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Abstract: To address the issue that conventional disturbance
observer (DO) design did not consider actuator saturation,
which is prevalent in practical systems, a DO-based control
(DOBC) strategy with anti-windup compensation is proposed.
First, the reason of windup phenomenon in the conventional
DOBC when the actuator is saturated is studied. Then, an
anti-windup compensator is designed by minimizing the
performance index, and patched to the DO so that the
modified DOBC can effectively handle actuator saturation.
Finally, local asymptotic stability analysis is performed on the
resulting closed-loop systems. Comparative simulation results
show that when there is actuator saturation, the proposed
method has smaller errors in position tracking and disturbance
estimation, and the designed compensator can maintain the DO
states to be as close as possible to those without actuator
saturation. This verifies that the proposed method is superior
in anti-disturbance and anti-windup.
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n practical control systems, external disturbances and
I internal parameter uncertainties are inevitable, leading
to adverse effects on control performance or system stabil-
ity' ™. Attenuating their adverse effect through feedback
control has received considerable attention across many
applications, from motion control™ to attitude control" .
However, the actuator has limited operating range to im-
plement the calculated control law'”. This makes disturb-
ance rejection control more challenging because actuator
saturation alone may lead to performance degradation,
such as large overshoot, limit circle, or even divergence.
Therefore, addressing the challenge of rejecting disturb-
ances and uncertainties using saturated control is impera-
tive for theoretical developments and practical applica-
tions.
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To attenuate the adverse effects of disturbances and un-
certainties, several approaches have been developed,
which can be categorized into passive and active approa-
ches. Robust control and sliding mode control are typical
passive approaches where robustness against uncertainties
is considered at the outset of the control design. Disturb-
ance observer-based control ( DOBC)'" and active dis-
turbance rejection control ( ADRC)™ are typical active
approaches, where a disturbance estimator rejecting dis-
turbances and suppressing uncertainties is designed and
augmented with the nominal control addressing nominal
performance specifications and stability. The latter ap-
proach has received considerable attention owing to its
promising features, such as the preservation of the nomi-
nal performance and the “separation principle”™ .

There are two main approaches for handling actuator
saturation'”'. The first approach considers control con-
straints at the outset of control design (e. g., nested feed-
back design™ and model predictive control™). The other
approach designs a nominal controller for handling nomi-
nal control performance/specifications without actuator
saturation and designs an anti-windup compensator that
"1 The latter
approach has received considerable attention owing to its

attenuates the effect of actuator saturation'

fine properties, such as nominal control performance re-
covery. Recent work on the latter approach is primarily
focused on stability analysis under an anti-windup control-
ler, i.e., designing an anti-windup gain that maximizes
an estimation for the domain of attraction (or domain of
performance with level y) of the closed-loop system'™""
However, there is limited work on disturbance rejection
control using saturated controllers, although this problem
is receiving increasing attention'”"'®. Nguyen et al.'”
considered disturbance attenuation with input saturation by
incorporating the saturation nonlinearity into the control
design using linear matrix inequality. However, the dis-
turbances therein are assumed to have a limited H_ norm.
Errouissi et al. " and An et al. " conducted different
modifications on disturbance observers for practical appli-
cations. However, these approaches may lack theoretical
analysis, such as the effect of disturbances on the stability
region. Ran et al. "™ mainly considered how the conven-
tional ADRC can guarantee the local stabilization with ac-
tuator saturation by replacing u with sat(u#) and how to
estimate the region of attraction for linear systems. Yu et
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al. "' investigated disturbance rejection control for the
networked control systems with actuator saturation to
achieve input-to-state stability. It is worth noting that the
result'" "' is a type of static anti-windup controller.

In this study, we consider disturbance rejection control
for uncertain systems with actuator saturation. A conven-
tional DOBC is introduced to preserve the nominal per-
formance of uncertain systems. Subsequently, a dynamic
anti-windup compensator is designed and patched into
DOBC for actuator saturation mitigation. The dynamic
compensator is derived in a natural way using an optimal
approach with a reasonable performance index!"”’, which
can maintain the DO states as close as possible to those
without input saturation. Inspired by the results'®, local
asymptotical stability analysis is performed to evaluate the
effects of unknown disturbances on the stability region.

