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Abstract: Structural health monitoring and performance
prediction are crucial for smart disaster mitigation and
intelligent management of structures throughout their lifespan.
Recent advancements in predictive maintenance strategies
within the industrial manufacturing industry have inspired
similar innovations in civil engineering, aiming to improve
structural performance evaluation, damage diagnosis, and
capacity prediction. This review delves into the framework of
predictive maintenance and examines various existing
solutions, focusing on critical areas such as data acquisition,
condition monitoring, damage prognosis, and maintenance
planning. Results from real-world applications of predictive
maintenance in civil engineering, covering high-rise
structures, deep foundation pits, and other infrastructure, are
The

maintenance in civil engineering structures under current

presented. challenges of implementing predictive

technology, such as model interpretability of data-driven

methods and standards for predictive maintenance, are
explored. Future research prospects within this area are also
discussed.
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dvancements in economies and technologies have

significantly enhanced structural theories and con-
struction methods in civil engineering. These advance-
ments have enabled the creation of super tall buildings,
long-span bridges, extensive underground projects, and
so on. However, during the whole service life cycle,
these structures face various factors that could affect their
performance. External loads, environmental conditions,
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material aging, and natural disasters such as earthquakes,
floods, and typhoons can cause deformation or damage
that exceeds the design specifications, accumulating safe-
ty hazards'''. Therefore, real-time monitoring and diagno-
sis of structural performance, timely detection of damage,
and accurate safety assessments are essential for improving
the operational efficiency of engineering structures and en-
suring the safety of people’s lives and property.

Structural health monitoring ( SHM) is becoming in-
creasingly important in civil engineering'”. SHM uses
historical data to evaluate structural performance and en-
sure safety.
analysis to understand the mechanical characteristics and
behavior of structures across different dimensions. SHM
and data mining methods are crucial for ensuring the safe-
ty and sustainability of structures throughout their lifecy-
cle. They are also important components for intelligent
disaster prevention and maintenance strategies. Recent re-
search has advanced technologies in signal processing,
condition assessment, and damage detection"™ . Despite
these advancements, nonstandardized policies and com-

plex structural forms pose challenges and opportunities for
(51

It involves data preprocessing and signal

further research and development Abnormal vibration
events and safety accidents in high-rise buildings have led
to social and economic losses, highlighting the need for
timely maintenance measures to track and predict structur-

al states and optimize maintenance costs.
1 Maintenance Strategies

During the lifespan of infrastructure, major expenses
are incurred during the operation and maintenance phases,
comprising approximately 60% of the total cost'®. Im-
plementing maintenance methods may reduce accident
risks, extend the service life of structures,
overall safety.

Maintenance strategies in civil engineering are general-
ly classified into three types'’': corrective maintenance,
preventive maintenance, and predictive maintenance ( see
Fig. 1). Corrective maintenance, also known as run-to-
failure maintenance or reactive maintenance, is activated
after a failure occurs. This method is costly and may in-
volve security issues, making it feasible only when the
consequences of failure are relatively insignificant. Pre-

and ensure
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ventive maintenance, referred to as time-based mainte-
nance, involves the periodic displacement of equipment
components based on the manufacturer’s guidance or ex-
perience. Although this method is preventive, rough esti-
mations of component service life can lead to inefficient
use and increased system downtime. Predictive mainte-
nance ( PAM) monitors and analyzes the current condi-

tions of the equipment to create maintenance plans. PdM

aims to prevent failure and optimize efficiency, thereby
improving safety, product quality, reliability, availabili-
ty, and reduction in energy costs'™. A key component of
PdM is early damage detection and the implementation of
precautionary measures to prevent failures. Table 1 com-
pares these three maintenance strategies. It shows that
PdM balances maintenance and performance costs while

increasing availability and reliability™ .

