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Bridge damage identification based on convolutional
autoencoders and extreme gradient boosting trees
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Abstract: To enhance the accuracy and efficiency of bridge
damage damage
identification method was proposed. First, convolutional
autoencoder (CAE) was used to extract key features from the
acceleration signal of the bridge structure through data
reconstruction. The extreme gradient boosting tree ( XGBoost)
was then used to perform analysis on the feature data to
achieve damage detection with high accuracy and high
performance. The proposed method was applied in a numerical
simulation study on a three-span continuous girder and further
validated experimentally on a scaled model of a cable-stayed
bridge.
identification errors remain within 2.9% for six single-damage
cases and within 3. 1% for four double-damage cases. The
experimental validation results demonstrate that when the
tension in a single cable of the cable-stayed bridge decreases
by 20% , the method accurately identifies damage at different
cable locations using only sensors installed on the main girder,
achieving identification accuracies above 95.8% in all cases.
The proposed method shows high identification accuracy and
generalization ability across various damage scenarios.
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identification, a novel data-driven

The numerical simulation results show that the

structural damage

extreme

ridges represent an indispensable component of trans-
Bportation infrastructures. Yet, they are subject to
progressive degradation over time because of various en-
vironmental factors. Furthermore, the volume of traffic
and the load that bridges support tend to escalate over the
years. Given these circumstances, implementing continu-
ous monitoring practices becomes imperative. Such meas-
ures are crucial for guaranteeing the enduring safety and
structural integrity of these vital structures'' ™.
With the development of technology and the advance-

ment of data collection methods, structural health monito-
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ring (SHM) technology has become a key tool for bridge
maintenance and management. These technologies can
not only provide real-time data reflecting the current sta-
tus of bridges but also identify potential damage to struc-
tures using data analysis and other methods™’ .
Traditional methods for identifying structural damage in
bridges have often been divided into two main categories:
those based on theoretical models and those relying on da-
ta analysis'" .
based damage detection, employs physical parameters,
such as vibrational frequencies, mode shapes, and damp-
ing coefficients, to mathematical models to assess the
health of a structure, pinpointing the presence and severi-

The former approach, known as model-

ty of damage. However, despite their ability to deliver
quantitative insights into damage location and magnitude,
these model-based techniques may fall short when applied
to intricate structures, owing to potential inaccuracies in
the underlying models and assumptions. Meanwhile, the
rise of artificial intelligence ( AI) and the proliferation of
big data technologies have propelled data-driven methods
to the forefront of structural damage detection in bridg-

[5-7]

es Leveraging expansive datasets and sophisticated

Al algorithms, contemporary techniques herald new
avenues for identifying structural damages. These meth-
ods, proficient in autonomously detecting potential dama-
ges, scrutinize data from sensors affixed to bridges. Giv-
en their exceptional adaptability, data-driven approaches
are adept at navigating the complexities of various struc-
tures and intricate damage patterns, areas where tradition-
al model-based strategies may falter.

In recent years, the application of and research into
damage identification technologies employing machine
learning and data analytics have seen significant expan-
sion. This growth underscores the substantial potential for
automatically identifying damage-sensitive features within
sensor data, facilitating pattern recognition. In this re-
spect, Sun et al. "™ used a convolutional neural network
(CNN) and partial least squares regression to estimate
bridge node overload and proposed a bridge damage iden-
tification and location method. Through numerical simu-
lation, this method was proven capable of accurately and
reliably detecting and locating bridge damage under vari-
ous conditions. Meanwhile, Wang and Cha"™ proposed a
structural damage identification method using deep au-
and one-class vector machines.

toencoders support
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Through experimental and numerical research verifica-
tions, it achieved a detection accuracy of up to 97.4%,
especially in minor damage identification. Ma et al. '
proposed a structure damage detection method based on
variational autoencoders. Through numerical simulation
and experimental verifications, it achieved accurate dam-
age identification and was found suitable for actual SHM.
Ni et al. """ expanded bridge corrosion data using genera-
tive adversarial networks and achieved precise corrosion
detection and segmentation using the DeepLab-V3 + net-
work, significantly outperforming the U-Net network.
Duan et al. ''*! proposed an automated damage identifica-
tion method for hanger cables in tied-arch bridges using
CNN on the Fourier amplitude spectra of acceleration re-
sponses, showing improved performance over traditional
methods under various damage scenarios and observation-
al conditions.

