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Abstract: To address the challenge of solving free vibration
problems in beams with uniform cross-sections, beams with
variable cross-sections, and Euler-Bernoulli with
concentrated masses, an innovative method combining the
Rayleigh method and the Monte Carlo method is introduced.
This dual-method strategy offers a novel solution by first
discretizing the continuous beam structure model, followed by
employing the Monte Carlo method to determine the vibration
modes of the beam structure. Subsequently, these identified
vibration modes are integrated into the Rayleigh method to
calculate the fundamental frequency and vibration modes. The

beams

process involves a meticulous comparison with the minimum
value obtained during calculations to ensure the satisfaction of
the convergence condition. The results show that this
combined method achieves a maximum error of 10% or less in
across different
This accuracy level is well within

predicting the fundamental frequency
calculation models.
acceptable engineering requirements. The control parameters
for accuracy and time can be easily adjusted to meet various
needs. The method, which is simple in theory and widely
applicable, enables the quick and precise determination of
fundamental frequencies and vibration modes for diverse beam
structures.
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eams play a pivotal role in various engineering dis-
B ciplines, such as civil engineering and mechanical
engineering. Understanding their vibration characteristics
holds both theoretical and practical significance. The Eul-
er-Bernoulli theory, a cornerstone in the study of beam
mechanics, effectively captures the mechanical behavior
of elongated beams undergoing small deformations and
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exhibiting minimal shearing forces. This simplicity has
facilitated the analytical or semi-analytical exploration of
free vibration challenges for partial isotropic Euler-Ber-
noulli beam models'' ™. However, when it comes to
models with variable cross-sections, the complexity in-
creases, necessitating the adoption of numerical approa-
ches for investigation. These include finite element meth-
od (FEM) "7 finite difference method ( FDM )"’
differential transformation element method ( DTEM) """
and other numerical analysis methods'"' ™.

Banerjee et al. ") derived the exact solution for the
free vibration of Euler-Bernoulli conical beams under gen-
eral boundary conditions using Bessel functions. Lee et
al. ' introduced a transfer matrix method to determine
the exact solution of the free vibration of Euler-Bernoulli
beams with variable cross-sections. Further contributions
include Zheng et al. "'*’ | who leveraging the Euler-Ber-
noulli beam method presented an analytical calculation
method to assess the mechanical response of cement con-
crete pavement structures, considering the shear slip
effect at interlaminar interfaces. Similarly, Kang et
al. "' examined the static bending behavior of axially
functionally graded Euler-Bernoulli microbeams subjected
to concentrated and distributed loads. Niu et al. '"*' mod-
eled beams as proportional damping systems to derive an-
alytic expressions based on the first-order sensitivity of el-
emental modal strain energy. Despite the merits of these
theoretical approaches, their applicability often remains
confined to specific model types. Addressing this limita-
tion, this paper introduces a novel methodology based on
the Euler-Bernoulli beam theory. This method uniquely
accommodates general boundary conditions and accounts
for the effects of arbitrary variable cross-sections and con-
centrated masses. Integrating Rayleigh’s method with
Monte Carlo sampling facilitates the examination of the
first-order mode expansion of beam structures. The valid-
ity of this method is confirmed through comparisons with
theoretical solutions and finite element examples.

1 Theoretical Method

1.1 Monte Carlo method for determining the mode
function

This section focuses on resolving the subsequent funda-



204

Zhu Lei, Zhang Jianxun, and Sun Hailin

mental frequency using the Rayleigh method. However,
before applying this method, it is imperative to first ob-
tain the vibration mode function of the structure. Utilizing
the Monte Carlo method, we assume the expression form
of the vibration mode function as follows:

n

¢ = Z a, f;(x)

i=1

(D)

where ¢ represents the modal function of the beam struc-
ture; n signifies the number of sections into which the
beam is divided; a is a randomly chosen number derived
from the Monte Carlo method; f symbolizes the assumed
modal function.

It is important to note that in the initial assumption of
the vibration mode function, adherence to the deforma-
tion compatibility condition is not required. Nevertheless,
this approach mandates adjustments to the vibration mode
function to ensure compliance with the boundary condi-
tions.

