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Abstract: To develop comprehensive similarity indicators for
assessing the fitting degree of hysteretic curves shape
descriptors, widely used in image feature extraction, are
introduced. A specific process is proposed to delineate the
formation of indicators based on these descriptors, enabling
the calculation of curve similarity between numerical
simulation and experimental data. Following this process, an
indicator is devised based on shape context. First, the
similarities of the hysteretic loops in the numerical simulation
curve are calculated. Subsequently, the weighted sum of these
similarities is calculated to derive the similarity of the entire
curve. To verify the effectiveness of the indicator, the Bouc-
Wen model is utilized to conduct a numerical simulation
study. Five parameters of the model are adjusted, resulting in
the formation of 51 numerical simulation curves. Similarities
of the curve, along with errors in the force peak point, energy
dissipation, and stiffness, are calculated. The results show
that the absolute values of Spearman’s correlation coefficients
between similarity and errors all exceed 0. 78, which has a
strong correlation, thus verifying the feasibility of the indicator
and the effectiveness of the process for forming the indicators.
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ysteretic curves were originally used to describe the

behavior of magnetic materials and later found wide-
spread application in mechanics and engineering prob-
lems, particularly in earthquake engineering, where non-
linear problems are prevalent'". However, currently,
there is no globally accepted standard for evaluating the
degree of fit between the hysteretic curve obtained from
experiments and that obtained from numerical simulations
based on experimental conditions. Currently,
utilize three main types of evaluation indicators. The first
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type of indicator is based on errors related to important
performance indicators such as peak points, stiffness, and
energy dissipation area'”™, which is not comprehensive.
The second type of indicator considers that certain simple
structures, such as a brace composed of springs and fric-
tion plates connected in series, have clear models. Thus,
the evaluation is based on the error of the model parame-
ters'”’, but the applicability of the indicators is highly
limited. The third type of indicator solely evaluates the
fitting degree of two hysteretic curves or skeleton
curves'™™ and is thus subjective. Hence, methods for ex-
tracting features from the entire curve and establishing ob-
jective indicators are needed.

The advancement of image recognition has led to the
proposal of various shape descriptors for extracting invari-
ant features from images. These techniques can also be
employed to extract features from hysteretic curves.
Among these techniques, image moments, Fourier de-
scriptors, and shape context are widely used. Image mo-
ments utilize pixel information, describing image features
by computing the weighted sum of gray value, color val-
ue, coordinate value, and other pixel attributes. Xiao et
al. ™ and Yang et al."" introduced fractional-order or-
thogonal moments and transformed orthogonal moments
based on traditional integer-order orthogonal moments,
thereby improving their ability to extract local features
and resist noise. The Fourier descriptor relies on con-
tours. It involves performing a Fourier transform on the
sequence of contour curves, converting curve information
into frequency components, and subsequently describing
curve features. The introduction of phase-preserving Fou-
rier descriptors and quasi-Fourier descriptors has enhanced
the capability of Fourier descriptors to extract invariant
features from graphics'''™*'. Shape context, also based on
contours, differs from Fourier descriptors. Shape contexts
express image information through the coordinate posi-
tions of each point relative to other points on the contour.
They have found widespread application in several do-
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mains, including gesture recognition”, medical detec-

tion'"", and mechanical fault diagnosis'".

Compared with Fourier descriptors, shape contexts are
characterized by a more intuitive geometric interpretation,
as frequency components are abstract. Additionally, the

precision of Fourier descriptors can be affected by the se-
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lection of the frequency range. In contrast, the formula
for shape contexts is more uniform than that of image mo-
ments, as numerous kernel functions are available for im-
age moments. Therefore, in this study, we adopted shape
contexts rather than image moments or Fourier descrip-
tors. The application process of shape descriptors for im-
age classification is outlined and a methodology for form-
ing indicators is proposed. Subsequently, the algorithm
for shape contexts and an algorithm for a similarity indica-
tor based on the methodology outlined above. Finally, to
validate the methodology and the indicator, we employ the
Bouc-Wen model for numerical simulation and analyze the
similarities of curves under variations in five parameters.

1 Application Process of Shape Descriptors
1.1 Image classification process

Currently, shape descriptors are primarily used for im-
age classification, and their application process is as fol-
lows:

1) Collecting images that serve as the subjects of classi-
fication. These images encompass static images, such as
the CARL face dataset, MPEG-7 dataset, ETH-80 dataset,
and Cambridge hand-gesture dataset, as well as images ex-
tracted from videos, such as those from the Replay Attack
dataset, MSU MFSD dataset, and the DynTex dataset.