1 Disturbance Observer-Based Control

Here, consider an uncertain system with actuator satu-
ration as follows:

¢ =Ax + B, sat(u) +B,d
x =Ax , sat(u) ) } ()

y=Cx

where x e R", y e R”, u eR’, and d € R” are the system
state, controlled output, control input, and unknown dis-
turbances/uncertainties, respectively; A, B,, B,, C are
the system, input, disturbance, and measurement matri-
ces with admissible dimensions, respectively. The actua-
tor sat(u) is modeled as follows:

| u, u

u. <Uu,
sat( Ml-) :{ i lim,

sign(u,) uy, otherwise

where u,,, is the maximum amplitude of the i-th actuator,
and sign(u,) is the sign of the i-th control input. The ob-
jective is to regulate output y to a reference r while rejec-
ting d using saturated control input sat(u).

1.1 DOBC without saturation

To reject disturbances d on controlled output y without
input saturation (i.e., sat(u)—u), a DO" is designed
to estimate d, which takes the following form:

z=-LB,(z+Lx)-L(Ax+Bu)
} 2)

d=z+Lx
where ¥ e R" and z e R” are the system state and internal
state of DO without actuator saturation; L is the gain ma-

trix; d is the estimated disturbance. Moreover, one can
obtain the dynamic of disturbance estimation as follows:

d=-LB,d+LB,d (3)

By defining disturbance estimation error as e, =d — d
and using Eqgs. (1)-(3), we obtain

¢,= —-LB,e, +d (4)

where - LB, satisfies the following assumption.

Assumption 1 L is designed such that all the eigen-
values of — LB, have negative real parts.

This assumption can be satisfied as long as B, is of full
column rank; otherwise, the redundant variables in d can
be removed such that B, is of full column rank'"”’.

A composite DOBC law can be designed as follows:

u=Kx+K,d (3)

where gain matrices K, K, are determined for state regu-
lation and disturbance rejection, respectively.
Substituting Eq. (5) into Eq. (1) gives

x =Ax + B, K.x +B K,d +B,d =
(A+B K)x+B K/(d-e,) +B,d=
(A+B K,)x-B Ke,+(BK,+B,)d=
(A+BK,)x+B,d-BK,e, (6)

where B, =B K, + B,.

Using Eq. (4) and the stability of — LB,, d—0O im-
plies that e, converges to O regardless of system state x.
After a short convergence time of linear DO (Eq. (2)),
where the convergence rate can be tuned by appropriately
designing the DO gain matrix L, Eq. (6) reduces to

x=(A+BK)x+B,d (7)

To guarantee the stability and disturbance rejection per-
formance in the output channel, gain matrices K, and K,
are designed to satisfy the following assumptions simulta-
neously'":

Assumption 2 A + B K, is Hurwitz to guarantee sta-
bility.

Assumption 3 C[ - (A + B,K,)] 'B, = O holds to
satisfy the disturbance rejection condition.

Assumption 2 guarantees system stability without dis-
turbances, which can be satisfied by the controllability of
the matrix pair (A, B,), and Assumption 3 handles dis-
turbance rejection performance. The left-hand side of the
equation in Assumption 3 is obtained through the transfer
function (with s =0) from disturbances d to output y of
Eq. (7). Therefore, DOBC (Eq. (5)) with DO (Eq.
(2)) can reject the effect of disturbances on output in the
steady state.

Combining Egs. (4) and (6), one can obtain the com-
posite state and disturbance estimation error as follows:

[ed]:[ —L32 0] [ed]+[1 0][d]
X -BK, A+BK |[lx 0O B,lld

-LB, 0
-BK, A+BK,

Considering A, is Hurwitz, one can prove its stability

where A, =
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using the input-to-state stability theory.
1.2 Windup phenomenon

Under input saturation, disturbance estimation and its
error using DO (Eq. (2)) are given by

d=-LB,d+LB,d+LB [sat(u) —ul )
e,= -LB,e,-LB,D, +d

where D, =sat(u) —u.

