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Abstract: A comprehensive model based on continuum theory
is adopted to conduct the parametric analysis of the primary
resonance of the nonlinear vibration of spatial cable suspension
bridges. This model can simultaneously account for the
geometric nonlinearity of both the vertical motion of the deck
and the vertical-horizontal motion of the cable. Based on this
model and the multiple scale method (MSM), the modulation
equations of the primary resonance responses are derived for
spatial cable suspension bridges. Nonlinear coefficients in the
modulation equations are determined to have notable influences
on the maximum response amplitude of the primary resonance
of the system and the hardening or softening characteristics of
the investigated Meanwhile, system
parameters, such as the inclination angles of the main cable
and hanger, the sag-to-span ratio of the cable, and the tensile
stiffness ratio between the deck and cable, can notably
influence the nonlinear coefficient. The dynamic properties of
the system can change dramatically in the form of sudden
changes in the nonlinear coefficient of the symmetric vibration
of the deck and cable if the parameter is located near the
singularity, which should be avoided in the design of the
system. This study can provide reference for the design of the
bridge structure.
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vibration mode.

nonlinear

suspension bridge is a system sensitive to dynamic

loads because of its light weight and flexibility, in
which nonlinear vibration is inevitable under common
loads, such as crowd and automobile forces''™. Many
studies of the nonlinear dynamics of suspension bridges
based on mathematical models have been conducted in the
past few decades. Contributions to this research include
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but are not limited to those of Abdel-Ghaffar and Ru-
bin”™ and Cevik and Pakdemirli'”, who analyzed the
nonlinear free and forced, coupled vertical-torsional vi-
brations of suspension bridges utilizing the multiple scale
method. Lazer and McKenna'®' analyzed the nonlinear,
large-amplitude periodic oscillations detected within such

Further contributions to this research came
1 [9-10]

structures.
from Capsoni et a , who investigated the torsionally
aeroelastic and parametric resonance instabilities of sus-
pension bridges using the multiple scale method based on
the nonlinear continuum model, specifically considering
vertically planar configurations. Lepidi and Gattulli'"" an-
alyzed the nonlinear interactions between the main cables
and the deck of a suspension bridge. In addition, Peng et
al. '
nance of a cable-supported beam, particularly under time
delay feedback conditions.

Studies of nonlinear dynamics were mainly focused on

thoroughly inspected the nonlinear primary reso-

conventional suspension bridges with vertical cable con-
figurations. However, recent advancements have led to
the construction of bridges with spatial geometric layouts
of the main cables'"”. These bridges exhibit dynamic be-
havior that differs from that of conventional models, with
cables supporting the deck in both vertical and lateral di-
rections. Such configurations compel additional scrutiny
into the relative motion between cable and deck because
of the spatialization of cables. Notably, inclined cables
and hangers may enhance the nonlinear vibration of the
structure. In their work, Hui et al. "™ conceived a six-
degrees-of-freedom ( DoF) sectional model and a seven-
DoF model to examine the primary and internal reso-
nances of suspension bridges using the incremental har-
monic balance method.

To capture the dynamic behavior of the bridge in a
spanwise manner, Xu et al. " proposed a mathematical
model of a full bridge for a spatially supported bridge
deck. This model aids in establishing the geometric con-
figuration in a static balance state and facilitating modal
analysis. However, the complexity of this model may
limit its applicability to nonlinear dynamic analysis be-
cause of its detailed considerations of bridge component
modeling. Nevertheless, these researchers proposed a
simplified model to examine the primary and nonlinear
resonance scenarios of vertical vibration, with two main
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cables harmoniously vibrating in both vertical and hori-
zontal directions, as reported in Refs. [17 — 18]. This
model was subsequently refined to address the primary
resonance of torsional vibration along with coupled verti-
cal-torsional vibrations of suspension bridges'"”’.

Because the subjects, i.e., humans or vehicles, acting
on the bridge are most sensitive to the vertical vibration of
the deck™, this study adopts the model proposed by Xu
et al. """ to provide sufficient nonlinear dynamic informa-
tion on spatial cable suspension bridges. For a nonlinear
system, the multiple scale method is always adopted to
calculate the dynamic responses, as it can provide a more
comprehensive understanding of the dynamic features of
the system. In this case, the nonlinear coefficient is a
crucial factor for the analysis. However, the impact of
the nonlinear coefficient on such a bridge system remains
poorly understood, and how the system parameters affect
the nonlinear coefficient is still unclear, which signifi-
cantly hinders insights into their nonlinear dynamic be-
havior. Therefore, this study intended to address this is-
sue based on the earlier model.