2) Preprocessing images to facilitate feature extraction.
Preprocessing involves several steps, including denois-

ing, feature enhancement, image segmentation, and con-
tour extraction. Denoising entails removing noise or un-
wanted artifacts from images. Common denoising meth-
ods include smoothing filters, non-local mean denoising,
and wavelet denoising. Feature enhancement aims to im-
prove the visual characteristics of an image or highlight
useful information by adjusting parameters such as bright-
ness, contrast, and color. Image segmentation divides an
image into different parts based on semantic or visual
meaning to extract objects or regions of interest for further
feature extraction. Contour extraction, commonly utilized
for contour-based shape descriptors, employs methods
such as Sobel, Prewitt, Roberts operators, and the Canny
edge detector.

3) Extracting features using shape descriptors. The fea-
tures extracted and their format vary according to the de-
scriptor used. For instance, shape context captures the
position information of contour points in a histogram for-
mat, while the Fourier descriptor analyzes the frequency
domain of the contour.

4) Implementing matching algorithms based on extrac-
tion results. Simple matching can be conducted using the
criterion of minimum distance function value, while more
complex matching can be conducted using classifiers such
as clustering algorithms, support vector machines, and
neural networks.

The entire process has been abridged in the form of a
flowchart as shown in Fig. 1.
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Fig.1 Flowchart of image recognition based on shape descriptors

1.2 Formation of hysteretic curve similarity indicators

The formation of indicators is similar to the process
described in Section 1. 1, with three main differences:
1) Algorithms need to adjust to the characteristics of hys-
teretic curves. 2) The objective is to calculate the matc-
hing cost and, subsequently, the similarity without the
necessity of classification. 3) Calculation results should
be normalized to establish standard indicators.

There are four characteristics of hysteretic curves: 1)
A complete hysteresis curve comprises several hysteretic
loops and the final segment of the curve, which is not a
complete loop. 2) The contours have intersecting parts.
3) The order of the points is fixed and cannot be inter-
changed. 4) The number, position, and range of coordi-

nate values of the points are determined by the data, var-
ying widely across different experiments.

Therefore, the algorithms for indicators need improve-
ment. First, during preprocessing, it is necessary to ac-
curately divide the curve into hysteretic loops. Then,
during matching, it is essential to consider the matching
results between all hysteretic loops and conduct a com-
prehensive evaluation. Contour information should ad-
here to the sequence of the hysteretic curve to avoid alte-
ring the order of points. For applications involving a
large volume of data, algorithm optimization is necessary
to enhance efficiency. Additionally, the matching
process can be appropriately streamlined, but the results
from different indicators should fall within a predefined
range. If any of the results exceed this range, they should
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either be discarded or deemed as indicating insufficient
similarity.

The entire process has been summarized in the form of
a flowchart in Fig. 2.

Hysteretic curves Contours
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for descriptors
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-

Fig.2 Flowchart of indicators’ formation based on shape descriptors

2 Algorithm

According to the process proposed in Section 1.2, this
section introduces shape context, modifies the shape con-
text algorithm, and proposes a method for evaluating the
similarity between two hysteretic loops and the similarity
between two complete hysteretic curves.

2.1 Algorithm of shape context

Since the inception of the shape context algorithm,
there have been specific solutions for 2D and 3D object
recognition!'” . The process involves constructing a polar
logarithmic coordinate system centered on each contour
point and dividing the system evenly into multiple bins
based on the logarithm of distance and angle. Subse-
quently, the count of other points falling into each bin is
computed as follows:

g:/(r) =#{q+#p,;:(q-p,) ebin(r)} (D

where g,(r) is the r-th element of the histogram of the i-
th point of the contour; p, is the i-th point; ¢ is the set of
all contour points; bin(r) is the r-th bin.

Afterward, a histogram is constructed according to the
statistical results, where the dimension K represents the
total number of bins. For instance, Belongie et al. '
employed a region set divided into 5 bins based on the
logarithm of distance and 12 bins based on angle, resul-
ting in a dimension K =60. Furthermore, the matching
cost is calculated, and the cost matrix C is formed be-
tween the points of the two contours as follows:

_L ul [g,(r) _h_,'(r)]2
Co=2 % ol +h(n

where C, ; is the element in row i and column j of ma-
trix C; h;(r) is the r-th element of the histogram of
the j-th point of the second contour.

