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Abstract: To enable accurate vessel recognition for bridge
collision avoidance and early warning, an image dataset for
vessels in bridge channels is established using cameras and
data augmentation. This dataset includes complex scenarios
such as long distances, multiple targets, and low visibility.
Subsequently, the you-only-look-once version 5 ( YOLOVS)
model is employed as the basic detector, and several
modifications are applied to its network structure. Key
enhancements involve replacing C3 modules in the backbone
network with C2f modules, integrating the squeeze-excitation
attention mechanism into the feature fusion network, and
optimizing the prior anchors of the dataset using the K-
means ++ clustering algorithm. Finally, the modified model
undergoes training and validation using PyTorch as the deep
learning framework. Results demonstrate that the mean
average precision for crucial vessels in the modified YOLOVS
model reaches 99. 4%, representing an 11. 1% improvement
compared to the original YOLOvVS model. Additionally, the
inference speed is measured at 102 frame/s. The established
YOLOV5S model is a reliable and efficient cornerstone for
warning against vessel-bridge collisions in complex navigable
scenes.
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squeeze-excitation

he rapid development of water transport has substan-
tially increased the quantity and tonnage of vessels in
channels. Thus, the navigation environment near bridges
is becoming increasingly sophisticated, raising the risks

1 .
UV Protective structures are

of vessel-bridge collisions
usually arranged around piers to avoid vessel-bridge colli-
sions or reduce the impact force, but this passive ap-
proach cannot prevent collisions. Identifying and warning
vessels with a high risk of colliding with a bridge is an

active way to avoid this problem. Vessel detection is the
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primary step to warn of collisions. After the vessel targets
are detected, their geographical coordinates can be ob-

tained by homography'”’,

which provides information
support for early warning. Therefore, the recognition ac-
curacy and classification performance of vessel targets are
crucial for the anti-collision measures of bridges and the
navigation planning of vessels'"'.

In general, vessel detection methods are classified into
manual observation, shallow feature-based methods, and
deep learning-based methods'*'. Particularly, manual ob-
servation involves reliability, and it is difficult to find
distant vessels in time and accurately judge the character-
istics of vessels. Shallow feature-based methods generally
include three steps: region selection, feature extraction,
and classification. In particular, feature extraction mainly
refers to artificially designed features, such as edges, tex-
tures,

constant during the detection process, resulting in the

and colors. The scale of these features remains
poor performance of shallow feature-based methods in so-
phisticated environments"”'. Recently, driven by pixel-
level feature extraction of deep neural networks, deep
learning-based target detection methods have begun to
emerge'”. Such methods can be divided into two catego-
ries: two-stage target detection algorithms, generally in-
cluding R-CNN, Fast R-CNN, and Faster R-CNN, and
single-stage target detection algorithms, mainly including
SSD and YOLO series”””". The two-stage detection algo-
rithm has a long inference time due to the candidate re-
gion. The YOLO series has good accuracy and fast infer-
ence speed, which play an important role in one-stage de-
tectors in object detection tasks. For instance, Shao et
al. '™ built a large-scale dataset of vessels by monitoring
cameras in a deployed coastline video surveillance system
called SeaShips. The reliability of SeaShips was verified
using YOLOV2, which advances research and applications
on vessel detection. Li et al." proposed an enhanced
YOLOV3 tiny network for real-time vessel detection, and
an attention module named CBAM was introduced into
the backbone network. The detection accuracy of the
proposed algorithm on the SeaShips dataset was better
than that of the original YOLOv3 model. Lee et al. """
constructed a virtual image-based dataset using Unity to
overcome the difficulty of obtaining vessel images, and
vessel detection was performed using the deep learning-
Thus,

based detection model. the entire detection
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showed a good performance. Existing studies generally
use open datasets or self-built datasets to train deep-
learning models for vessel detection. These datasets do
not cover complex navigable scenarios in channels near
bridges, so the accuracy and robustness of deep-learning
models cannot meet the requirements of vessel-bridge
collision warnings.

In this study, to achieve the first step of vessel-bridge
collision warnings, a dataset for the detection task of ves-
sels in channels near bridges is augmented, and a modi-
fied YOLOv5-based detector is proposed. C2f modules
and squeeze-excitation (SE) attention mechanisms are in-
tegrated into the detector. Finally, the accuracy and ro-
bustness of the modified YOLOvS5 model are verified
using the augmented dataset.