Both are subjected to the effect of the differences be-
tween saturated input and calculated input D,. The resul-
ting closed-loop system with actuator saturation using
DOBC control law (Eq. (5)) becomes

x =Ax + B sat(u) + B,d =
Ax +Bu + B,d + B,[sat(u) —u] =
(A+B,K)x+B,d+BD,-BK,e, 9)

where 0., =B,D, - B K,e,.

Because e, in Eq. (8) is a function of D,, - B,K_,e,
denotes the effect of disturbance observer ( without con-
sidering input saturation) on the closed-loop system. Ad-
ditionally, the term %, in Eq. (9) denotes the lumped
effect of input saturation on closed-loop systems.

Suppose B, =B,, i.e., the disturbances satisfying the
so-called matching condition, then K, = — I. We first
consider that the control input saturates at positive upper
bound, i.e., D, =sat(u) —u <0, which is either due to
a reference with a positive value or disturbances with a
negative value. For both cases, the amplitude of disturb-
ance estimation d will be larger than the real disturbance.
Consequently, the calculated control amplitude in Eq. (5)
becomes larger. This results in windup due to actuator
saturation.

2  Windup Augmentation

In this section, the main results are given with the
overall diagram in Fig. 1. The block within the dotted
square denotes the modified DO.

Disturbance
observer

Fig.1 DOBC augmented with anti-windup

2.1 Closed-loop dynamics without saturation

We first derive a compact form of the closed-loop sys-
tem (Eq. (1)) without actuator saturation under DOBC
(Eq. (5)) with DO (Eq. (2)). The DO dynamic ( Eq.
(2)) can be written in the following form:

2= —LB,(z+L%) ~L[Ax + B,(K.x +K,(z +Lx))] =
(-LB,-LB,K))z+(-LB,L-1A-LB K, -LBK,L)x
where A, = - LB, - LB K,, B,= -LB,L -LA -LB K,
-LB K,L.
Consequently, the DOBC control law without actuator
saturation is given by

z=Az+Bx } (10)

u=Kz+(K, +K,L)x
which can be seen as a dynamic controller. Under this
control law, the closed-loop system without input satura-
tion is given by
Xx=Ax+Bu+B,d=

Ax +B (K,z +Kx +K,Lx) + B,d =

(A+B K, +B K, L)x + B Kz +B,d
where A, =A + B, K, +B K,L, B, =B K,.

The closed-loop system, including state dynamics and

controller without input saturation, is given by

1o WG]+ o)

Y A, B,
where Y = [;c]’ A, = [Bc Ac].
The asymptotical stability of matrix A, is derived as
follows. By performing a similarity transformation on
matrix A,, we obtain

o 1Mo 7

z
- (11)

X

~LB, 0
BK, A+BK,

which means that the eigenvalues of A, are determined by
the eigenvalues of — LB, and A + B K. Consequently, if
the eigenvalues of — LB, and A + B K, are negative, ma-
trix A, is Hurwitz. Actually, the matrix A, being Hurwitz
should always be guaranteed to ensure the stability of the
unsaturated control system by following Assumptions 1
and 2.

2.2 Closed-loop dynamics with saturation

With actuator saturation, the constrained x-dynamics
corresponding to Eq. (11) is given by

X =Ax + B sat(u) + B,d =
Ax+Bu+B D, +B,d=

Ax+Bz+B,d+BD, (12)

As shown in Eq. (12), once the controller structure
(Eq. (5)) with gain matrices K, K, is predesigned, there
is no design freedom in A, and B,. Additionally, B,d and
B D, cannot be changed. Therefore, the only possibility
is to redesign z in Eq. (12). Note that by changing z, the
disturbance estimation, d, will change and u and D, will
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also change.

