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Abstract: To accurately identify sensor faults caused by
complex environmental conditions and ensure that structural
health monitoring systems correctly perceive the structural
state, a self-detection method for sensor nodes based on mean
shift and sliding window techniques was proposed. The self-
stages, i.e., fault
self-detection. During the fault

detection method comprises two
prescreening and fault
prescreening stage, the method rapidly identifies potentially
abnormal data using the quartile method combined with the
sliding window technique, significantly improving the
efficiency of the method. During the fault self-detection stage,
the method employs the mean shift algorithm to perform
adaptive clustering of the abnormal data, effectively detecting
various faults. Data from the Canton Tower were used to test
the effectiveness of the method by setting four types of sensor
faults, offset, drift, and stuck. Then, the
proposed method was compared with extremely randomized
trees, random forests, support vector data description, and
one-class support vector machines. Results show that the
proposed method can detect the four aforementioned faults
with high accuracy and computational efficiency.
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tructural health monitoring provides real-time in-
S sights into structural performance and serves as a vi-
tal technology for ensuring the safety of civil engineering
structures'' . The effectiveness of structural health moni-
toring systems relies on reliable sensor data™. In reality,
sensors are exposed to challenging conditions, such as

. . 67
high temperature and corrosion'®” .

This exposure causes
various failures, such as calibration errors, battery mal-
functions, and hardware defects, which produce abnormal
data or false alerts™"”. Consequently, prompt and pre-

cise detection of sensor faults is crucial'''™*'.
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Sensor fault detection techniques are commonly divided

9 .
®' In centralized

into centralized and distributed methods
methods, a sink node or base station first processes data
from all sensor nodes and then broadcasts the diagnostic
findings across the health monitoring network'”'. Lau et
al. " introduced the centralized naive Bayes detector
method, which detects sensor faults by analyzing the end-
to-end transmission time collected at the sink. Abid et
al. """ employed a centralized technique using the k-nea-
rest neighbor and Euclidean distance. This technique
ranks and clusters data from various sensor nodes to iden-
tify offset and gain faults. Warriach and Tei''”" adopted a
centralized strategy with hidden Markov models, where a
model developed from a training set effectively identifies
offset, gain, and stuck faults. Centralized methods in-
crease network traffic, potentially causing congestion and
detection delays.

Distributed methods either function cooperatively with
neighboring nodes or operate independently. Panda and
Khilar"""" proposed a distributed fault detection algorithm
that identifies faults by calculating the average value from
neighboring nodes. Chen et al. '™ introduced a localized
distributed fault detection algorithm that employs majority
voting techniques to compare data from both local and
neighboring sensor nodes, thereby detecting soft perma-
nent faults. Obst'"”
tributed echo state network method, which exploits the
spatiotemporal correlations among various sensors to iden-
tify multiple faults. Younis et al. ™ proposed a robust
energy-efficient distributed clustering approach to detect
faults through consistent communication between the clus-
ter head nodes and the nodes within the cluster. Distribu-

introduced the spatially organized dis-

ted methods reduce communication with the sink node or

base station; however, communication between nodes
leads to additional energy consumption and detection de-
lays. Hence, proposing a new self-detection method for
faults is imperative.

This study introduces a sliding mean shift (S-MS) fault
self-detection method based on the mean shift algorithm
with sliding window technology. The proposed S-MS
method contains two pivotal phases, i.e., the fault pre-
screening phase and the fault self-detection phase. This
method is insensitive to time variations and effectively de-
offset, drift,

stuck) at different fault rates. This method institutes a

tects four fault types (i. e., gain, and
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fault prescreening phase by incorporating the quartile
method, effectively enhancing the operational efficiency
of the S-MS method.

1 Fault Taxonomy

As delineated in the introduction, a sensor malfunc-
tions for various reasons. Faults can be stratified into per-
manent, intermittent, and transient categories, depending
on their persistence. Permanent faults encompass software
or hardware errors that perpetually yield anomalies when
fully operational”'’. Mahapatro and Khilar'”' posited that
a diminution in battery voltage could precipitate calibra-
tion issues, subsequently inducing sensor drift. Sensors
experiencing calibration errors are categorized as having
permanent faults. Ni et al. ™
types of calibration faults, i.e., offset, gain, and drift

explored three distinct

faults. In this study, based on the amassed data, the
stuck fault is designated as a permanent fault. Subsequent
sections delineate the four quintessential sensor faults,
i.e., offset, drift, gain, and stuck faults, as shown in
Fig. 1.