Although Al-based damage identification technology
has made significant progress, it still has several limita-
tions, including insufficient feature extraction, long com-
putational time, and the challenge of real-time damage
detection. Given these limitations, this study introduces a
two-phase damage identification framework that combines
convolutional autoencoders (CAEs) with extreme gradient
boosting trees ( XGBoost), aiming to achieve efficient
and real-time bridge damage identification.

1 Proposed Method

This section describes the proposed novel bridge dam-
age identification method using structural acceleration da-
ta. This method is a two-phase technology combining
CAEs and XGBoost using a stacked model integration ap-
proach. The main procedures are as follows:

1) Data acquisition. Collect the vertical acceleration of
the structure using acceleration sensors installed on the
bridge.

2) Data preprocessing. Perform data slicing operation
to obtain data samples with a certain size (i.e., 5 X
512), which will be used for subsequent model training.

3) Feature extraction. Use the CAE model to perform
reconstruction training on data samples, achieving feature
extraction. CAE automatically learns the features of the
input data through its convolutional layer, then extracts
key features through the encoder, and finally generates a
feature vector of length 256.

4) Damage identification. Use the XGBoost model to
analyze the feature samples to achieve damage identifica-
tion. The model employs its ensemble of decision trees to
interpret and correlate the patterns within the features, ef-
fectively pinpointing areas of concern. This stage in-
volves training the XGBoost algorithm on the 256-length
feature vectors to predict the location and degree of struc-
tural damage.

The selection of CAEs and XGBoost for bridge damage

identification capitalizes on their unique strengths to ad-
dress the complexities inherent in studies of bridge dam-
age identification. On the one hand, CAEs excel in com-
pressing data samples into meaningful representations.
Compared with deep learning methods such as CNN,
CAEs employ unsupervised learning to perform recon-
struction training on data samples, offering faster speeds
and more efficient feature extraction capabilities while
avoiding information loss. On the other hand, XGBoost
excels at feature analysis and data mining, standing out
among other algorithms for its sophisticated decision-
making process. It complements CAEs by leveraging its
high performance in predictive tasks to accurately assess
the location and severity of damage. XGBoost uses the
ensemble method to combine multiple decision trees.
Given its efficient training and analysis methods, it has
higher accuracy and efficiency than CNN when used to
analyze lightweight feature data.

In this study, CAEs and XGBoost are combined using a
stacked model integration method for bridge damage iden-
tification tasks. CAE is used to perform deep feature ex-
traction from the original acceleration data, whereas XG-
Boost analyzes the extracted feature to achieve damage lo-
calization and damage degree identification.

1.1 CAEs

CAEs represent a specialized form of autoencoders par-
ticularly designed for processing grid-structured data,
such as images''”'. CAEs leverage the CNN architecture,
which is widely recognized for its efficiency in handling
image data because of its ability to capture spatial hierar-
chies of features. The core objective of a CAE is to learn
a compressed, feature-rich representation of the input data
through an encoding-decoding process, facilitating tasks
such as denoising, dimensional reduction,
learning in an unsupervised manner.

The architecture of a CAE,
Fig. 1, consists of two main components: the encoder and
the decoder. The encoder uses convolutional layers to
progressively reduce the dimensionality of the input data,
capturing essential features in a compressed form through
filters that create encoding features. These encoding fea-
tures summarize specific features at different locations in
the input. Meanwhile, the decoder aims to reconstruct the
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original input from the encoding features, employing con-
volutional and up-sampling layers to gradually restore the
spatial dimensions to match the original input size. The
quality of this reconstruction indicates the model’s effica-
Through
this process, the CAE learns the intrinsic representation of
the input data and can reconstruct high-quality accelera-
tion data, providing a reliable foundation for further anal-
ysis.

cy in capturing the underlying data structure.