This paper is organized as follows: First, the formula
of the continuum model is revisited. Based on this model
and the multiple scale method, the modulation equations
accounting for the primary resonance responses of such a
system are derived. Then, the influence of nonlinear co-
efficients in the modulation equations on the maximum
response amplitude of the primary resonance of three typi-
cal modes under external vertical loads is examined. Par-
ametric analysis of the influence of the system parame-
ters, such as the inclination angles of the cables, the sag-
to-span ratio of the cable, and the tensile stiffness ratio
between deck and cable, on the nonlinear coefficients is
conducted. Finally, some key conclusions are given at
the end of this study.

1 Mathematical Model

The spatial cable suspension bridge shown in Fig. 1(a)
is taken as the research object of this study. Xu et al. '
proposed its model as depicted in Fig. 1(b). In alignment
with engineering practices, this study considers only shal-
low cables, where the sag-to-span ratio of the main cable
is less than 1/8 (d/l <1/8, where d is the initial sag of
the main cable and / is the length of the main span of the
bridge). In this model, the hangers are replaced by a
massless continual membrane,
rigid without any deformation. Both cables and deck were
assumed to be simply supported at two ends. A cartesian
coordinate system, denoted by e ,(where i =1, 2,3), is
used to define the position of the structure. The coordi-

which is assumed to be

nates of the cables and deck in the statically balanced con-
figuration (labeled as T') can be expressed as Xi(si) =
y,e +y,e, +xe, and X, (s}) =0e, +0e, + xe,, where
the subscripts ¢ and d denote the main cables and deck,
respectively. y, and y, are the projections of the spatial
cable on the horizontal (e ,-0-e,) and vertical (e,-0-e,)
planes, respectively, and x is the coordinate along e, of
the bridge with a span [.

(b)
Fig.1 Model of a suspension bridge with a spatial geometric
layout of the main cables. (a) Zhangjiajie glass bridge; (b) Geo-
metric schematic of the bridge model

The mathematical model of this type of bridge is briefly
introduced in this section. The mass per unit length of the
cables and deck are denoted as m, and m,, respectively.
Using the shape-finding technique''®, the initial single
cable tension projected in the horizontal direction, H, can
be determined under the following conditions: Taking the
assumption that the initial internal force in the bridge deck
exists in a state of static equilibrium. Focusing on the
symmetric movement of the cables and the vertical motion
of the deck, we include the vertical and horizontal dis-
placements of the main cable (labeled as v, and v,, re-
spectively) and the vertical displacement of the deck (u,)
in the motion description of the entire bridge structure
(labeled as TV). The corresponding damping factors are
labeled as k_ and «,. An external force (F,) is hypotheti-
cally applied vertically on the deck.

By substituting the kinetic energy, potential energy,
and work done by external forces into the extended Ham-
ilton principle, the variation equations of the suspension
bridge'”" can be expressed as follows:

foAl
—f f {[2m, %, + 2k, = 2HV' = 2E.A_e.(1) (¥ + V') 18y, + (2m, ¥, +2k.v, — 2HV! —
570

2E.A.e (1) (Yh+V0) Yov, + [myiiy + ki, — E,Aufe, (1) + EJ,uy" — F,18u, }dxdt = 0 (1)

é
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where E_ and E, are the elastic moduli of the materials for
the cables and deck, respectively; A, and A, are the
cross-sections of the cables and deck, respectively; J,, is
the moment of inertia of the deck section about axis e ;
F, is the time-dependent external force. The overdot and
prime indicate the derivatives of time ¢ and x, respective-
ly. e.(t) and e (t) expressed in Eq. (1) are rewritten as
follows:

!