Backbone

1 Methodology for Computer Vision-based Ves-
sel Detection

1.1 Overview of the base detector YOLOvV5

As the representatives of the YOLO series, YOLOV3,
YOLOv4, and YOLOVS have greatly improved the accu-
racy and speed of network detection by introducing resid-
ual network structure, data enhancement, and a focus
module. Among these models, YOLOv5 has higher de-
tection accuracy and detection speed and is easier for net-
work deployment. Thus, YOLOVS is selected as the base
detector for vessel detection in this paper. The YOLOvVS
network comprises four parts: the input, the backbone
network, the neck network, and the head"". Its original
architecture is shown in Fig. 1.
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Fig.1 Architecture of the original YOLOVS network

As shown in Fig. 1, the input images of different sizes
are scaled to 640 x 640 pixels. The backbone network is
used to extract image features. In the backbone, the focus
module is used to slice the image and halve its pixel size.
Then, the image features are extracted by Conv, C3, and
SPP modules. The Conv module is used to double the
number of channels in the feature map. The C3 module is
a residual structure composed of the Conv and the Bottle-
neck. The C3 module adopts the idea of extraction and
diversion of CSPNet, which can enhance feature extrac-
tion ability. The SPP module takes the maximum poo-
ling of the image features with convolution kernel sizes
of 5 x5, 9x9, and 13 x 13, and then feature extraction
efficiency is increased. The neck network is used to fuse
the partially extracted features of the backbone net-
work'“”'. The detection head is based on the non-maxi-
mum suppression to output bounding boxes. There are

three detecting layers in the head: 80 x 80 for small ob-
jects, 40 x40 for medium objects, and 20 x 20 for large
objects.

1.2 Modifications of YOLOYV5 for vessel detection

YOLOVS5 has achieved good results on open datasets,
e. g., PASCAL vOC'"" and COCO"?.
only include a few ship targets, underlying the perform-
ance of YOLOVS5 for detecting vessels under sophisticated
scenarios with long distance, multi-target detection, and
low visibility''”. Therefore,
YOLOVS5’s architecture are proposed to enhance the gen-
eralization ability and detection performance of the net-
work. The modifications are as follows: Five C3 modules
in the backbone and neck networks are replaced by C2f
modules, and two SE attention mechanisms are embedded

These datasets

some modifications of

in the backbone and neck networks.
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The C2f module combines the idea of ELAN structure
based on the principle of the C3 module, which can make
the backbone network obtain more abundant gradient flow

information while ensuring its lightweight'”’. The SE at-

tention mechanism is essentially a squeeze-excitation net-
work (SENet). The structure of SENet is shown in Fig.
2181,
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Fig.2 Structure of SENet

In Fig.2, F, represents the convolution operation; F_,
represents the compression of features; F__represents fea-

ture extraction; F_ _ represents the recalibration of fea-

scale
tures; X represents the input feature map; U represents a
new feature map; h,, w,, and c, represent the length,
width, and number of channels of the input feature map,
respectively; h, w, and c represent the length, width,
and number of channels of the output feature map, re-
spectively; and X, represents the output feature map.

First, the input feature map X is transformed to gener-
ate a new feature map U. Then, U is squeezed, and the
global spatial information is squeezed into a channel de-
scriptor.

f=Fyu) = = Y uli (1)

where z_ represents the global descriptor for the c-th chan-
nel, and u, represents the value of each point on the char-
acteristic graph channel.

Second, the complexity degree of the model is reduced

e

Bottleneck

o} ) -

and the generalization ability of the model is enhanced.
The calculation of the excitation factor can be expressed
as

s,=F (z.,w) =a[W,8(W,z,)] (2)

where s, represents the excitation factor for the c-th chan-
nel; o and 6 are the ReLU and sigmoid activation func-
tions, respectively; and W, and W, are the weights of the
dimension reduction and dimension increase, respectively.

The final output of the block is obtained by rescaling U
with the activations s :

XL' :Fscale(uz" SL') = scuc (3)

The addition of the C2f and SENet can improve the
performance of convolutional neural networks, which is
conducive to improving the detection accuracy of small
targets and the generalization ability of the model. Conse-
quently, the modifications of YOLOVS’s architecture are
shown in Fig. 3.