The simply supported boundary is as follows:

Pli=r, = 0; ¢ = (x _'xi) Zaiff(x) (2)

The clamping boundary is as follows:

n

¢ ‘x:x, =0; ¢ ‘x:x, =0; ¢ = (x _xi)zzaifi(x)
(3)

i=1
Through extensive calculations and experimentation, it
has been determined that adopting a 4th-degree normal-
ized power series as the vibration mode function yields
excellent simulation results in most beam component
models.

1.2 Model discretization

This study begins with the discretization of the original
beam model by segmenting it into several equal-length
portions, each possessing uniform cross-sections. This
process involves deriving the properties, such as line den-
sity and bending stiffness, from the characteristic values
at the intermediate sections of each beam segment. Fur-
thermore, the positions of all node coordinates along the
beam length are determined.

1.3 Rayleigh method to solve the frequency

The Rayleigh method is employed to calculate the fre-
quency of the beam structure while considering mass con-
centration effects. This approach calculates the maximum
kinetic energy and maximum strain energy of the discrete
beam structure model.

Tmax = %CI)Q ; mi¢xiLi + Z wZMiq)ii (4)
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where T represents the system’s maximum potential en-
ergy; w represents the structure’s fundamental frequency;
m, is the linear density of the i-th beam section; @ , repre-
sents the characteristic value of the mode function at the
cross-section of the i-th beam section; L, represents the
length of the i-th beam section; M, denotes the i-th con-
centrated mass; V__ is the maximum kinetic energy of the
system; E is the elastic modulus of the material; I, repre-
sents the moment of inertia of the i-th beam section.

The structure’s fundamental frequency w can be deter-

mined from Egs. (4) and (5) above as follows:

i m®,L + Y M,
2 il

w =

; (6)
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1.4 Convergence criteria

Determining the fundamental frequency of a structure
using the Monte Carlo method can be influenced by the
chosen function form, which might not always meet the
desired accuracy requirements. Consequently, conver-
gence criteria must be established. Leveraging the princi-
ples of the Rayleigh method, which typically yields re-
sults greater than the actual fundamental frequency, we
implement the following convergence criterion through
MATLAB programming :

1) Initialize the upper limit of the fundamental fre-
quency as infinite and define the convergence limit as the
percentage difference between the fundamental frequency
derived from the Monte Carlo method and the lower limit
of the fundamental frequency, divided by the absolute
value of the lower limit.

2) Calculate the fundamental frequency for the first
time, update the lower limit of the fundamental frequen-
cy, and record the mode shape.

3) Recalculate and determine the system’s fundamental
frequency. Compare this new value with the previously
established lower limit of the fundamental frequency. If
the new result is lower than the current lower limit, adopt
this new figure as the updated lower limit of the funda-
mental frequency, record the corresponding mode shape,
and proceed with another recalculation. If the new fre-
quency exceeds the lower limit but remains within the
threshold of the lower limit multiplied by (1 + conver-
gence limit) , accept this lower limit as the definitive fun-
damental frequency and its associated mode shape as the
fundamental mode shape. In scenarios not covered by the
above conditions, initiate another calculation cycle.

2 Theoretical Calculation

This section aims to validate our method by examining
three distinct beam structure models; isotropic beams with
constant cross-sections, beams with variable cross-sec-
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tions, and multi-segment beams with concentrated mas-
ses. These models are derived from practical engineering
examples. To establish the reliability of our approach, we
juxtapose the calculated values from our method against
those obtained from theoretical analytical solutions and fi-
nite element analysis results.

2.1 Uniform straight beam with equal section

In this section, a rectangular beam with a uniform
cross-section measuring 0. 1 m x0. 1 m and a span length
of 1 m is examined. This beam is constructed from steel ,
characterized by an elastic modulus ( E) of 206 GPa and
a density (p) of 7 850 kg/m’. Two boundary conditions
are considered; one where the beam is simply supported
at both ends (S-S) and another where it is clamped at
one end while free at the other (C-F).

To assess the accuracy of our method, we compare the
research results presented in this with theoretical solutions
and finite element analyses. For the finite element analy-
sis, we utilize the ANSYS Workbench platform, emplo-
ying a beam element model divided into 50 segments,
with Beam188 selected as the element type. A schematic
diagram of the finite element model is shown in Fig. 1.