1) An offset fault may occur when the sensor unit is
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Fig.1 Example of normal signals and faulty signals. (a) Off-
set; (b) Drift; (c¢) Gain; (d) Stuck

improperly calibrated, specifically manifesting as the ad-
dition of a fixed constant to the normal data. This fault
can be modeled as follows:

Soffsel — Snnrmal + b (1)

n n

offset

where n is the sensor node identification, S, is the data
collected by the n-th sensor after the occurrence of an off-
set fault, S™™ is the regular data collected by the n-th
sensor, and b is a fixed constant.

2) A drift fault occurs when the sensing data of the
sensor linearly increases over time from the normal state,
specifically manifesting as the addition of a linearly in-
creasing bias term to the normal data. This fault can be

modeled as follows:

S::rift — S:ormal + b,,, bn — Ib (2)

where S is the data collected by the n-th sensor after the

occurrence of a drift fault, b, is the linearly increasing bi-
as term, t is the time.

3) A gain fault emerges when the sensing data of the
sensor deviates from the expected value by changing at a
rate that is a specific multiple of the normal state, specif-
ically manifesting as normal data multiplied by a fixed
constant. This fault can be modeled as follows:

Sﬁain — bS:urmal ( 3)

where S is the data collected by the n-th sensor after the
occurrence of a gain fault.

4) A stuck fault occurs when the rate of change in the
sensing data of the sensor becomes zero, causing all data
to manifest as a fixed value. This fault can be modeled as
follows:

Ssluck — b (4)

n

stuck

where S, is the data collected by the n-th sensor after
the occurrence of a stuck fault.

2 Sliding Mean Shift Method

The mean shift algorithm is a nonparametric density es-
timation technique that is widely employed for clustering
and image processing tasks™> .
rithm neither necessitates the prespecification of the num-
ber of clusters nor requires a predefined data distribution
form; therefore, it is particularly apt for solving com-
plex, nonconvex clustering issues.

The S-MS method is an innovative approach that syner-
gizes the mean shift algorithm with the sliding window

technique and is tailored for node fault self-detection. The

The mean shift algo-

S-MS method principally unfolds through two critical
phases, i.e., fault prescreening and fault self-detection.

2.1 Fault prescreening

As an effective method for time series analysis, the
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sliding window technique can break down large datasets
into small and manageable parts to meet the processing
needs of real-time monitoring data. During the fault pre-
screening phase, the sliding window technique is used to
compute the median within each sliding window and the
difference between consecutive medians, as follows:

Xeo n=2k+1;k=0,1,2, ...
M: i nel 5
Xy Xy n=2kik=1,2, ... )
2
D =(d,.d,,....d,), d; = ‘Mi_Mi—l ‘ (6)

where M is the median of the sliding window, d, is the
difference between the medians of consecutive sliding
windows, and D, is the set of differences.

To identify potential outliers or abrupt changes, the
quartile method is employed to calculate the upper thresh-
old value of the differences between the medians of con-
secutive sliding windows and functions as the activating
mechanism for the mean shift algorithm throughout the
fault self-detection phase, as follows:

k=g(n-1) +1 (7)
D i) = D [f] keZ
oD, ) _{Ds[ﬂ +(k=-H(DJcl -D,[fl) keZ
(3)
G)\ =0, +4IQR7 IQR =0, -0, 9
(D) = True d,>G, 10
anomaly(i) = {False otherwise (10)

where k is the index value, ¢ is the quartile value, I is
the interquartile range, and G, is the upper threshold val-
ue for the difference between the medians of consecutive
sliding windows.