Another two C2f

Part of the backbone

Fig.3 Modifications of YOLOVS’s architecture
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1.3 Data collection and augmentation

A total of 568 images are selected from an open dataset
provided by IC-SHM 2022'"*!, as well as from captured
images. These images mainly include four common types
of ships: fishing ships, cargo vessels, sand vessels, and
cruise vessels. Fishing ships are small vessels, whereas
the other ships have large tonnage. Their impact on a
bridge will cause great structural response and even affect
structural safety, so they are crucial objects for detection.
However, the amount of the collected data is relatively
small, which may lead to overfitting problems in the

(a) (b)

Then, Labellmg software, a commonly used image an-
notation tool,
quently, 4 674 vessel targets are annotated in the dataset.

is used to annotate the dataset. Conse-

1.4 Optimization of priori anchors

The priori anchor in YOLOVS5 can be defined as the
most likely width and height of an object to detect objects
concentrated in agrid''"!. This definition adds another di-
mension to the output label. The numbers and sizes of an-
chors affect the detection speed and precision. The
anchors’ sizes of the original YOLOvS model are obtained
based on the clustering of the COCO dataset. Although
the COCO dataset includes many categories, the anchors
are more suitable for indoor objects and less relevant to

12
vessels'"”

, which may lead to a deviation in the positio-
ning accuracy of targets. To make anchors more suitable
for vessel targets and improve positioning accuracy, the
K-means + + algorithm is applied to automatically deter-
mine the priori anchors in the training dataset. Cluster
analysis results based on K-means++ are shown in
Fig. 5.

The anchors’ sizes of each detecting layer before and
after clustering are shown in Table 1. Then, the sizes of
anchors after clustering are used to correct the previous
anchors.

process of model training. Therefore, the data augmenta-
tion technique is used to increase the diversity and com-
plexity of the data. The data augmentation methods in-
clude translation, clipping, rotation, mirroring, changing
brightness, increasing noise, and cutout'. A total of
3 700 images are selected to build the dataset, of which
2 220 are used for training, 740 for validation, and 740
for testing. The dataset covers all possible image chan-
ges, e.g., backgrounds, angles, and times. All images
are (RGB) three-channel images and 1 920 x 1 080 pixels
in size. Example images of four ship types in the dataset

are shown in Fig. 4.

(¢) (d)
Fig.4 Example images of four ship types. (a) Fishing ships; (b) Cargo vessels; (c) Sand vessels; (d) Cruise vessels
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Fig.5 Cluster analysis results based on K-means ++

Table 1 Anchors before and after clustering pixel

Detecting Anchors before Anchors after
layers clustering (W, H) clustering (W, H)
1

20 x 80 (10,13), (16,30), (15,14), (30,23),
(33,23) (47,29)

40 x40 (30,61), (62,45), (80,39), (112,47),
(59,119) (143, 40)

20 x20 (116,90), (156,198), (192,72), (148,116),

(373,326) (317, 146)

Note: (W, H) represents the width and height of anchors.
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2 Case Study

2.1 Experimental configuration and evaluation indi-

cators

The operating system is Windows 10, the GPU model
is NVIDIA GeForce RTX 1080Ti, the compiler language
is Python 3. 8. 3, the deep learning framework is PyTorch
1.7.0, and the CUDA version is 10.2. The gradient de-
scent algorithm is used to train 160 epochs throughout the
process.

In this experiment, the average precision ( AP) and
mean average precision ( mAP) are selected as the
evaluation indexes of model detection ability. The AP
comprehensively reflects the detection accuracy of one

—— Improved YOLOv5+AUG+anchors

--—--Improved YOLOV5+AUG
-----Original YOLOV5+AUG

—— Improved YOLOv5+AUG+anchors
--=--Improved YOLOV5+AUG
-----Original YOLOV5+AUG

-~ Qriginal YOLOVS

category. According to the different IOU thresholds,
two types of AP indicators are determined: AP, and
AP, 5., os- The mAP reflects the detection accuracy of
all categories, and there are also the mAP,, and
mAP

0.5: 0.95°

2.2 Model training and verification

Four groups of models are trained: modified YOLOV5
+ AUG + anchors, modified YOLOvV5 + AUG, original
YOLOVS5 + AUG, and original YOLOvVS. “ + AUG” re-
presents the use of data augmentation in the model, and
“ + anchors” represents the use of the K-means + + meth-
od to optimize the anchors. The mAP and loss curves for
the four groups of models are shown in Fig. 6.

—— Improved YOLOv5+AUG+anchors
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————— Original YOLOV5S+AUG
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Fig.6 Loss curves and mAP for four groups of models. (a) Loss of training process; (b) Loss of validation process; (c) mAP

The loss curves demonstrate that the four models con-
verge in the same way during the training and validation
processes. Fig. 6(a) shows that in the training process,
with different degrees of model modifications, the losses
of the models become increasingly smaller, and the loss
of the original YOLOvV5 model decreases substantially af-
ter data augmentation. This result shows data augmenta-
tion, and priori
anchors’ optimization help enhance detector performance,

network architecture modifications,

and data augmentation is the most useful approach when
the data volume is small. From Fig. 6(b), in the valida-
tion process, the modified YOLOvVS model converges fas-
ter and has smoother loss curves than the original
YOLOVS model. The main reason is the introduced C2f

and SE modules strengthen the models’ generalization ca-
pability. Fig.6(c) shows the value and growth rate of the
mAP of the original YOLOvVS model is the lowest. The
mAP curves of the other three models are generally con-
sistent. The modified YOLOv5 + AUG + anchors and
modified YOLOvV5 + AUG models take approximately 20
epochs to converge, and the original YOLOvVS + AUG
model takes approximately 40 epochs to converge, indica-
ting that the former models require fewer resources for
training and are more lightweight than the latter model.