Without loss of generality,
technique in anti-windup control'”’, an extra term, &, is
added to the conventional DOBC (Eq. (10)) to attenuate
the effect of actuator saturation. The modified DOBC is
given as follows:

following the common

z=Az+Bx-§ }

(13)
u=K,;z+ (K, +K,L)x

where £ will be further determined.
Based on the modified DOBC (Eq. (13)), the closed-
loop system with input saturation is governed by

=[5 & &

[i] * [Bzd;f}]Du

where Y = [z]
x
2.3 Dynamic compensator

As discussed above, there are generally two approaches
for handling actuator saturation!”. Rather than dealing
with actuator saturation at the outset of control design[m s
the latter two-step-based approach is adopted. It is as-
sumed that the pre-designed DOBC (Eq. (10)) can guar-
antee satisfying closed-loop performance without actuator
saturation. £ is also designed so that the closed-loop dy-
namic (Eq. (14)) with actuator saturation gets as close as
possible to the closed-loop dynamic (Eq. (11)) without
actuator saturation.

By defining e, =z — z and e, =x — x and using Egs.

e
(11) and (14), error dynamics e, = [ z] are governed
ex

by

éz _ Al BZ e, _§ 15
[éx]_[Bc AC][eX]J’[BID,, (15
To investigate the effect of £ and B D, on e, and e,
we perform Laplace transformation on Eq. (15) as fol-
lows:
e, (s) =(s[-A,) e, (0) +(s[-A )“[ —g]
Y Y Y Y B]D

u

(16)

Because e,(0) has no effect on the final result due to
A, being Hurwitz and it can always be chosen such that
e,(0) =0 with z(0) =z(0) and x(0) =x(0), it is omit-
ted in the following derivation.

It is highly desirable to attenuate or remove the effect
of B,D, on e_ by appropriately choosing £&. To this end,
we define
sI-A, -B, 1" 12, Q,

SI—Ac] _[921 'sz]

(s[-A,)) "= _B,

where

I{‘211 :(SI _Az _Bz(SI _Ac) _]Bc) _]’ le :Qlle(SI _Ac) -
Q,=Q.B(s1-A)"', 2,=(sI-A, -B,(sI-A,) 'B)) "
Then, we can obtain the transfer function from

-£ .
[B]Du] to e, (s) using Eq. (16). To ensure that the

transfer function is zero, the following condition must be

satisfied:
(0 nest-a) " [$]=10 net-a0 [ ]
14
which is equivalent to
0,¢£=0,B D, 17)

Using the relation between (2, and £2,,, Eq. (17) is
equivalent to

B.(sI-A,) '¢=BD,

However, matrix B, = B,K, is rank-deficient, except
for the trivial scalar case; therefore, & cannot be deter-
mined uniquely. Even det(B,) #0, how to obtain & in
state space is still an open problem.

An alternative approach is exploited to generate a sim-
ple but reasonable &. Park et al. "' showed that the main
reason for performance degradation under input saturation
is because of the difference in the controller state between
the saturated and unsaturated systems. Thus,
windup design, it is reasonable to derive £ in Eq. (13) by
minimizing the effect of the above differences, i. e.,
minimizing e, rather e,. Inspired by the optimal ap-

in anti-

proach"”, we define an optimal index to derive the ex-
plicit form of £. The optimal index is chosen as the func-
tion of e, which is given by
J=] et (18)
0

Using Parseval’s theorem, the performance index in

Eq. (18) is equivalent to
1 =

J —_—

_ 2
- 2“_] e ” ez(s) ” ds

(19)
where e_(s) denotes the Laplace transform of e, and s =
o +jw, which is a complex variable.

The transfer function from [ B,_li] to e (s) is given by

e,(s)=-Q,£+0,BD, = -0, [£-B(sI-A,) 'BD,]

This means that optimal J is achieved when
£=B(sI-A, 'B,D, (20)

The state space realization of Eq. (20) is given by
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x,=Ax, +B[sat(u) —u] } (21

g = Bzxuw

Consequently, the proposed dynamic anti-windup con-
troller is given by

z=Az+Bx-Bx,
Jéaw =Ax,, +B,[sat(u) —u] }
u=K;z+(K, +K,L)x

(22)

2.4 Stability analysis

Given that a static controller with known disturbance u
=K x + K,d has been pre-designed to make the con-
strained system locally asymptotically stable with a do-
main of attraction, in this section, we address the stabili-
ty of the closed-loop system under the modified control
with unknown disturbance. The stability proof is inspired
by Yoon et al. """ and Kapoor et al'™. To achieve this,
we first introduce the following lemma.