Training a CAE involves minimizing a loss function
that measures the difference between the input data and its
reconstruction. This process enables the CAE to learn ef-
ficient data representations, with the encoder capturing
the most informative features and the decoder learning to
The loss
function of CAE usually uses mean square error ( MSE)

reconstruct the data based on these features.

loss, which can be described as

1
T'yvse =ﬁz (£ _xi)z (1)

where x; is the i-th data point of the input data; £, is the
i-th data point of the output data; N is the total number of
data points.

In this study, acceleration data samples were fed into
the CAE model for specialized reconstruction training.
The CAE meticulously processed each sample through its
convolutional layers to model and minimize the recon-
struction error iteratively. As this error approached zero,
indicating a precise representation of the data, the CAE
shifted to extracting concise and highly informative fea-
tures from the data. These features were encapsulated in a
reduced-dimensional space, representing the
characteristics of the original acceleration data and thus

intrinsic

effectively capturing the essential dynamics and patterns
necessary for subsequent damage identification stages.
Therefore, the encoding features,
prehensive information about the original signals,
selected for the next stages.

which contained com-
were

1.2 XGBoost algorithm

XGBoost is a highly efficient and flexible implementa-
tion of the gradient boosting decision tree ( GBDT)'"
technique, widely recognized for its exceptional perform-
ance in machine learning competitions and real-world ap-
plications'"” .

This advanced ensemble learning technique leverages

16 .
U1 models, which are

the iterative training of decision tree
then integrated into a robust composite model. XGBoost
excels in feature analysis and data mining, making it par-
ticularly suitable for analyzing abstract and complex data-
sets. For this reason, it is employed in this study to ana-
lyze the features extracted by the CAEs.

The core methodology of XGBoost involves optimizing

the loss function of the model through gradient descent

during each training iteration. This optimization enhances
the model’s accuracy and responsiveness to various data
patterns. XGBoost also incorporates several innovative
features to boost performance, including a weighted quan-
tile sketch for the better handling of continuous variables,
a regularization term to prevent overfitting, and parallel
processing to speed up computations'”’ " .

The objective function of XGBoost consists of two
parts: a loss function and a regularization term. Assuming
a training data set (X, y,), i=1,2, ..., N, where X, is the
feature vector, and y, is the corresponding real label, the
goal of XGBoost is to minimize the following objective
function:

Zl<y,,y> + Zﬂ(ﬂ (2)

where ¥, is the predicted value of the sample y, by the
model; f, is the k-th tree; [ is the loss function; (2 is the
regularization term.

XGBoost has made the following major improvements
to the traditional GBDT algorithm:

1) Regularization term. XGBoost introduces a regulari-
zation term to control the complexity of the model and
prevent overfitting. Compared with traditional GBDT,
the regularization term of XGBoost is more flexible and
can effectively control the depth of the tree and the num-
ber of leaf nodes.

2) Loss function approximation. XGBoost uses an ap-
proximate method to solve the objective function, speed-
ing up the model training process. This approximation
method can reduce the amount of calculation and improve
the efficiency of the algorithm.