The fault prescreening stage aims to identify suitable
thresholds to preliminarily determine whether the data are
abnormal. Eq. (10) indicates that when the difference be-
tween the medians of consecutive sliding windows surpas-
ses the upper threshold, i.e., when d, >G,, a node fault
has transpired during the fault prescreening phase, subse-
quently initiating the mean shift algorithm for fault detec-
tion.

2.2 Fault self-detection

During the fault self-detection phase, the S-MS method
incorporates the sliding window technique, multiplies the
mean value of the sliding window variance by a correction
coefficient, and employs the product as a threshold for
detecting stuck faults, as follows:

i

Z X

d 1
o= [ X ()’ = &,
J=i-w+

1
Wj:i—w+]

(11)

i=w,w+1,...,n

1 n
G, = a;Z{ o, (12)
True 0, <Gy (13)
s =
ek {False otherwise

where y, is the average value of the i-th sliding window,
o, is the variance of the i-th sliding window, « is the cor-
rection coefficient, and G, is the detection threshold.
Eq. (13) indicates that when the variance of the sliding
window falls below the detection threshold, the S-MS
method determines that a stuck fault has occurred in the
node.

In addition, the S-MS method utilizes the mean shift
algorithm to detect other fault types. The primary steps
are as follows:

1) Using the mean shift algorithm, the initial cluster
center, denoted as C,,, = (X,,Y,, Z,), is derived from a
standard dataset.

2) When the n-th dataset is normal, the mean shift al-
gorithm computes a new initial cluster center, denoted as
Crew i = (X;» ¥;» 2;), supplanting the preceding initial
=(X,, ¥y Z,) - Should the n-th dataset
manifest anomalies, the algorithm will determine two or
more cluster centers, denoted as C, = (x,,y,,z,) and C,
=(%, 92, 2,)

3) Compute the Euclidean distance between the two
cluster centers and the new initial cluster center, denoted
as D, and D,.

4) Determine the new initial cluster center based on the

cluster center C,

initial

computed distance and subsequently assign a label to each
cluster (i.e., normal or abnormal).
(€, C)
(G, C)

D, <D,

14
D, >D, (4

(Cnewiinilial’ Cannma]y) = {

Eq. (14) indicates that, by comparing the Euclidean

distances between the two cluster centers and the new ini-

tial cluster center, the S-MS algorithm identifies the more

distant cluster center as abnormal and substitutes the new
initial cluster center with the nearer cluster center.

3 Methodological Validation
3.1 Description of the dataset and evaluation metrics

The Canton Tower has a total height of 600 m. The an-
tenna mast and the primary structure of the tower are 146
and 454 m high, respectively. As shown in Fig. 2, the
principal structure is equipped with 20 acceleration sen-
sors, each with a sampling frequency of 50 Hz. To vali-
date the effectiveness of the S-MS method, this study uti-
lizes 60 000 actual acceleration measurements recorded
over a 20-min period from Sensor 1 on June 23,
2011171,

To assess the S-MS method, the dataset described
previously was partitioned chronologically into 40 groups.
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Fig.2 Deployment of accelerometers on the Canton Tower

Each group contains 1 500 acceleration readings, corre-
sponding to data accumulated by the acceleration sensor
over a 30-s span. A total of 800 groups are prepared,
each exhibiting varying fault rates (i. e., 50%, 40%,
30%, 20%, and 10% ) and distinct fault types (i.e.,
offset, drift, gain, and stuck).

In this study, three performance metrics, i.e., accura-
cy (A), precision(P), and F, score, were used to evalu-
ate the detection capabilities of the S-MS method. A
measures the proportion of samples that are correctly clas-
sified, as expressed in Eq. (15). P measures the ratio of
the true positives to the total predicted as positives, as ex-
pressed in Eq. (16). The F, score is the harmonic mean
of precision and recall, as expressed in Eq. (17).

Ao D+l (15)
T, +Ty+F, +F,
TP
T, +F, (16)
T
. (17)

B = S (F+Fy 2

where T, is the true positive, which means that the actual
condition and predicted result are abnormal; F is the
false negative, which means that the actual condition is
abnormal but the predicted result is normal; Ty is the true
negative, which means that the actual condition and the
predicted result are normal; and F, is the false positive,
which means that the actual condition is normal but the
predicted result is abnormal.