1
e.(1) =TJ'O{y vi+y,vh+ [(V) +(v)) ]}
(2a)
e = [ T (2b)

Given that the hangers are assumed to be rigid, v, and
u, can be expressed as functions of v,, B8,, and B, as fol-
lows:

v, =1,sing, — [, sin(B, +B,) (3a)

u, =v, —l,cos(B, +B,) +1,cosB, (3b)

where B, is the inclination angle of hangers in the vertical
direction in the static balanced state; B, is the increment

(2m, +m,b*) v, + myb v, + (2, + k,b°)V, +Kk,bV,
E,Ab(bv, +v,)"e,(1) +E,J, b(bv, +v,) " - bf.cos(£X) =0

(2mc +md)i/'2 +mdbv1 + (ZKC + Kd)v2 +de Vl
E,A,(bv, +v,)"e,(t) + E,J, (bv, +v,)“ = f,cos(X) =0

The following nondimensional quantities are introduced

%, 7 R

A/H/mc’
1

=22, o <2

X =

Oty y, =

l
v

=, «

of the inclination of the hanger due to vibration in the dy-
namic state; and /,(x) is the length of the hanger in posi-
tion x.

When considering the small dynamic angular displace-
ment B3, of the hanger, the following equations can be de-
rived:

sin(B, +B,) =sinB, + B,cosB, (4a)
cos(B, +PB,) =cosB, - B,sing,

Based on Eq. (4), Eq. (3) can be rewritten as follows:

(4b)

u, =bv, +v, (5a)
du, =bdv, +dv, (5b)

where b = tang,.
Eq. (5) is substituted into Eq. (1), and F, =
fycos((2), in which f; and (2 are the amplitude and exci-

tation frequency, respectively, is considered. Based on
some basic manipulation of integration by parts and varia-
tional operations, the following equations can be obtained
by solving the nontrivial solutions of the Lagrange varia-
tional equations:

-2HV! -2E. A .(y, +v,)"e (1) -
(6a)

-2HV, -2E A (y, +v,)"e (1) —

(6b)

for the nonlinear dynamic analysis:

- Yo _ by, +b2vf+b3v‘?+v2
T’ Vo :T’ u, = i
EdAd Ed‘lc’l md

/mH Na =K / b = tanf,, fd fd? 7:% (7

The overbars of the variables in Eq. (7) are disregarded
hereafter for the sake of convenience. The substitution of

Eq. (7) into Eq. (6) yields the following set of equations
of motion:

Q2 +r, b)Yy, +r,bV, +(2n, +n,b)v, +n,bv, =2V =2a.(y, +v,)"e (1) -

a,b(bv, +v,)"e,(1) +b(bv, +v,) ¥ — bf,cos(£X) =0

+r)v,+r,bv, +(2n, +7m) v, +n,bv, =2V,
a,(bv, +v,)"e,(t) +7,(bv, +v,) " —f,cos(x) =0

1

ey = [ [y yivie STODT + 007 Jax

(9a)
e (1) = f %[(bvl +v2)']2dx (9b)

The boundary conditions for the hinge-supported cables
and deck can be written as follows:

(8a)
—2a.(y, +v,)"e. (1) -
(8b)
v.(0,1) =v,(1,1) =v/(0,1) =vi(1,1) =0 i=1,2
(10)

For the details of the derivation of the bridge model,
the readers can refer to Ref. [17].

2 Theory of Response Perturbation

Notably, the dynamic equations of the continuous sys-
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tem (Eq. (8)) exhibit a coupled nonlinear relationship,
denoted as v, and v,. To reveal the nonlinear dynamics of
this system, the multiple scale method”' ™' is employed
to solve these dynamic equations. This analytical tech-
nique is crucial for addressing nonlinear problems in
mathematical models, especially in nonlinear vibration
analysis, because it decomposes the dynamics of a system
into distinct temporal scales, enabling a more nuanced
and comprehensive understanding of its behavior. In this
analysis, the multiple scale method is applied, and its so-
lutions are expressed in the following forms:

3
v, = Y e'g(x T, T,.T) (11a)
i=1
3 .
v, = > &'q(x, T, T,,T)) (11b)
i=1
T.=¢gt  j=0,1,2 (11¢)

J

where ¢ is a small positive value, and the superscript of &
denotes its power. g, and ¢,(i =1,2,3) are the displace-

i
1(8,q9) =2+ rmbz)Dggl + rmeéql —2g']'—2olcy:',f0(y:,gll+y/ezq’])dx + 7,b(bg, +q1)(4) =0

I
LL(g,q9) =2+ rm)D(qul + rmeggl _2q/1/_2acy;/2j0(y/e|g’1+y’e2q’|)dx + 7,(bg, +Q1)(4) =0