3) Parallel processing. XGBoost introduces parallel
processing in the training process,
ticore processors and distributed computing platforms to
accelerate the model training process. XG-
Boost stands as a formidable extension of the GBDT
framework, offering enhancements in terms of model ac-
curacy, efficiency, and flexibility, and is thus used in
this study.

which can use mul-

Therefore,

2 Bridge Overview

2.1 Bridge overview and sensor placement

In this research, a three-span continuous girder finite
element model, featured in the 3rd International Competi-
tion for Structural Health Monitoring ( IC-SHM 2022),
served as the primary study object'*". The competition,
aimed at advancing SHM technologies, was cohosted by
the Asia-Pacific Network of Centers for Research in Smart
Structures Technology, alongside Tongji University, Har-
bin Institute of Technology, and the University of Illinois
at Urbana-Champaign. It offered a wealth of datasets and
sophisticated models invaluable for validating the damage
identification approach proposed herein.
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Leveraging this groundwork, this study conducted
method validation using data for the three-span continuous
girder bridge. The bridge spans a total length of 22 m, as
shown in Fig.2, with the side spans measuring 6 m each
and the central span extending 10 m, resulting in a side-
to-center span ratio of 0. 6. The structure was made en-
tirely of steel. The bridge was equipped with a total of
five acceleration sensors across its length: one on each of

the side spans and three on the mid-span, all tasked with
capturing vertical acceleration. These sensors operated at
a sampling rate of 100 Hz and were sequentially labeled
Al to A5. The bridge structure was segmented into 44 el-
ements and 45 nodes in total. To simulate real-world con-
ditions, a moving vehicle load was applied on the bridge,
enhancing the authenticity of the sensor-collected response
data.

[1T2]3T4]5]6[7]890[11[12[13[14[15 [16]17[18]19]20]21[22]23]24]25]26]27]28]29]30[31]32]33 [34]35]36[37]38]39]40]41]42][43[44]

% Al 7;7 A2

A3 A4 A5
10 6

Fig.2 Bridge overview and sensor placement (unit: m)

2.2 Damage scenario setup

The dataset in this study was derived from acceleration
sensors mounted along the bridge’s girder, ensuring a
thorough data acquisition to observe the bridge’s dynamic
responses comprehensively through virtual tests by finite
element analysis. Within the scope of investigating struc-
tural damage identification, intentional damages of var-
ying levels were applied to two distinct segments of a
bridge span: Elements 7 and 22. The remainder of the
structure remained undamaged. Additionally, the bridge’s
first frequency was recorded under each damage scenario,
with the specifics of eleven damage cases detailed in
Table 1.

Table 1 Damage cases

Damage Damage degree First
case Element 7 Element 22 frequency/Hz
HO 0 0 9.436 7
Ml 0 0.2 9.3613
M2 0 0.3 9.309 3
M3 0 0.4 9.242 1
S1 0.1 0 9.425 1
S2 0.3 9.392 4
S3 0.5 0 9.3345
D1 0.2 0.2 9.3356
D2 0.2 0.4 9.216 7
D3 0.4 0.2 9.2933
D4 0.4 0.4 9.175 1

The simulation produced one healthy state and ten dam-
age cases. The baseline working condition, HO, repre-
sents a state without any damage, whereas the conditions
M1 to M3 denote states of mid-span damage. S1 to S3
denote states of side-span damage. Specifically, for Ele-
ment 22 at the mid-span, damages were artificially in-
duced at degrees of 0.2, 0.3, and 0.4 in elastic modulus
reduction from M1 to M3. Similarly, for Element 7 situ-
ated at the side span, damages were introduced at degrees

of 0.1, 0.3, and 0.5 in elastic modulus reduction from
S1 to S3. To study the case of multiple damages to the
structure, a double-damage condition was also set up, as
shown in damage cases D1 to D4 in Table 1. Among
them, two damage degrees of 0.2 and 0.4 in modulus re-
ductions were set for the mid- and side-span positions, re-
spectively, with a total of four combinations. The col-
lected signals spanned 2 000 s, generating 200 000 data
points for each sensor and culminating in a dataset with a
size of 5 x200 000 for each case.

3 Feature Extraction Using CAEs

Before employing CAEs for feature extraction, data sli-
cing must be performed on the original data set. A sliding
window with a window length of 512 and a stride of 128
was used to divide the data into samples of size 5 x 512,
which served as the input for the CAEs. This process re-
sulted in a total of 1 536 samples for each damage case.
The first 80% of the samples were used as the training
set, and the latter 20% were used as an independent vali-
dation set.