3.2 Comparison with other sensor fault detection
methods

To comprehensively assess the effectiveness of the pro-

posed S-MS method, multiple existing sensor fault detec-
tion methods are used for comparison. The extremely ran-
domized trees (ET) method for fault detection was recon-
structed, according to Saeed et al.'”’. Similarly, the
random forest (RF) method was adopted, as described by
Noshad et al. ™. In addition, a comparative analysis was
conducted using two unsupervised methods, i.e., sup-
port vector data description (SVDD) and one-class sup-
port vector machine (OC-SVM).

For the ET and RF methods, the initial 10 groups of
abnormal data were utilized as a training set to construct
models, predicting data from Groups 11 to 15 with var-
ying fault types and rates. Similarly, for the SVDD and
OC-SVM methods, the initial 10 groups of normal data
were used as a training set to construct models, predicting
data from Groups 11 to 15 with varying fault types and
rates. The S-MS method is an adaptive density clustering
approach that identifies anomalies through the distances
between cluster centroids. The S-MS method does not re-
quire extensive data to train the model and needs only a
small amount of normal data to obtain the initial normal
cluster centroid C, ., = (X,, ¥y Z,)- For the S-MS meth-
od, the first group of normal data was employed as a
training set, predicting data from Groups 11 to 15.

Fig. 3 illustrates that, for offset faults, the S-MS, ET,
and RF methods achieve the highest accuracy rates, out-
performing the SVDD and OC-SVM methods. Specifical-
ly, the accuracy rates of the S-MS method at Indices 2,
4, and 5 are comparable to those of the RF method, ex-
ceeding the ET method by 0.2% . However, in Indices 1
and 3, the accuracy rates of the S-MS method are smaller
than those of both the ET and RF methods because the
training sets used for these two methods contain more rep-
resentative samples. Moreover, both methods are more
sensitive to the characteristics of offset faults. For drift
faults, except at Index 4, the accuracy rates of the S-MS,
ET, and RF methods surpass those of the SVDD and OC-
SVM methods. Notably, the S-MS method achieves ac-
curacy rates at Indices 1, 3, 4, and 5 that are comparable
to or higher than those of the ET and RF methods but are
lower at Index 2. For gain faults, the S-MS, ET, and RF
methods outperform the SVDD and OC-SVM methods,
although the S-MS method has slightly lower accuracy
rates than the ET and RF methods. For stuck faults, the
S-MS method is particularly superior, whereas the other
methods perform moderately.

Fig. 4 illustrates that, for offset faults, the S-MS, ET,
and RF methods have higher precision values, outperfor-
ming the SVDD and OC-SVM methods. The precision
values of the S-MS method at Indices 4 and 5 are compa-
rable to those of the ET and RF methods but are slightly
lower at Indices 1, 2, and 3. For drift faults, the S-MS,
ET, and RF methods surpass the SVDD and OC-SVM
methods, with the S-MS method showing superior results,
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exceeding the ET and RF methods by approximately
0.03. For gain faults, the accuracy rates of the SVDD
and OC-SVM methods fluctuate considerably, whereas
those of the S-MS, ET, and RF methods maintain higher
consistency. The S-MS, ET, and RF methods perform
better than the SVDD and OC-SVM methods, and the
S-MS method achieves the highest precision values at In-
dices 2, 3, and 4, exceeding the ET and RF methods by
0.01. For stuck faults, the S-MS method is particularly
superior, whereas the other methods perform poorly.

Fig. 5 illustrates that, for offset faults, the S-MS, ET,
and RF methods achieve the highest F, scores, outperfor-
ming the SVDD and OC-SVM methods. The F, scores of
the S-MS method at Indices 2, 4, and 5 are comparable
to those of the RF method and are approximately 0. 6%
higher than those of the ET method but slightly lower at
Indices 1 and 3. For drift faults, the F, scores of the
S-MS, ET, and RF methods are higher than those of the
SVDD and OC-SVM methods. Notably, the F, scores of
the S-MS method at Indices 1 and 3 match those of the
RF method and are approximately 1% better than those of
the ET method but are lower at Indices 2, 4, and 5. For
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gain faults, the F, scores of the S-MS method exceed
those of the SVDD and OC-SVM methods but are lower
than those of the ET and RF methods. Compared with
those of the SVDD and OC-SVM methods, the F, scores
of the S-MS, ET, and RF methods exhibit higher stabili-
ty. For stuck faults, the S-MS method performs well,
whereas the other methods perform poorly.