Coefficient of the second-order term & is

I
1,(89,) = Zacg’{f (y,clg,l+y,112q,1)d'x+acyglf [(grl)Z +(qu)2]dx
0

I |
1,(8,,q,) = Zacq’{f (Va8 +Yaq)dx +acy;’2J- [(g’1)2 + (qu)z]dx
0 0

Coefficient of the third-order term &’ is

l](g3’ q;)

1
0

ment components in the i-th-order time scale. The damp-
ing and forcing terms in Eq. (8) are scaled such that their
influences balance the influence of nonlinearities. Hence,
the dimensionless damping coefficients of cable and deck
(1., my) and the external force (f,) are rescaled as n,—
&£'n., ny—e my and f,—&’f,, respectively. The deriva-
tives of time are written as follows:

%:DO +eD, +&’D, + ...
dZ
— =D, +2eD,D, + &’ (D; +2D,D,) + ...

dr (12)

J .
where D, :877}(]:0’1’2)'

Eqgs. (11) and (12) are substituted into Eq. (8), and
terms with different &’ are grouped and rearranged. The
following differential equations can be obtained, consid-
ering coefficients of g, &, and & being zero.

Coefficient of the first-order term &' is

(13a)

(13b)

] (14a)

(14b)

= - Dy[(2n, + ndb2)81 +n.bq,1 —2D,D,[(2 + rn|b2)gl +rubg,] +

o 1 1
jdb(bgl +q)"| [(bg, +q,)']"dx +2acy;’1f0(g’]g’z+ q'q5)dx +ozc¢s;1’fo[(g’.)2 +(q’)’1dx +

1 1
2acg;’f0(y;.g’, +Veq))dx + 2acg’{f0(y’e,g; +V'2qy) dx + bf,cos(T;)

(&, q5)

(15a)

= = Dyln.bg, + (29, + ) q,] —=2D,D,[r,bg, + (2 +r,)q,] +

o 1 1 1
jd(bgl +q1)”f0(bg1 +q,) "dx +2acy’e’zfo(g’,g’z+ q'q%)dx +acq’{f0[(g’1)2 +(q') ]dx +

1 1
2acq;’fo(y’e,g’l + Vg dx + 2acq’{fo(y’elg’z +V'2qs) dx + ficos(NT,)

with the following boundary conditions:

8 li=01 =0, q; |2, =0 i=1,2,3 (16)

The general solutions of Eqs. (13a) and (13b) can be
expressed as follows:

gl(X, T()’ Tz) =A(T2)§Dvl(x) eiquu + ¢cc

4,(% Ty, T,) =A(T,) 9 (1) " + g,

(17a)

(17b)

(15b)

where ¢ is the complex conjugate of the preceding term
on the right-hand side of the equation, and ¢, and ¢, are
the mode shapes of cable in the vertical and horizontal di-
rections, respectively. w, is the selected eigenfrequency.
A(T,) is the complex modal amplitude, which will be
written as A hereafter for convenience. By substituting
Eq. (17) into Eq. (14), we derive the following expres-
sions:
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1 I _ B
1,(8,:9,) {2ac¢/\{lj‘0(y/el(p/v] +y,0 ) dx + acyle/ljo[(go,vl)z + (Qolvz)z] dx}(AzeM”T" +AA + ¢..) (18a)

1 1 . _
LG8 a) = {2000 [ (a0l + el de +anls[ (@0 + (910) 1dx f(A%€™ + 44 +9,)  (18b)

Similarly, the solutions of Eqs. (14a) and (14b) can  where ¢,(i,j=1,2) is the second-order shape function.
be expressed in the following forms: The following expressions can be obtained when the solu-
tions of Eqs. (14a) and (14b) are substituted separately

_ 2 2iTw, A
£:(5To, To) =g (Ae™™ +c0) +ypdd - (192) e (19).

q,(x, Ty, T,) =iy (A% +cc) +,,AA (19b)
1
_4“)(2)(2 + rmbz)‘ﬁn _4w(2)rmb¢z| _zlﬁ,l’l _Zacyllfo(y;lwlll +y,e2¢,21)dx + Tdb[(bl/’ll)(4> + l#(zi”] =11, (20a)