When evaluating the trained models on the dataset, all
models perform differently for different classes, according
to the AP values and the mAP values,
Table 2.

as shown in

Table 2 AP and mAP of different models %

Fishing ship

Cargo vessel

Sand vessel Cruise vessel Crucial vessel

Detection models

APO.S APO.S:O.QS APO.S APO,S:O,‘)S APO,S APO.S:O‘QS APO‘S APO.S:O.QS mAPO.S mAP0.5:0.95
Original YOLOV5 68.5 4.3 95.8 69.4 97.7 71.8 71.4 63.1 88.3 68.1
Original YOLOV5 + AUG 62.1 39.5 98.1 71.8 99.1 72.5 99.5 75.2 98.8 73.2
Modified YOLOVS + AUG 69.6 46.8 98.4 73.5 99.2 73.2 99.5 78.6 99.0 75.1
Modified YOLOVS + AUG +anchors ~ 72.7 49.5 99.2 75.1 99.5 74.7 99.5 80.6 99.4 76.8

With the data augmentation, the addition of the C2f
and SE, and the optimization of anchors, the precision
of all categories has been promoted, as shown in Table

2. The final mAP,, and mAP, .., for cargo vessels,
sand vessels, and cruise vessels of the modified

YOLOVS5 + AUG + anchors model reach 99. 4% and
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76.8% , respectively. Compared with the original
YOLOV5 model, the values are improved by 11. 1%
and 8.7% . The results of the modified YOLOVS + AUG
+ anchors-based vessel detection for vessel-bridge colli-
sion warnings under complex navigable scenes are shown
in Fig.7. From Fig. 7, under complex scenes such as a

G09-20220806%1sand ship 0.9

G09-20220006%10353€  fishing shi

G09-20220006%] 0332&};?;3
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far distance of targets, a small size of targets, multiple
targets, and low visibility of targets, the precision for
crucial vessels of the modified YOLOVS + AUG + anchors
remains at a high level, which can meet the requirements
of high precision-based vessel detection.
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Fig.7 Typical examples of detected vessels on the testing dataset. (a) Short distance; (b) Long distance; (c) Multiple objects; (d) Low

visibility

2.3 Real-time detection

The detector for vessel-bridge collision warnings
should not only be equipped with high precision but also
have a fine inference speed. Therefore, the best weight

of the trained modified YOLOvVS5 + AUG + anchors is ex-
tracted to detect vessels in a video of 25 frame/s contin-
uously. Examples of real-time detection are shown in
Fig. 8.

(d)
Fig.8 Typical examples of detected vessels on a video. (a) First frame; (b) 100th frame; (c) 250th frame; (d) 600th frame; (e) 1 000th
frame; (f) 2 000th frame

(H)
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During the test, the inference speed of the model is 102
frame/s, capable of the video detection task. As Fig. 8
shows, when a very small part of the sand vessel appears
in the video, it is mistakenly detected as a fishing ship.
Instantaneously, the model makes a correct recognition,
and the AP is up to 96% . With the departure of the ves-
sel, until the vessel is close to the bridge, the AP can still
reach 93% . These results show that the model proposed
in this paper is satisfactory for real-time detection per-
formance and robustness.

3 Conclusions

1) With the addition of the C2f and SE modules, the
modified YOLOv5 model has better generalization capa-
bility than the original YOLOvVS model and is more light-
weight for model training.

2) The computer vision-based model proposed in this
paper has The final mAP,
mAP, ., for crucial vessel targets reach 99. 4% and
76.8% , respectively, 11.1% and 8.7% higher than that
of the original YOLOvVS5 model.

3) In a real-time video scenario, the AP values are be-
tween 93% and 96%, and the inference speed is 102
frame/s, which agrees with the requirement for preci-
sion, reliability, and real-time vessel detection. The es-

high precision. and

tablished model can provide information for subsequent
anti-collision warnings of bridges under complex naviga-
ble scenes.

4) In future research, the geographical coordinates of
detected vessels will be further determined by homogra-
phy, and the dataset will continue to be explored to test
the applicability of the model in case of inclement weath-
er.
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