Lemma 1 Here, consider the following cascade sys-
tem:

Z.] :Alzl
. } (23)
z, =f(z,) +g(z,)sat(k (z,) +k,(z,)z))

where z, € R" and z, € R™ are the states of system ( Eq.
(23)); matrix A, is Hurwitz; functions f( + ),g( + ),
k,( -+ ) and k,( - ) are given and locally Lipschitz, and
Z, =0 is a locally asymptotically stable state for the fol-
lowing system ;

z.z :f(zz) +g(zz)sat(k1(zz)) (24)

with a domain of attraction X, C R™, and sat( - ) is
globally Lipschitz and bounded. Then, given any com-
pact subset Z, of X, , the equilibrium of the system ( Eq.
(23)) is locally asymptotically stable with a domain of
attraction S, x §,, where S, is a subset characterized by
matrix A, or X, equivalently, and set S, is a compact sub-
set of X, containing Z,.

For a complete proof of Lemma 1, see the work of
Yoon et al. "'’ and Kapoor et al'"*’. The basic idea is that
z, remains within a compact subset of X, as z, decays to
the origin exponentially. This is achieved as follows. The
second equation of the system (Eq. (23)) can be written
in an equivalent form as

z.2 :f(zz> +g(Zz)Sat(k|(z2)) +
g(zz)[sat<k1(z2) +k2(zz)z1) _sat(kl(zz))]
(25)

where 5., = g (z,) [sat (k, (z,) +k (z,) z,) -
sat(k, (z,) ).

First, it can be proven that the term 7, can be made
arbitrarily small (e.g., | 7,, | <e&.) in a given time ¢
=7 for z, in a bounded area Z, with an appropriately se-

lected bounded area S, for z, , because function sat( - ) is
globally Lipschitz and bounded and z, is exponentially sta-
ble. Then, the nominal system (Eq. (24)) (i.e., system
(Eq. (25)) without perturbation) is locally asymptotically
stable with a domain of attraction X,. Consequently, for
states z, in Z, € X, , only perturbation with sufficient am-
plitude and sufficient time can drive its states out of Z,.
Therefore, bound ¢, can be chosen sufficiently small such
that the system (Eq. (25)) is asymptotically stable.

Next, we formulate the closed-loop systems with actua-
tor saturation ( Eq. (12)) and modified DOBC ( Eq.
(22)) such that Lemma 1 can be applied.

By defining x, =x —x_,, we obtain its dynamic as fol-
lows

aw

X,=x-x,=Ax+Bz+B,d+BD, -
Ax , -BD,=Ax.+Bz+B,d

- b4
Similarly, by defining z, = [x ] , we obtain its dynam-
T

ic as

4 ~ A, Bz 4]
[x'T] B [Bc A, [xT] * [Bzd]
which is asymptotically stable and converges to its equi-
librium z, (e ) if d is a constant or has steady state val-
ue. By defining z, =z, —z, (% ) such that the equilibri-
um is shifted to zero, we obtain

z.l =A,z, (26)

Furthermore, we consider the following closed-loop
system ;

x=Ax +Bsat(u) + B,d =Ax + B,d +

B sat(K,z+ (K, + K,L)x) (27)
Using z, = [ ¢ ] —-z,( ), we obtain
xT
z=[I 0](z +z,(=)) (28)
Substituting Eq. (28) into Eq. (27), we obtain
x=Ax+B,d +Bsat( (K, +K,L)x +
Kd[I 0121(“’ ) +Kd[l 01z1) (29>

where f(z,) = Ax + B,d, g(z,) =B,k (z,) = (K, +
K,L)x +K,[1 Ojil(w),kz(zz)de[I 0].