4 Performance Analysis
4.1 Evaluation of the computational efficiency

To comprehensively evaluate the computational efficacy
of the S-MS method, the method was tested on a system
equipped with an Intel Core i9 CPU and 16 GB of RAM.
For the S-MS method, the first group of normal data was
utilized as a training set to construct the model, predic-
ting data from Groups 11 to 40 with varying fault types
and rates. The test set covered five fault rates (i. e.,
50% , 40% , 30% , 20%, and 10% ) and four fault types
(i. e., offset, drift, stuck) for a total of 600
groups.

Fig. 6 shows the total time taken by the S-MS method

gain,
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to detect faults across abnormal data groups, reflecting
the combined detection time for all groups. The combined
detection time for all 30 abnormal data groups was 900 s.

In this scenario, where every group has faults, the S-MS

method efficiently identifies all 30 abnormal data groups
within a time range of 1. 0-4. 5 s, constituting only
0.11% to 0.5% of the total sensor data collection time.

4.2 Impact of the fault rates on the performance of
the method

Subsequently, this study examined the impact of differ-
ent fault rates on the performance of the method. Only
the first group of normal data was used as the training
set, with predictions made for faults in Groups 11 to 40.

Fig.7 shows distinct shifts in the F, score of the S-MS
method across groups with various fault rates, indicating
that, within a single abnormal data group, an increased
fault rate aligns with a higher F, score of the S-MS meth-
od. For diverse abnormal data groups,
ges from 93.71% t0 99.73% .
for groups with different fault rates are significant. Over-
all, the S-MS method consistently maintains high F,
scores across various abnormal data groups,
only a slight effect on time variations. In addition, as the
the S-MS method achieves higher F|

the F, score ran-
The contrasts in F, scores

exhibiting

fault rate increases,
scores.

Fault rate/%:
——10; ——20; —30; ——40; ——50

Index 23
Index 22 Index 24

Index 21

Index 25
Index 26
Index 27

Index 14 )
Index 13X

Index 11

Index ll(l)dex 9 Index 8

Fig.7 F, score of the S-MS method across groups with vari-

ous fault rates

5 Conclusions

1) The proposed S-MS method contains two pivotal
phases, i. e., the fault prescreening phase, which em-
ploys the quartile method combined with the sliding win-
dow technique, and the fault self-detection phase, which
is grounded in the mean shift method. The proposed
method is insensitive to time variations and effectively de-
tects four fault types (i. e., offset, drift, gain, and
stuck) at different fault rates. As the fault rate increases,
the S-MS method exhibits better performance.

2) The proposed S-MS method achieves sensor fault
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detection accuracies of over 98% for four fault types
(i.e., offset, drift, gain, and stuck), with an average
of 99. 37% ; precision of over 0. 86 for four fault types
(i.e., offset, drift, gain, and stuck), with an average
of 0.97; and F, scores of over 91% for four fault types
(i.e., offset, drift, gain, and stuck), with an average
of 96. 85% . Compared with other sensor fault detection
methods (i. e., ET, RF, SVDD, and OC-SVM), the
proposed S-MS method exhibits the best sensor fault de-
tection performance in terms of accuracy rate, precision,
and F, score.

3) The proposed S-MS method exhibits high computa-
tional efficiency, with fault detection durations account-
ing for only 0.11% to 0.5% of the total sensor data col-
lection time, indicating that sensors equipped with this
method can promptly self-detect anomalies based on the
monitoring data. Moreover, aided by the fault prescreen-
ing phase, the S-MS method rapidly evaluates the data-
sets and significantly decreases the detection times, fur-
ther enhancing its efficiency.
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