However, each point can only be matched with one
point on the other contour. Therefore, the use of an allo-
cation algorithm, such as the Hungarian algorithm or the
shortest augmented path algorithm'®, is necessary to

(2)

identify the minimum total matching cost and derive the
matching result. In cases in which the number of points
in the two contours differs, the matrix can be made
square by adding “dummy” nodes to one point set, with
a constant matching cost assigned to every point.

2.2 Algorithm of an indicator

2.2.1

This algorithm is a modification of that described in
Section 2. 1. Considering that the range of coordinate
values is not fixed and that it is difficult to divide bins,
the position information of a point is directly represented
by its relative coordinates to the centroid. The matching
cost between the i-th point of the first loop and the j-th
point of the second loop is calculated as follows:

C[,j:«/(xl,[_xz,j)z+(y1,;_y2,,')2 (3)
where (x, ;, ¥, ;) is the coordinate of the i-th point of the
first loop relative to its centroid, and (x,, y,;) is the
coordinate of the j-th point of the second loop relative to
its centroid.

The matching is resolved using the Hungarian algo-
rithm. For cases in which the number of points in the two

Similarity algorithm for hysteretic loops

loops differs, where L,, containing N, points, denotes
the loop with fewer points, and L,, containing N,
points, denotes the loop with more points, the matching
cost for the i’-th point (p,) of the additional N, — N,
points in L, can be calculated as follows:

T
_lpp" xpp"|
- i

p'p"|

where p’ is the point (in L,) matched by the previous
matchable point (in L,) of p,, and p” is the point (in
L,) matched by the next matchable point (in L,) of p,.
If one of p’ and p” is not found, its coordinates are set as
(0,0) (coordinates of the centroid). The equation calcu-
lates the distance from p, to the straight line connecting
p' and p". Then, the similarity of the second loop rela-
tive to the first loop S can be calculated as follows:

(4)

i

N M-N
C.,+ YD,
S - 1 _ i=1 i'=1 5
rl,meanNZ ( )

where j, is the sequence number of the point in the sec-
ond loop that matches the i-th point in the first loop, and
| mean 18 the mean distance from all points of the first
loop to its centroid. It is easy to find that S<1. When
the two curves are exactly the same, S=1.

r

2.2.2 Similarity algorithm for hysteretic curve
A complete hysteretic curve comprises several hyster-



Formation of hysteretic curve similarity indicators based on shape descriptors 179

etic loops and the final segment of the curve, which is
not a complete loop. Under reasonable loading condi-
tions, the final segment that cannot form a complete loop
often does not exist or accounts for a small proportion.
Thus, this segment is typically ignored in the evaluation
of the similarity of the hysteretic curve. The objective of
this algorithm is to assess the similarity between the
curves obtained from the experiment and the numerical
simulation. Therefore, the operating conditions of the
two curves should be identical, leading to an equal num-
ber of loops in most cases. The similarity of the first
loop of the curve from numerical simulation relative to
the first loop of the curve from the experiment is calcu-
lated as S,. Then, the similarity of the second loop of
the curve from numerical simulation relative to the sec-
ond loop of the curve from the experiment is calculated
as S,, and so forth. The similarity of all loops in the
curve from numerical simulation is determined. The
overall similarity of the curve from numerical simulation
S, can then be derived by computing the weighted sum
of these similarities:

all

M
Sa = Z_]aisi (6)

where M is the number of loops; a, is the weight coeffi-
cient of i-th loop’s similarity, which needs to meet the
following conditions:

Yoa =1 (7)

i=1
For this paper, a, =a, =...=a,, =1/M.

However, the varying dimensions and value ranges of
force and displacement affect the similarity calculated by
Eq. (5) differently. For instance, when the force value
range is large and the displacement value range is small,
although the displacement deviation between the two
curves might be significant, the similarity could appear
very large because the dissimilarity of displacement has a
minor negative impact on the similarity. To ensure that
force and displacement contribute equally, their value ran-
ges need adjustment. For each point’ s displacement in the
two curves, the following processing is performed:

. max(F,,) —min(F,,)

" max(u, ) — min(uexp) i (8)

exp exp

i

where u/ is the displacement of the i-th point after pro-
cessing; u, is the displacement of the i-th point before
processing; u,, is the displacement of all points in the
curve from the experiment; F,  is the force of all points
in the curve from the experiment.