Carefully designed CAEs can effectively reconstruct ac-
celeration data samples. The structure of the designed
CAE network is detailed in Table 2. The autoencoder
mainly consisted of two parts: an encoder and a decoder.
The encoder part was constructed from five convolutional
layers and four batch normalization layers and used the
LeakyReLU activation function to introduce nonlinear
processing. Correspondingly, the decoder consisted of
five deconvolution layers and four batch normalization
layers, activated using the ReLU activation function. The
output size of the encoder was 256 x 1 x 1, which was
used as the feature for subsequent training of the XGBoost
model.

To achieve the best possible performance from the
model, its hyperparameter setup was meticulously estab-
lished through a series of experiments and analyses. The
following provides an overview of the process for selec-
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Table 2  Architecture of the CAE network

Layer Input shape Output shape Kernel size Stride Padding Activation
Conv2d (1,5,512) (16,5,128) (3,4) (1,4) (1,0) LeakyReLU
(16,5, 128) (32,4,32) (2,4) (1,4) (0,0) LeakyReLU
(32,4,32) (64,3.8) (2,4) (1,4) (0,0) LeakyReLU
Conv2d + BN
(64,3,8) (128,2,2) (2,4) (1,4) (0,0) LeakyReLU
(128,2,2) (256.1, 1) (2,2) (1.1) (0,0) LeakyReLU
(256,1,1) (128,1,4) (1,4) (1,1) (0,0) ReL.U
128,1,4 64,2,8 2,4 1,2 0,1 ReL.U
UConv2d + BN ( ) ( ) 2.4 (1,2) (0,1) e
(64,2,8) (32,3,32) (2,4) (1,4) (0,0) ReL.U
(32,3,32) (16,4,128) (2,4) (1,4) (0,0) ReLU
UConv2d (16,4,128) (1,5,512) (2,4) (1,4) (0,0)

ting the model hyperparameters. The loss function used
the MSE loss,
ployed to minimize the reconstruction loss. The model’s
batch size was 64, identified as the ideal size through ex-
tensive experimentation. This size struck a balance be-

whereas the Adam optimizer was em-

tween training speed and the quality of convergence while
considering the limitations of available hardware resources.
The training was conducted over 50 rounds, a duration
found to be sufficient for CAE to reach convergence.
During the training process of the CAE model, the data
samples were reconstructed. Upon reaching 50 epochs,
the loss function began showing signs of converging and
stabilizing for the remainder of the training period. Fig.3
(a) displays the log-scaled loss functions for both the
training and validation sets. After the CAEs were trained,
they could reconstruct the acceleration data, which showed
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Fig. 3  Training result of CAE. (a) Log-scaled loss function;

(b) Reconstruction result

good consistency with the original data, as shown in Fig.
3(b). At this point, CAE effectively captured the under-
lying patterns in the data. The encoding block extracted
all relevant information in the original signal as features to
prepare for subsequent XGBoost training aimed at damage
identification. This simplified approach high-lights the ef-
ficiency of CAE training and its critical role in high-quali-
ty feature extraction.

4 Damage Identification Based on XGBoost
4.1 XGBoost model

XGBoost was selected for its superior performance in
handling large-scale and high-dimensional data. It is
known for its computational efficiency, capability to
manage sparse data, and its built-in mechanisms to pre-
vent overfitting. The feature vector extracted by CAE
comprised 256 dimensions, exhibiting high-dimensional
attributes that pose challenges for analysis.
XGBoost was selected for this particular task because of
its effectiveness in dissecting and gleaning insights from
complex features and datasets.

The XGBoost model employed several key parameters:
the maximum depth D was set at 6 to limit tree complexi-
ty, the learning rate L was 0. 1 to moderate updates dur-
ing training, the subsample ratio S was 0. 8 to use 80%
of data for tree building, the feature sampling ratio F' was
0.9 to sample 90% of features per tree, the minimum
child weight W was 1 to prevent overfitting, and the num-
ber of trees 7 was 100 to define the model scale. These
settings collectively optimized the model’s performance.