Fig.1 Finite element model of equal section beam

In the Monte Carlo method solution program, a con-
vergence limit of 1% is used. The original beam model is
discretized into 100 equally long microelement segments
along the beam length. Theoretical solutions are refer-
enced from prior research'®’. The fundamental frequen-
cies of simply supported beams and cantilever beams have
been identified as 228. 88 and 81. 53 Hz, respectively,
while the FEM yields values of 225. 15 and 80. 90 Hz,
respectively. The comparable results are listed in Tables 1
and 2.

For the simply supported beam model, the maximum
deviation from the theoretical solution was found to be
4.93% , while the maximum divergence from the finite
element solution reached 6. 67% . When considering the
average outcomes of 10 calculations, these errors were re-
duced to 1. 84% against the theoretical benchmark and
3.52% in relation to the finite element analysis. Regard-
ing the cantilever beam model, the maximum error rela-
tive to the theoretical solution was 1.94% , with a slight-
ly lesser error of 1.74% compared to the finite element
solution. The error between the average value of 10 cal-
culations and the theoretical solution was 0.95% , while

Table 1 Comparison of calculation results of simply supported
beams of equal cross-section

Calculation Monte Error v?/ith .E.rror with
times Carlo theoretical finite element Cycles
solution solution/ % solution/ %
1 240.17 4.93 6.67 280
2 239.24 4.53 6.26 256
3 229.97 0.48 2.14 354
4 230. 16 0.56 2.23 323
5 232.02 1.37 3.05 329
6 230.43 0.68 2.35 319
7 229.36 0.21 1.87 364
8 236.00 3.11 4.82 314
9 229.34 0.20 1.86 274
10 234.15 2.30 4.00 230
Average 233.08 1.84 3.52 304
Variable coefficient  0.018 0.976 0.519 0.142

Table 2 Comparison of calculation results of cantilever beams
with equal cross-sections

Calculation Monte Error \x'/ith ) E.rror with

times Carlo theoretical finite element Cycles
solution solution/ % solution/ %

1 80.31 -1.50 -0.73 7511

2 81.81 0.34 1.12 1 935

3 80. 06 -1.80 -1.04 11 703

4 80.95 -0.71 0.06 9 824

5 80.26 -1.56 -0.79 17 831

6 81.03 -0.61 0.16 6 884

7 82.31 0.96 1.74 814

8 79.95 -1.94 -1.17 22 828

9 80.36 -1.44 -0.67 17 250

10 80.54 -1.21 -0.44 8 473

Average 80.75 -0.95 -0.18 10 505

Variable coefficient 0.010 -1.006 -5.440 0.670

the error with the finite element solution was 0. 18% .
These calculation errors confirm that our method satisfies
the stringent precision requirements typical of engineering
applications. An examination of the coefficients of varia-
tion for the fundamental frequencies (0. 018 for simply
supported beams and 0. 010 for cantilever beams) reveals
a commendable stability in frequency calculation. Al-
though the relative error values are minimal, rendering
their variation coefficients less informative, it is notewor-
thy that the variation coefficient concerning the number of
iterations exhibits considerable variability, with values of
0. 142 for simply supported beams and 0. 670 for cantile-
ver beams. This indicates significant fluctuations in the
total computational effort required. Despite these varia-
tions, the method efficiency is highlighted by the remark-
ably short computational time, with each iteration conclu-
ding in less than 10 s. Furthermore, the practice of con-
ducting repeated calculations has been proven to signifi-
cantly improve accuracy.

2.2 Variable cross-section beam

In this analysis, we explore a rectangular beam with a
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variable cross-section that spans 3 m. This beam exhibits
a linear variation in height along its axis, transitioning
from a cross-section dimension of 0.2 m x 0.2 m at one
end to a flat cross-section of 0.2 m x 0 m at the other
end. The material properties are consistent with those
used in our previous example of a constant cross-section
beam. The boundary conditions for this model are as fol-
lows: one end of the beam, where the rectangular cross-
section is located, is fixed, while the opposite end, fea-
turing the flat cross-section, is left free.