3 Experiments and Results
3.1 Model and parameters

To validate the indicator through numerical simula-

tion, this section employs the Bouc-Wen model for vari-
able parameter analysis. First, the equation of motion for
a single-degree-of-freedom system, as depicted in Fig.
3, can be formulated as follows:

mu +cu +aku+ (1 —a)kz=F(1) (9)

where u is the displacement of mass m; c is the linear
viscous damping coefficient; k is the initial stiffness; «
is stiffness ratio; z is the hysteretic displacement; and
F(1) is the time-dependent forcing function. In the equa-
tion, aku is the linear restoring force; (1 — «)kz denotes
the hysteretic restoring force; their sum yields the non-
damping restoring force. The relationship between z and
u is as follows:

Z.:h(Z)ALi—v(,BW\ 2| 2+ yu |2]") (10)

n
where A denotes the tangent stiffness; h(z) is the pinc-
hing function; B, y, and n are hysteretic shape parame-
ters; v and n are strength and stiffness degradation pa-
rameters, respectively, which are the functions of total
hysteretic energy as shown in the following expressions:

v(e)=1+6,¢ (11)
n(e) =1+6.& (12)

where §, and 8, are the designated rates of strength and
stiffness degradation, respectively. Hysteretic energy &
is the energy absorbed by the hysteretic element, and it
can be expressed as

e = (1 —) fz(u, nu(rdr (13)

where w, is the natural frequency of the preyield system,
w, = vk/m. To solve the differential equations, the

fourth-order Runge-Kutta method is used"” .

F(0) F-»

3l

Fig.3 Schematic model of a single-degree-of-freedom hyster-
etic system

To determine the relationship between the alteration of
the curve and the variation in similarity, a curve is con-
structed under specific parameter conditions as the exper-
imental curve. Subsequently, each parameter is individu-
ally adjusted to generate several curves from numerical
simulation.

The initial parameter conditions are detailed in Table
1, where ¢ represents the damping ratio. As parameter A
is somewhat redundant because both hysteretic stiffness
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and hysteretic force can be varied by the stiffness ratio
and hysteresis shape parameters'”, it is set to unity.
The calculation of A(z) is complex, which could lead to
an increase in the number of parameters. Currently, its
parameters and calculation methods may be simpli-
fied""” . Hence, this paper does not consider the pinching
effect, and h(z) is set to 1. The loading condition is il-
lustrated in Fig. 4. The loading cycle spans 10 s; the
peak force of the first cycle is 150 kN, and the force for
each subsequent cycle increases by 10 kN. The total
loading time is 100 s, with a sampling frequency of 50
Hz. The range of parameter changes is provided in Table
2. Considering that ambient excitation may influence the
dynamic characteristics of the structure'™ , this paper as-
sumes a steady environment during the loading process.

Table 1 Initial parameter conditions
Parameter Value Parameter Value
m/kg 1 200 k/(KN -m~") 7110
& 0.02 n 2
y 500 « 0.050
B 500 5, 0.050
o, 0.02 A 1
250 -
150
é 50+
[
2
£ =50t
-150}
_250 L 1 )

0 20 40 60 80 100
Time/s

Fig.4 Loading path

Table 2 Variation range of every parameter

Parameter Minimum Middle Maximum
v 250 500 750
B 250 500 750
d, 0.025 0.050 0.075
S, 0 0.02 0.04
a 0.025 0.050 0.075

Existing articles provide related descriptions regarding
the impact of changes in various parameters of the Bouc-
Wen model on the curve shape'™ ™. Fig. 5 illustrates
the shape of curves when each parameter takes on the
minimum, middle, and maximum values, as specified in
Table 2. Parameters such as 8, y, and §, can influence
the fullness of hysteretic loops, while §, affects the shape
of hysteretic loops, primarily at the corners. Parameter o
can alter the angle of loops.

3.2 Parameter variation and results

For each parameter, 11 values evenly spaced are se-
lected within its range, including the minimum and max-
imum values, and 11 curves are developed accordingly.
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Fig.5 Curves under different parameters. (a) 8; (b) y; (c¢)
8,: (d) 8,; (e) a
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Apart from the curve generated by the middle value,
which perfectly aligns with the curve from the experi-
ment, the other curves differ. Therefore, a total of 51
distinct curves are generated, all derived from numerical
simulation. The similarities of these curves relative to the
experimental curve are individually calculated ( see Fig.
6). The greater the parameters change compared with the
middle value, the smaller the similarity. The magnitude
of parameter changes correlates with the dissimilarity of
the curves, thereby indicating that this algorithm can ef-
fectively reflect the dissimilarity of the curves.