I
—4(1)(2)(2 + )y, _4wérmbwn _lerz,]_2acy’e,2j0(y’el¢,ll+y,e2¢’21)d‘x +Td[(b¢u)(4) +l/’(2?)] =1II, (20b)

1
=247 - 2acyglf0(y;l¢,12+ Yotph)dx + Tdb[(blﬁzl)(4) + w(zg)] = 211, (21a)
1
=247, - ZacyZZJ'O(y/ellprlz + yfy)dx + Td[(b¢21)(4) + lﬁg)] = 211, (21b)
where N=w, + &o (23)
1 2 . A
1, = 20%%0:1[ (¥, 0" + ¥ 0" dx + where ¢° has a small value, the same as that defined in
0 Eq. (23).
1 . . .
Olcyflf [(¢/v1)2 + (¢’V2)2]dx (223) By substltutmg Egs. (17). and (19) into Eq. (15), we
0 derive the following expressions:
1 .
II, = 2acgo'\fzfo(y'flgo'vl+y'ﬂ2gp’v2)dx + 1,(8sq5) =h(x, Tz)elw“n +CC + dysr (24a)
[ ) ) L,(g,, =h,(x, T,)e"" 24b
[ el + (el ldr 2854 =h(x D)™ cct by (240)

where ¢, are terms that do not produce secular terms.
The terms h,(x, T,) and h,(x, T,) can be rewritten as
follows:

Primary resonance occurs when the excitation frequency
{2 is close to the target modal frequency w,. A detuning
parameter ¢ can be introduced™' such that

h(x,T,) = —iw,{[(2n, + ndb2)§0v1 + b, 1A +[2(2 + rnnb2)§0v1 + 2rmb¢V2]A} +

3ad n : 12 27
S bbe +9.)"[ [(bey +¢.) PdrA™A +
0

I 1

Zacy:"ljo(gorvldjrll + §0’v2’r//’21)dxAA2 + 4acyZIJ’O(€D,VI'1[I’I2 + o) dxAAA +
I 1

Bl | (0107 + (91 1dxAA + 20,0, [ (Vo' + ¥apls) XA’ +
| 1

zacw,lrzfu(y,elgplvl +y00",) dxAAA + 40%90:1[0()’;11//’22 +y,4",) dxAAA +

1
" ’ ’ 4 ' A 1 ioT;
2ac¢v1fo(ye1‘/’21+yezl//11)dxAA2 +7bfde " (25a)

h(x, T,) = —iw{[(2n. + 1)@, + nibe 1A +[2(2 + 1) @, +2rmb€0v1]A} +
3a ! _
S (ben +00)"| (b, +¢2) 1 dAA +
1 1
2a°y22fo(¢’”¢,11 + gp'\,zlp;l)dxAAz + 4acyz2fo(¢’vl¢’12 +@'LY') dXxAAA +

1
0

1
Bl [ 190"+ (9') TdxA"A + 20, [ (Y@l +ylagle) DA’A +
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2a l!’nf (yel¢v1+ye2¢»2)dxAAA+4a€0 j(y51¢12+y02¢’22)dXAAA +

2a.¢] J(y(l¢21+ylzwll)dXAA + fd o

Eq. (24) is a nonhomogeneous equation, and its non-
trivial solutions become ¢, and ¢, based on Eq. (13)
when the solvability condition can be satisfied as follows
according to Ref. [23]:

1
[ leuh(xT) + @oh(x, T)1dx =0 (26)
0

Therefore, by substituting s,(x, T,) and h,(x, T,) into

Eq. (26), we derive the following expression:

1

2iw, [\ A +2iw, LA + I',A’A = Tfrei‘ﬂl (27)

where I',(i=1,2,3) are nonlinear coefficients derived as

3

r, =

(25b)

follows:

1
ro= [ 1@+ r,0)el +2r,bo,p0 + (2 +r,) @, 1dx

1 2 1 1
r, = 30%{[ [(§D’v1)2 + (quvz)z]dx] + zacfo(go,vldlrll + ¢’v2¢;l)dxjo(y,fl¢,\'] +Ype'y)dx +
0

| 1 I
2acf0(y’e1§0lv1 + y’ﬂZ‘F’vQ)d-x( f0(¢’v|¢’11 + QD’le/j’Zl)dx + f0(¢’vl¢,|2 + €0’v2¢/22)dx) +