Therefore,

4.2 Damage identification

The feature samples obtained from the CAEs were par-
titioned into two segments. The first 80% were allocated
as the training set, and the remaining 20% were designat-
ed as the test set. Consequently, each damage case con-
tained 1 230 training samples and 306 test samples. Sub-
sequently, the designed XGBoost model was utilized to
perform regression analysis on the CAE features. XGBoost
trained and predicted by iteratively adding decision trees,
each designed to correct the errors of the previous ones,
thereby continuously improving the model accuracy. Fig.4
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displays the MSE on the test set at each stage of adding
trees, demonstrating the progressive enhancements in per-
formance throughout the model-building process.

0.08f
0.07
0.061
0.05
0.04
0.03-
0.02}
0.01}

O 1 1 Il 1 J
0 20 40 60 80 100

Number of trees

MSE

Fig.4 Prediction error during the XGBoost building process

Fig. 4 shows a sharp decrease in MSE as the number of
after which the
reduction in MSE stabilized, suggesting that the model

decision trees increased from O to 20,

approached optimal performance. After completing the it-
erative training of XGBoost, the model was then used for
damage prediction. The predicted values of all test sam-
ples in each working condition were averaged as the dam-
age degree prediction result of the working condition.

The prediction results for the mid-span damage are
shown in Fig. 5(a). The damage cases M1, M2, and M3
represent the degrees of injury from mild to severe, corre-
sponding to real damage degrees of 0.2, 0.3, and 0.4 in
modulus reductions, respectively. In the figure, the pre-
dicted damage degrees were 0. 221, 0.306, and 0. 375,
respectively, showing that the predicted values were very
close to the actual damage degree. For the mild damage
condition M1, the predicted damage degree was slightly
higher than the actual damage degree by 0. 021. This
shows that the model had a slight tendency to overesti-
mate the detection of minor damage. For the medium
damage condition M2, the difference between the predic-
tion and the actual value was further reduced to 0. 006,
indicating that the model had higher accuracy at the medi-
um damage degree. Finally, for the severe damage condi-
tion M3, the predicted damage degree was slightly lower
than the actual value, with a difference of 0.025. This
indicates that the model is slightly conservative in predic-
ting severe damage.

The damage at side-span locations was also predicted
and analyzed, as shown in Fig.5(b). The actual damage
conditions of S1 to S3 corresponded to real damage de-
grees of 0. 1, 0.3, and 0.5 in modulus reductions, and
the predicted damage degrees were 0. 129, 0. 283, and
0.473, respectively. The figure shows that the damage
identification results of the side span were worse than

0.4

0400 oy True 0.375

0.35} == Predicted
0.30
0.25
0.20
0.15
0.10
0.05
0

03 0.306

Damage degree

M1 M2 M3
(a)

0.5- B True
=3 Predicted
04+

0.3

0.2

Damage degree

0.1

S1 S2 S3
(b)
Fig.5 Single-damage identification results. (a) Mid-span ( Ele-
ment 22); (b) Side span (Element 7)

those of the mid-span. This was because the damaged
element in the side span was farther away from the accel-
eration sensors. Thus, the changes in structural vibration
characteristics caused by the damage could not be perfect-
ly reflected by the acceleration signal of the sensors.
Additionally, the slight damage S1 and severe damage S3
of the side span were similar to the case of the mid-span.
The model tended to overestimate minor damage and un-
derestimate severe damage. This may be caused by the
model being affected by the data of the other two working
conditions during training. Collectively, the highest iden-
tification error noted in single-damage scenarios was
2.9% (Case S1).