1.0

09F

SO
9 »
T T

Similarity

g
N
T

o
W
T

01020 30 40 50 60 70 80 90100
Percentage variation of parameters/%
Fig. 6 Relationship between similarity results and variation of
each parameter

For hysteretic curves, particular emphasis is often
placed on performance indicators such as the peak point,
energy dissipation capacity, and stiffness. Traditional
comparisons of hysteretic curves frequently focus on
these aspects. Hence, investigating whether similarity
can accurately reflect the degree of similarity in these re-
spects is essential. This paper utilizes the relative average
error of displacement at the force peak point (ED), the
energy dissipation area ( EA), and the secant stiffness
(ES) to represent these indicators. The relative average
error is calculated as

0
2 Anum,j - exp, j
j=1 Anum Jj

e = : (14)

0
where e is the relative average error of the indicator;
A, 18 the indicator value of the j-th loop in the curve
from numerical simulation; A, ; is the indicator value of
the j-th loop in the curve from numerical simulation; Q
is the number of loops. Secant stiffness is calculated ac-

cording to JGJ/T 101—2015™":

:‘+F/“+‘_FJ‘
! ‘+X;“+‘_Xj‘

(15)

where K, is the secant rigid of the j-th loop, \ +F |,
| -F . | are restoring force values at the peak points of

b}

the forward and reverse of the j-th loop, and | +X g
\ -X; | are displacement values at the peak points of
the forward and reverse of the j-th loop, respectively.
The errors resulting from changes in each parameter
are depicted in Fig. 7. Errors are all zero when parame-
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Fig.7 Relationship between errors and each parameter. (a)
B (b) y; (©) §,; (d) 5,5 (¢) «

ters assume their respective median values. As a parame-
ter deviates from the median, the errors increase, with
varying rates depending on the parameter. Moreover, in
most cases, the error increase rate when a parameter is
less than the median differs from the rate when the pa-
rameter is greater than the median.

The relationship between similarity and errors resulting
from changes in each parameter is illustrated in Fig. 8.
When the similarity is 1, the errors are 0. As the similar-
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Fig.8 Similarity and errors when each parameter changes.
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Similarity
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ity increases, the errors of the three indicators exhibit a
downward trend. According to the fitted lines between
errors and similarity, a negative correlation exists be-
tween errors and similarity. However, in some in-
stances, the results exhibit significant discreteness and
deviate noticeably from the line. This disparity is attribu-
ted to the varying correlation when a parameter is less
than the median compared to when the parameter is grea-
ter than the median, as indicated by the relationships
shown in Figs. 6 and 7.

The Spearman’s correlation coefficients between simi-
larity and errors are shown in Table 3. When a certain
parameter changes within a range smaller or larger than
the median value, a notable negative correlation exists
between the similarity and errors of the three indicators.
Although the correlation weakens across the entire range,
the absolute values of Spearman’ s correlation coefficients
between similarity and the three indicators exceed 0. 78.
This indicates a significant correlation between their
ranks. Overall, the similarity indicator can effectively
reflect the outcomes of traditional indicators with just one
calculation. Moreover, the algorithm evaluates based on
all data points, whereas traditional indicators assess only
a portion of them. These results underscore the compre-
hensiveness of the indicator.

Table 3 Spearman’s correlation coefficients between similari-
ty and errors

Displacement at the Energy Secant
Parameter . Lo .
force peak point dissipation area stiffness
B -0.827 3 -0.7818 -0.87217
y -0.8455 -0.809 1 -0.927 3
5, -0.8727 -0.790 9 -0.963 6
o, -0.963 6 —-1.000 0 -1.000 0
o —-1.000 0 -1.000 0 -0.827 3

4 Conclusions

1) A process for constructing hysteretic curve similari-
ty indicators based on shape descriptors is proposed. An
indicator and its algorithm are developed accordingly.
Numerical simulation results demonstrate the algorithm’ s
efficacy in evaluating the fitting degree between hysteret-
ic curves from numerical simulations and those from ex-
periments. The feasibility of the indicator validates the
effectiveness of the process.

2) Alterations are made to five parameters of the
Bouc-Wen model, resulting in the development of 51
distinct curves to assess the indicator. The greater the
change in each parameter, the lower the similarity of the
curve relative to the original curve. These findings illus-
trate the indicator’ s ability to reflect the similarity of pa-
rameters and, subsequently, the similarity of curves.

3) After parameter alteration, the similarities of hys-
teretic curves relative to the original curve exhibit a nega-
tive correlation with the relative average errors of dis-
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placement corresponding to the force peak point, the en-
ergy dissipation area, and the secant stiffness. Moreo-
ver, the absolute values of Spearman’ s correlation coef-
ficients are all greater than 0. 78. This correlation dem-
onstrates that the indicator can effectively reflect the sim-
ilarity of the peak point, energy dissipation capacity,
and stiffness, making it a comprehensive indicator.
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