2a.[ [p0)" + () 10x] [ (5 + ) d [ Gt Vg ]+

I I
2acf0(§0,v1$,12 + €D,v2¢,22)dx‘[0(y,el¢,v1 +¥,0,)dx

Notably, all of the investigated mode shapes can be
normalized with I, equal to unity. [, is a property of
the bridge deck,
Their summation is the coefficient /"y, which has a strong

and [, is a property of the cables.

influence on the hardening or softening behavior of the
system. They are factors representing the mass, damp-
The term I',(i=1,2,3) is
dependent on the system modes. Force f, can be expressed

ing, and nonlinear stiffness.

as follows:

S = [ fulbe, + ou)dx (30)

where f, is the modal force of the target mode, and
bp, + ¢, is the vertical component of the mode
shape of the deck, which can be deduced based on
Eq. (5a).

The complex modal amplitude A is assumed to have the
following form:

(31)
We substitute Eq. (31) into Eq. (27) and separate the

terms into real and imaginary parts to obtain the following
modulation equations:

(28a)
1 nde 5
r, = fo[(nc 5 )qov] +nibe,p, +
(. + 2ol Jax (28b)
r,=r, +r, (28¢)
where
4 1 ) 2

T{JQ[(b(PVI +gDVZ)’] dx} (29a)
(29b)
2wof siny — F (32a)

- r _ 33
ay =ao + 20, cosy 8w0F1a (32b)

where the prime symbol denotes the derivative of time T,
and vy is a function of T, expressed as follows:

y=oT, - (33)

The variable vy is the phase of the solution to Eq. (27),
which can be obtained together with a by solving Eq.
-4]

(32) using the pseudo-arclength method'
3 Numerical Results

The proposed model is analyzed using the parameters
listed in Table 1",
sionless parameters of the system are obtained as r, =
13.22, a,=6.28 x10°, a, =7.54 x10°, 7,=5.60 x
10~ based on Eq. (7). The ratio of the tension stiffness
of the deck to the main cable is obtained as r, = a,/a, =
12. The aforementioned parameters are fixed hereafter
unless otherwise stated. The damping terms in Eq. (8)
are defined as 5, =7, =0. 1. For the configurations of y,,
and y, of the main cables and the three lowest mode

The numerical values of the dimen-
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shapes (¢,, and ¢,,), i.e., first antisymmetric vertical
mode of deck (1st ASVD), first symmetric vertical mode
of deck (1st SVD), and first symmetric horizontal mode
of cable (1st SHC), with the corresponding frequencies,
the readers can refer to Ref. [17], and these mode shapes
are also illustrated in Fig. 2.

Table 1 Material and geometric parameters

I/m d Bolx-o,1/rad  m. kg my/kg [
430 1/10 /6 385 5 080 13.21
Ey/GPa  J,/m* H/MN  A/m? Ay/m*>  E./GPa
210 7.13x10°2  16.7 0.05 0.6 210

(b)

()
Fig.2 Three typical mode shapes with 8, |,_,, =7/6. (a) 1st
ASVD(w =2.09); (b) 1st SVD(w =3.33); (c) lst SHC(w =6.28)

The second-order shape function ¢, (i, j=1,2) corre-
sponding to the primary resonance of the lst ASVD
mode, as shown in Fig. 3, can be calculated by numeri-
cally solving Eq. (32) using the nonlinear coefficients I,
=1.0, I, =0.021, and I", =8.08 x 10"

Fig.3 Function ¢ ;(i,j=1,2) for the primary resonance of the
1st ASVD mode

The three target modal responses of the bridge with
B \X:O_l = /6 are derived from Eq. (32) using both the
MSM and Runge-Kutta methods combined with Galerkin
discretization, as shown in Fig. 4. To ensure that the
three modes have similar maximum response magnitude,

f.is equal to 5.0 x 107", 1.2x107°, and 4.4 x 10 for
the three cases selected. The results obtained by the two
methods are noted to be consistent, except near the reso-
nance, indicating the accurate application of the multiple
scale method.
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Fig.4 Comparison of the amplitude-frequency curves of a sus-

pension bridge with 3,
method and the Runge-Kutta method. (a) 1st ASVD, f, =5.0
x 10" and w, =2.09; (b) Ist SVD, £, =1.2x10 " and w, =
3.33; (c) Ist SHC, f, =4.4x10 7> and w, =6.28

. —o.; = /6 obtained using the proposed

The formulation in Eq. (28) shows that the nonlinear
coefficient I', is always equal to unity, [, is a function of
both damping coefficients (7, and n,) and mode shapes
(¢, and ¢,), and I, is a function of the mode shapes
(¢, and ¢,), the cable configurations (y, and y,), and
the tensile stiffnesses of cables and deck («a, and «,) .