The double-damage identification results are shown in
Fig. 6. The results show a high correlation between the
damage degrees and the predicted values. For a damage
degree of 0. 2, the model had a slightly overestimated
value, and for a damage degree of 0.4, the model predic-
tion value was low. This may have been caused by the
model being affected by other data sets during training.
Overall, the maximum prediction error for double-damage
scenarios was 3. 1% (in Case D1), and the predicted re-
sults showed good consistency with the actual results.
Apparently, the model prediction of damage degree was
generally consistent with the actual situation, showing
that the model has certain accuracy and reliability in
double-damage identification.
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5 Experimental Validations

To further validate the proposed method, damage clas-
sification studies were conducted on a scaled cable-stayed
bridge model in the laboratory. The model was based on
the Wen Hui Bridge in Hangzhou, with a geometric simi-
larity ratio of 1:55, and was made of aluminum alloy, as
shown in Fig. 7. Five acceleration sensors were arranged
on the bridge girder, including one on each side span and
three on the mid-span. The sensors collected the vertical
acceleration of the structure at a sampling frequency of
512 Hz. The stay cables were numbered sequentially as

o 0.386

22 Element7 Element22 Element7 Element22
(D3) (D3) (D4) (D4)

identification results

Cl to C20. The bridge layout and sensor locations are
shown in Fig. 8.

Fig.7 Scaled cable-stayed bridge model in-field photo
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Fig.8 Cable-stayed bridge sensor layout diagram (unit: cm)

Damage simulation was performed on the cables,
which were the vulnerable components of the cable-stayed
bridge. In the scale model, the cables had a scaled-down
diameter of only 1 mm, making it challenging to intro-
duce damage by altering their cross-sectional area. Con-

sequently, damage was simulated by reducing the cable
tension by 20% . The damage conditions of the cables and
the corresponding 1st- to 3rd-order natural frequencies of
the bridge are shown in Table 3.

Table 3 Damage cases and natural frequencies Hz
Damage case Case 0 Case 1 Case 2 Case 3 Case 4 Case 5 Case 6
Damage content No damage C4 C6 C8 C13 CI15 C17
1st-order frequency 4.922 4.917 4.920 4.921 4.919 4.922 4.918
2nd-order frequency 6.934 6.928 6.932 6.929 6.923 6.931 6.926
3rd-order frequency 9.838 9.826 9.831 9.827 9.824 9.834 9.825

The 20% reduction in the tension force of a single ca-
ble had a negligible effect on the overall behavior of the
bridge as the scaled-down bridge retained a high stiffness.
The first three natural frequencies remained almost un-
changed, making it impossible to determine the occur-
rence of damage based on frequency alone.

By applying the same CAE-XGBoost damage identifi-
cation procedure mentioned in the former sections, the
damage classification results are shown in Fig. 9. There
were 448 test samples for each damage case. Almost all
the samples were correctly identified, with only a few
samples being misclassified as other conditions. For Case
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3, 19 samples were incorrectly predicted (95.8% accura-
cy), with 8 of them being predicted as Case 4. This mis-
classification occurred due to the close proximity of stay
cables C8 and C13, resulting in a small number of sam-
ples being incorrectly identified.

Case 0

Case 1

Case 2

Case 3

Actual

Case 4

Case 5

Case 6

Case0 Casel Case2 Case3 Case4 Case5 Case6
Predicted

Fig.9 Cable-stayed bridge damage identification results

6 Conclusions

1) This method maintained the integrity of the original
data by extracting features directly from raw acceleration
data, eliminating the need for transformation into images
or any other preprocessing and thereby avoiding informa-
tion loss.

2) Numerical simulations demonstrated that the pro-
posed method can accurately identify damages in a three-
span continuous girder under six single-damage scenarios,
with identification errors all within 2. 9% ; in four double-
damage scenarios, the errors remained within 3.1% .

3) In the experimental validations on a scaled cable-
stayed bridge, the proposed method successfully identi-
fied cable damage at various locations using only acceler-
ation sensors installed on the main girder, achieving a
recognition accuracy of over 95.8% in all damage cases.
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