Egs. (26) and (29) fall into the same format as Eq.
(23) by choosing z, = x; thus, Lemma 1 can be applied.
The results are summarized in the following theorem un-
der the following assumptions.

Assumption 4 Under known d, we assume that the
system x = Ax + B, sat(u) + B,d under the controller u =
K x + K,d is locally asymptotically stable with a basin of
attraction X CR".
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This assumption is the basic design requirement for a
system with input saturation.

Assumption 5 The equilibrium of the constrained sys-
tem x = Ax + B, sat(u) + B,d under control u = K .x +
K,d is unique and is the same as that of the unconstrained
system X = Ax + B,u + B,d under the same calculated
control (u).

This assumption is reasonable, which guarantees that
the control amplitude is sufficiently large to reject the dis-
turbances, at least in the steady state.

Theorem 1 Under Assumptions 1-5, if there exists a
static feedback control law u, = K x + K,d for known d,
which locally asymptotically stabilizes the saturated sys-
tem (Eq. (1)) with a domain of attraction X, , then giv-
en any compact subset Z, of X,, the equilibrium of the
constrained system (Eq. (1)) under the proposed DO-
based anti-windup controller (Eq. (22)) is locally and
asymptotically stable with a domain of attraction S, x S,.
S, CR™""™ is a subset characterized by constant matrix A,
or X, equivalently. Subset S, is a compact subset of X,
containing Z,.

Proof Egs. (26) and (29) follow the same format as
Eq. (23) of Lemma 1. Therefore, the proof can be com-
pleted using Lemma 1.

3 Case Study

A numerical example is presented to demonstrate the
main results. Consider a mass, spring, and damper sys-
tem depicted in Fig. 2. The dynamic can be modeled
based on physical law as follows

mx+bx+kx=F

where the nominal values of mass m, damper coefficient
b, and spring constant k are 1 kg, 20 N - s/m, and 10
N/m, respectively. To define X = [x x f(x - r)de]”

with r being the reference signal, u = F, we can derive a
state space model for the system as

0 1 0 0 0
x=| -F 2 olxe| L csat(u) +a) + O]r
m m m 1
1 0 O 0
0 1 0 0
where A =| -k/m -b/m 0],Bl=[1/m],B,:
1 0 0 0
X
b
m —F
k

Fig.2 Diagram of a mass, spring, and damper system

0

[ 0 ];sat( u) reflects the actuator saturation. The con-
-1

trol objective is to track reference signal r while rejecting
the adverse effect of d with saturated control sat(u).

In this study, a nominal DOBC ( Eq. (5)) without
considering control saturation is pre-designed to satisfy
the nominal performance and specification. The state
feedback matrix in Eq. (5) for state regulation is de-
signed as K, =[ -45 1 -30]. On the contrary,
the disturbance rejection control gain matrix is designed
as K, = — 1 because disturbance d satisfies the matc-
hing condition'>’. The disturbance observer gain ma-
trix is designed as L=[0 10 0] such that - LB, is
Hurwitz. To mimic actuator saturation, the upper and
lower bounds of the controller are set to be +36. The
reference position is given by the following piecewise

function ;
1 0<r<l12s
r(t):{—l 12 s<t<20 s
0 20 s<t<30 s

In the following subsections, comparative simulations
are performed to evaluate the three controllers, including
DOBC without actuator saturation ( DOBC-USAT ),
DOBC with actuator saturation ( DOBC-SAT) , and the
proposed modified DOBC with anti-windup ( DOBC-
ANTI) for external disturbances and parameter perturba-
tions.