Regarding the modeling process in ANSYS Work-
bench, solid elements with a cell size of 0. 03 m are
used. The selected element cell type is Solid186, a high-
order 3D 20-node hexahedral solid element known for its
computational accuracy. Given the simplicity of the mod-
el discussed in this paper, the choice of this particular el-
ement type does not significantly affect the overall com-
putational time. A schematic diagram of the finite ele-
ment model is shown in Fig.2.

Fig.2 Finite element model of variable cross-section beam

Within the framework of the Monte Carlo method solu-
tion program, we set a convergence limit of 1% . The
original beam model is discretized into 100 equally long
microelement segments along the beam length. The theo-
retical solution, referenced from previous research'™! | in-
dicates a fundamental frequency of 27.39 Hz. According
to our FEM, the fundamental frequency is 27. 38 Hz.
The results are listed in Table 3.

Table 3 Comparison of calculation results of variable cross-
section cantilever beams

Calculation Monte Error with Error with
times Carlo theoretical finite element Cycles
solution solution/ % solution/ %
1 27.31 -0.29 -0.26 54
2 27.84 1.64 1.68 23
3 27.30 -0.33 -0.29 24
4 27.36 -0.11 -0.07 20
5 27.38 -0.04 0.00 29
6 27.31 -0.29 -0.26 30
7 27.73 1.24 1.28 16
8 27.58 0.69 0.73 20
9 27.37 -0.07 -0.04 48
10 27.59 0.73 0.77 59
Average 27.47 0.32 0.35 32
Variable coefficient 0.007 2.237 2.011 0.481

In the case of the variable section beam model, the
maximum error from the theoretical solution is 1. 64% ,

while the maximum error compared to the finite element
solution is 1.68% . Furthermore, the average error across
10 calculations, when compared to the theoretical solu-
tion, is 0. 32% , and the error relative to the finite ele-
ment analysis is 0.35% . Given the minimal relative error
and number of iterations, the variation coefficient is not
informative. These results underscore the robust applica-
bility and reliability of the method presented in this paper
for analyzing variable section beam models.

2.3 NREL 5-MW wind turbine tower

The US National Renewable Energy Laboratory
(NREL) 5-MW wind turbine model is a cornerstone in
various academic studies, representing a standard three-
blade, upwind horizontal-axis wind turbine'®'. This
model’s design parameters, as outlined by NREL, offer a
framework for detailed analyses.

In this section, we continue to leverage the ANSYS
Workbench platform for modeling purposes. In the finite
element model, the tower is represented as an isosceles
beam structure with uniform variations in diameter and
wall thickness from the base to the top. For the sake of
simplicity, the mass of the rotor and the hub is concen-
trated at a single point, neglecting the influence of their
mass distribution. The hub, located 2. 34 m above the
tower and 90 m above ground level, is positioned eccen-
trically, 5 m ahead of the tower. To accurately replicate
the dynamic characteristics of the actual structure, the
tower is modeled using beam elements, segmented into
50 equal-length sections and a beam element type
Beam188. The resulting finite element vibration mode
shape is shown in Fig. 3.

Fig.3 NREL 5-MW wind turbine tower vibration shape

The Monte Carlo method solution program simplifies
the process by ignoring the eccentricity of the tower top
mass and setting a convergence limit of 1% . The original
tower model is discretized into 100 equal-length microele-
ment segments along the vertical direction. The funda-
mental frequency is 0. 324 Hz, and the fundamental fre-



Numerical solution method for fundamental frequency and mode shape of Euler-Bernoulli beam based on... 207

quencies obtained by FEM are 0.320 Hz. The results are
listed in Table 4.