The influences of these nonlinear coefficients on the
resonance responses of a system are investigated in this
section, with I", and I'; having the values of (0.020 5,
0.041 0, 0.061 5, 0.0820) and ( —1.62 x10°, —8.08
x10%, 0, 8.08 x 10*, 1.62 x 10°), respectively. Their
influences on the nonlinear dynamics of the 1st ASVD
mode are illustrated in Figs. 5(a) and (b). The response
amplitude is noted as dependent on I',. The coefficient
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I, is a complicated function, which is mainly related to
system damping ( because only the response peak in Fig. 5
(a) at resonance is affected, and there is no influence on
the responses on the two sides). The coefficient I, is no-
tably related to the nonlinear stiffness of the system with
strong softening and hardening behavior at the primary
resonance, confirming the observations of Cevik and Pak-
demirli'”. A positive I, is associated with “softening” ,
and a negative [, is associated with “hardening” . These

phenomena increase with the absolute value of I';.
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Fig.5 Effects of I", and [, c()n )the primary resonance response
of the 1st ASVD mode with B, |,_, , =7/6, f, =5.0x10 ~* and
w, =2.09. (a) Effect of I', with I", =8. 08 x 10*; (b) Effect
of I'y with I, =0.020 5

0.6 0.8

Further examination of Egs. (28) and (29) shows that
I, consists of two terms, i.e., [ and I'y,. The first
term is related to the dynamic properties of the deck, and
the second term is associated with the dynamic properties
of the main cables. Therefore, the influences of I, and
I';, corresponding to the 1st SHC mode are investigated
with an example.

Notably, the sag-to-span ratio of cable (d) and the ten-
sile stiffness ratio between deck and cable (r, = a,/a) do
not affect I",. The effect of r, on the terms I';, and I, is
analyzed and shown in Fig. 6. The practical range of
[1.0,16.0] is selected for the ratio r,.
I';, is noted to vary slowly with r,

«?

The coefficient
indicating a relatively
stable influence from the bridge deck on the nonlinear
features of the entire system. Conversely, [, is noted to
have a large variation with r_at two particular values (r,
=3.9, 14.75), which refers to a singularity that appears
when the eigenfrequency of one system mode is twice that
of the target mode. The curve of I',, varies asymptotically

from + o to — o around these values of r . This phe-
nomenon is consistent with the findings of the study con-

26 . . .
ducted by Lacarbonara et al. " on the nonlinear vibration
of a cable.
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Fig.6 Coefficients Iy, and I, for the 1st SHC mode as func-
v=0,, =T/6 and d

tions of the tensile stiffness ratio r, when g3,
=1/10

4 Effects of the System Parameters on the Non-
linear Coefficients

This section investigates the effects of the system pa-
rameters on the nonlinear coefficients I, and I';. Three
critical system parameters, namely the inclination angle
of hangers (,), the sag-to-span ratio of cable (d), and
the tensile stiffness ratio between deck and cable (r,),
are analyzed. The typical modes (i.e., 1st ASVD, Ist
SVD, and 1st SHC) for the system discussed in Section 3
are examined. When there are changes in the system pa-
rameters, such as the inclination angle 8, and the sag-to-
span ratio d, the cable tension H, projections y, and y,,,
the dimensionless axial stiffnesses of deck «, and cable
«y, and the flexural stiffness of deck 7, should be recalcu-
lated according to the
Eq. (7).