3.1 External disturbances

We first compare the performance of the three con-
trollers under external disturbances. An unknown step
disturbance with an amplitude of 45 N is imposed on
the system during 4-8 s. Fig. 3 shows the results under
different controllers,
control inputs, distribution estimations, and z-dynam-
ics.

including position trajectories,

Fig. 3 (a) shows the following observations. First,
without actuator saturation, DOBC obtains satisfactory
performance for reference tracking and disturbance rejec-
tion. Second, under actuator saturation, control perform-
ance will degrade (i.e., larger overshoot or longer set-
ting time ). Third, DOBC-ANTI can substantially im-
prove the performance of DOBC-SAT. The root mean
squared errors ( RMSEs) of the three controllers’ position
trajectories are 0.215 2, 0.284 8, and 0.262 6, respec-
tively. As shown in Fig.3(c), DOBC-SAT fails to ob-
tain external disturbance information due to actuator satu-
ration, whereas the disturbance estimation of DOBC-AN-
TI is close to that of DOBC-USAT. The RMSEs of the
three controllers’ disturbance estimation ( DOBC-USAT,
DOBC-SAT, and DOBC-ANTI) are 2.624 0, 57.976 6,
and 3.286 0, respectively. As shown in Fig.3(d), the
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z-dynamic of DOBC-ANTI is the same as that of DOBC-
USAT, which means that the effect of actuator saturation
on the z-dynamic has been removed by designing an anti-
windup compensator.

201 -~ Reference; --- DOBC-USAT
----- DOBC-SAT; — DOBC-ANTI
10 =
f=
2 0
3
(=}
1.0}
_20 L 1 L 1 L ]
0 5 10 15 20 25 30
Time/s
(a)
100 - -~ DOBC-USAT
----- DOBC-SAT
z sof — DOBC-ANTI
e
S 50+ ’
{
1005 5 10 15 20 25 30
Time/s
(b)
400 R — Real
45t e ---DOBC-USAT
z 300 4204.55.0 N DOBC-SAT
S 200k {{  —DOBC-ANTI
.§ //-“. :’!',
5 100f it
&) 0 '
1005 5 10 15 20 25 30
Time/s
(c)
400
---DOBC-USAT
300+ e DOBC-SAT
A ——DOBC-ANTI
200+ i
n i
OE.(_/_L_I\“‘ v
~1005 5 10 15 20 25 30
Time/s
(d)

Fig.3 Results for external disturbances. (a) Reference tracking;
(b) Control input; (c) Disturbance estimation; (d) z-dynamic

3.2 Parameter perturbations

The effect of parameter perturbations on different con-
trollers is further compared. In the following simulation,
the system parameters are chosen as m = 1. 4m,, k =
0.8k,, and b =1. 3b,, with m,, k,, and b, being the
nominal values. Fig.4 shows the comparative results un-
der this scenario.

Figs.4(a)-(c) show that DOBC can obtain satisfactory
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Fig.4 Results for parameter perturbations. (a) Reference track-
ing; (b) Control input; (c) Disturbance estimation; (d) z-dynamic

performance without actuator saturation. However, the
performance will degrade during actuator saturation be-
cause the disturbance estimation is unrealistic and results
in windup. The proposed anti-windup strategy can miti-
gate the effect of actuator saturation. Specifically, the
RMSEs of the three controllers’ ( DOBC-USAT, DOBC-
SAT, and DOBC-ANTI ) position trajectories are
0.219 0, 0.351 7, and 0.298 8, respectively, and the
RMSEs of their disturbance estimation are 3.417 7,
123.674 8, and 4. 201 2, respectively. As shown in
Fig.4(d) , the z-dynamics of DOBC-USAT and DOBC-
ANTI possess a subtle difference due to parameter uncer-
tainties.
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4 Conclusions

1) DOBC without actuator saturation is designed to
counteract the effects of unknown disturbances/uncertain-
ties. A compensator is also designed and patched into the
existing disturbance observer, resulting in a modified
DOBC with anti-windup ability.

2) Solid stability analysis is performed on the proposed
control inspired by the existing results in the field of anti-
windup control.

3) An academic example is provided to demonstrate
the superiority of the proposed control for disturbance re-
jection and anti-windup. Moreover, the designed com-
pensator can maintain the DO states to be as close as pos-
sible to those without actuator saturation.
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EHEPITHREHNNAHE RSB THHDH =
KA WM s
(R RFaahHLER, & T 210096)
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