 Visual comparison of underwater images sampled from UFO-120. (a) Raw images; (b) Shallow-UWnet; (c) Our method; (d)
Ground truth

(a)

2.3 Model capacity and efficiency

Table 3 presents the model size and inference time. All
methods are tested on a PC with a single NVIDIA Ge-
Force RTX 3080 Ti GPU. Shallow-UWnet and our meth-
od clearly outperform others, while U-color is the most
time-consuming among all because of its complex net-
work. Our approach can process one image in 0.03 s, in-

dicating its superior computational efficiency.

of each image refer to its PSNR. Among these methods,
Shallow-UWnet exhibits the largest number of color arti-
facts and haze. UGAN and FUnIE-GAN fail to recover
color and structural texture details. U-color provides a
better color appearance but fails to comprehensively en-
hance the details. Although U-shape has a relatively good
visual quality for human observers, color artifacts exist in
some regions. By contrast, our results are the most con-
sistent with the reference image in terms of human visual
perception and texture details. Moreover, Fig. 3 illus-
trates the cross-dataset enhancement results of Shallow-
UWnet and our method on UFO-120 while training on
Train-L4500. Our method still achieves higher quality
than Shallow-UWnet. The PSNR of each image is presen-
ted in the top-right corner of each image.

(e) () (2) (h)
(b) Shallow-UWnet; (c¢) UGAN; (d) FUnIE-

(c) (d)

Table 3 Model capacity and efficiency comparison

Method P/10° R/s
UGAN 57.17 0.81
FUnIE-GAN 4.21 0.20
U-color 148.77 7.80
Shallow-UWnet 0.22 0.02
U-shape 11.09 0.09
Ours 0.31 0.03

Note: P is the number of trainable parameters; R is the inference time

of an image.
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2.4 Ablation study

To demonstrate the effect of each component of our
model, we conduct the following ablation studies on
UIEB, including the model without a TSA module (w/0o
TSA), the model without L, + L, + L, (w/0 Loss),
and the full model. As presented in Table 4, our full
model achieves the best quantitative performance, verif-
ying that our TSA module and the delicately designed loss
functions are integral to the proposed method.

Table 4 Ablation study

Method w/0 TSA w/0 Loss Full model
PSNR 23.68 22.15 24.96
SSIM 0.87 0.82 0.88

2.5 Application test

To further verify the effectiveness of our method for
high-level vision tasks, it is applied as a preprocessing for
an underwater depth estimation algorithm '’ and a seman-
tic segmentation method' .
parison of various enhancing methods for these two tasks.

Fig. 4 shows a visual com-

Our method obviously generates more accurate and con-
sistent estimates of depth maps and semantic segmentation
than other methods, indicating its superiority for high-
level vision tasks.

3 Conclusions

1) We combine a concise CNN with an attention mech-
anism in a transformer via comprehensive investigations

(a) (b) (¢)
Fig.4 Underwater depth estimates and semantic segmentations of different methods. (a) Raw image; (b) UGAN; (c) FUnIE-GAN;
(d) U-color; (e) Our method; (f) Ground truth

of the status quo of UIE, integrating the physical prior of
the transmission map into attention.

2) The fidelity and similarity losses are adopted to
guide the network to obtain better objective indicators and
visual quality, thereby achieving a good balance between
subjective and objective qualities.

3) Extensive experiments prove that the proposed
method achieves state-of-the-art performance on several
recent benchmarks in terms of visual quality and quantita-
tive metrics.
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