The value of B, before considering the self-weight of
the main cable is taken to be in the range of 0-w/4
based on engineering practice with r, = 12 and d =

shape-finding technique and

1/10. The other parameters are the same as those in
Section 3. Fig. 7 shows that ", decreases by approxi-
mately 31% from 0.025 to 0. 015 for the 1st ASVD
mode when B, increases from O to w/4. Similarly, I,
decreases by approximately 75% from 0. 05 to
0.012 5 for the 1st SVD mode. However, I, increa-
ses from 0. 01 to 0. 038 for the 1st SHC mode. These
results indicate that the effect of 8, on I', is mode-de-
pendent, which needs to be carefully examined in indi-
vidual cases. Fig. 7 also shows the variations of [,
and 'y, with B,. Section 3 has concluded that the sin-
gularity in I";, dominates the behavior of the coeffi-
cient [";, and this phenomenon is reexamined with
the three modes investigated. Notably,
exists in all modes within the range of B8, € [0, @/
41, except in the curve for the 1st ASVD mode. This
finding indicates that the dynamic properties of the

singularity
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system can change dramatically in the form of sudden
changes in the symmetric vibration of the deck and
cable if the parameter 3, is located near the singulari-
ty, and this should be avoided in the design of the

system.
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Fig.7 Effect of 8, on I',, I';;, and Iy, for different modes
when r, =12 and d =1/10. (a) 1st ASVD; (b) Ist SVD; (c) 1st
SHC

A similar study of the influence of parameter d on
coefficient [, is conducted. Parameter d is selected
with the practical range of 1/8 to 1/11. A range of in-
clination angle B, | ,_, , = (0, w/24, ©/12, w/8, =/
6, 5w/24, w/4) is selected with r, = 12. The other
parameters are the same as those in Section 3. Fig. 8
shows that a larger value of d and a smaller inclination
angle B, is associated with a larger I', in the 1st ASVD
mode. Several singularities are noted in the 1st SVD
and 1st SHC modes. Notably, with the increase in 8,

the value of d that is associated with a singularity in I,
also increases.

(o)
Fig.8 Effect of d on [, for the modes when r, =12. (a) 1st
ASVD; (b) 1st SVD; (c¢) 1st SHC

Another study is conducted with the ratio r, selected in
the range of 1.0 to 16.0, and B |,_,,=(0, w24, @/

12, w/8, w/6, 5Sw/24, w/4) is adopted again. The
other parameters are the same as those in Section 3. The
effects of r_ on coefficient I";, are depicted in Fig. 9. A
general increasing trend of I', with r, for all modes is
noted. The rate of increase tends to decrease with 3.
The coefficient I', is always positive for the 1st ASVD
mode with no singularity induced, which means that the
1st ASVD mode behaves as a hardening nonlinear sys-
tem in all of the cases investigated. Conversely, singu-
larities are noted in the 1st SVD and 1st SHC modes.
More singularities can be induced within the same range
of r_ for a larger B,. Notably, more singularities are in-
duced in the 1st SHC mode with an eigenfrequency ratio

of 2. 0 compared with the two other modes. These re-
sults indicate that a sudden change in the system proper-
ties would more likely occur in higher-order modes when
r, changes. The effects of d and r, on I', are not investi-
gated in this study, as they do not influence this parame-
ter.
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5 Conclusions

1) This study exhaustively conducts the parameter anal-
ysis of dynamically nonlinear properties of a suspension
bridge using a continuum suspension bridge model of ver-
tical vibrations of the bridge deck with symmetric vibra-
tion of two main cables with respect to the center line of
the main girder along the spanwise direction. Different
spatial inclination angles of the hanger are considered.
Then, the multiple scale method is adopted to analyze
the primary resonance responses of three typical vibra-
tion modes. The obtained system responses are further
compared with those from the Runge-Kutta method,
with good consistency indicating the accuracy of the
analytical approach of nonlinear analysis.

2) Two nonlinear coefficients (i. e., [, and I7,)
can effectively affect the nonlinear primary resonance
responses of the bridge structure. The coefficient I,
mainly affects the magnitude of the primary resonance
response of the system and reflects system damping.
The coefficient I, has a strong influence on the soften-

ing and hardening behavior of the primary resonance;
hence, it is an indicator of the nonlinear stiffness of the
system.

3) System parameters, such as the inclination angle
of hangers, sag-to-span ratio, and tensile stiffness ratio
between deck and cable, are determined to have nota-
ble influences on coefficient I";. Singularities in [,
can be observed in different combinations of the system
parameters investigated. This singularity could cause
large dramatic variations in the nonlinear dynamic
properties of the system; thus, it should be avoided in
the design of the bridge structure.
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