Table 4 Comparison of NREL 5-MW wind tower results

Calculation Monte Error with Error with
times Carlo theoretical finite element Cycles
solution solution/ % solution/ %
1 0.335 3.40 4.69 619
2 0.339 4.63 5.94 113
3 0.337 4.01 5.31 182
4 0.336 3.70 5.00 99
5 0.334 3.09 4.38 166
6 0.337 4.01 5.31 120
7 0.336 3.70 5.00 148
8 0.332 2.47 3.75 1579
9 0.332 2.47 3.75 411
10 0.335 3.40 4.69 462
Average 0.335 3.49 4.78 389
Variable coefficient  0.007 0.196 0.145 1.165

The maximum error in the NREL 5-MW tower model
compared to the reference value is 4. 63% and 5. 94%
against the finite element solution. Furthermore, avera-
ging the outcomes of 10 computations yields errors of
3.49% relative to the theoretical predictions and 4. 78 %
when compared to FEM results. These figures, presen-
ted in Table 4, highlight the method’s robust stability in
frequency calculation despite the significant variability in
the number of iterations required, as indicated by a vari-
ation coefficient of 1. 165. This variability suggests sig-
nificant fluctuations in the total computational effort de-
manded by this method. Nonetheless, the method’s high
efficiency ensures that the overall time cost remains simi-
lar. Such findings underscore the method’s strong appli-
cability to actual engineering models with complex ge-
ometry.

3 Discussion
3.1 Influence of convergence limit

The convergence limit primarily impacts both the com-
putational time and the accuracy of the program. Based
on the convergence judgment criteria outlined in this pa-
per, the likelihood of result distortion during the calcula-
tion process is extremely low. However, if the conver-
gence limit is set too loosely, it might lead to situations
where the calculations meet the convergence criteria but
still significantly deviate from the actual fundamental fre-
quency of the structure. Such incorrect results are more
likely to arise in the early stages of calculations, leading
to substantial discrepancies in the results. By either con-
ducting multiple operations or increasing the stringency of
the convergence criteria, the likelihood of these distor-
tions can be greatly minimized.

On the other hand, there is a marginal effect between
the convergence limit and the computational accuracy.
Setting excessively strict convergence limits will signifi-

cantly increase the number of iterations necessary for the
program to complete its calculations. This not only in-
creases the computational time but also yields minimal
improvements in accuracy. In practice, setting a con-
vergence limit of 1% has been found to effectively bal-
ance the requirements of computational accuracy and
time.

3.2 Influence of the number of segments divided in
beams

The division of the beam into sections significantly in-
fluences the accuracy of determining the fundamental fre-
quency, wy, using the Rayleigh method. This method’s
reliance on approximating the derivative of discrete data
poses inherent limitations during the programming process
in MATLAB. Specifically, accurately solving the second-
order derivative of the beam mode function at the most
marginal sections of the beam ends can be challenging. A
small number of section divisions can magnify this impact
and distort the beam mode’s function.
number of sections helps mitigate the error, offering a
practical solution without substantially raising the compu-
tational cost. In terms of the program’s execution time,
the program requires minimal time to complete a single
calculation. Dividing the beam into 100 sections is gener-

Increasing the

ally sufficient to meet most analytical requirements. How-
ever, increasing the number of sections by an order of
magnitude has a minimal impact on the program’s execu-
tion time.

3.3 Influence of parameters selected by the Monte
Carlo method

In this paper, we operate under the assumption that the
modal function is expressed as a normalized power series,
with the highest order term being 4. The coefficients defi-
ning this power series are restricted to fall within the in-
terval [ —1,1], ensuring that they remain constrained.
This approach to introducing boundary conditions through
power functions ensures that the engineering accuracy re-
quirements are met while maintaining computational effi-
ciency. When compared to other common methods of fit-
ting functions, such as those utilizing the Fourier series,
the power series approach consistently demonstrates supe-
rior efficiency.

4 Conclusions

1) In this study, we introduced a numerical calculation
method to accurately determine the fundamental frequency
of beam structures. This innovative approach combines
the Rayleigh method with the Monte Carlo method.

2) The method outlined is straightforward and user-
friendly, boasting broad applicability. It offers rapid and
precise calculations of the natural frequency of beams,
whether they have constant or variable cross-sections.
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Notably, it achieves this while maintaining the maximum
error rate below 10% , a level of accuracy that meets the
stringent requirements of engineering applications.

3) This study delves into a detailed examination of the
results across various cases, shedding light on how pa-
rameters such as the convergence limit and the number
of segments influence both the accuracy and the compu-
tational time required. Furthermore, it provides exten-
sive insights into universal parameters, outlining their
value ranges and how they are represented in function
form.
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