Higher cost

Preventive maintenance

Fewer failures

Corrective maintenance

Failure

More failures

Predictive maintenance

Lower cost

Fig.1 Three types of maintenance strategies

Table 1 Qualitative comparisons among corrective, preventive, and predictive maintenance strategies

Strategy Advantages

Disadvantages

Suitable applications

Corrective  Simple and low preventive cost; maxi-

maintenance mum utilization

Inflexibility and highly unpredictable failure;

Insignificant consequences of failure

potential further threat

Preventive . Higher prevent cost; increased planned down- . .
. Lower repair cost; run for longer . Acceptable increased downtime
maintenance time
Predictive  Efficient and safe; available and reliable; Large-scale production mode; process

Higher upfront cost; more complex system

maintenance reduction in energy cost

industry; large volume structure

In the following, the framework of the PAM system is
first introduced, covering data acquisition and process-
ing, condition assessment, damage prognosis, and main-
tenance decision making. Existing PdM systems are re-
viewed. The study delves deeper into the research results
and application of PdM technology in civil engineering,
especially those focusing on machine learning (ML) ap-
proaches. Finally, the discussion addresses PdAM values,
future research prospects, and the challenges associated
with integrating SHM and PdM technologies.

2 Predictive Maintenance

PdM has garnered increased interest across various
fields in recent years. The rise of the Internet of Things
(IoT) and the development of data-driven algorithms
have facilitated the development of data-driven algorithms
in industries such as infrastructure management,
space fields, energy fabrication and power plants, mari-
time systems, and industrial production chains. The ori-
gins of PAM can be traced back to industrialized coun-
tries, where manufacturing enterprises monitored machine

acro-

performance components to forecast their remaining useful
life and conduct maintenance activities before failures oc-
curred"" . Since then, PdM has expanded to other in-
dustries with the integration of ML and statistical meth-

ods. For example, Li et al. '

used ML algorithms to
improve rail network maintenance. Abbas et al.'" ap-
plied artificial neural networks and support vector ma-
chines (SVMs) to predict lost circulation occurrences in
oil and gas well drilling. Yuan et al. """ proposed a sys-
tem-level life analysis method for proactive tunnel mainte-
nance based on the failure mode and effect analysis ap-
proach. Rao et al. "' proposed a PAM framework for her-
itage buildings, identifying deterioration through the digi-
tization of building structures. Farahani et al. """ designed
an innovative solution for defect appraisal and health mo-
nitoring of railway tunnels using optical devices and com-
puter vision algorithms to obtain tunnel contours and
identify defects, subsequently proposing maintenance and
repair strategies. Chen et al. """ discussed system archi-
tecture, typical algorithms, and data-driven approaches
for the latest research around engineering structures and
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PdM. The literature review of PdM systems primarily
centers on specific industries, such as tunnel systems'”,
power industries'”, 11
This study aims to broaden the scope of PAM research by
examining its application in civil engineering, an area that
has received less attention in existing literature.

A proper system architecture for PAM should comprise
distinct modules that combine to form a cohesive imple-
mentation. Fig. 2 shows the typical architecture of PdM,
which has the following components: data acquisition,
condition monitoring, damage prognosis, and mainte-
nance planning. Emerging technologies have enhanced
the potential of identifying precursors and incipient faults
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Decision reference

« Failure prediction result, operational history, current
and future mission profiles and resource constraints.

Decision objective

« Eliminate the anticipated failuresso as to ensure
efficient operation of machines or structures.

in system components, monitoring and predicting damage
progressions, and providing decision support or automa-
tion for maintenance scheduling'. Specifically, IoT
could offer a database and a data interaction platform for
PdM systems.
vanced hardware can convert large data sets from monito-
ring into valuable information, providing a professional
reference for intelligent maintenance. In addition, state-
of-the-art deep learning (DL) methods for damage diag-
nosis and prognosis enable the abstraction of complex
problems with improved accuracy. In the following sec-
tions, the PAM modules and the related technologies are

presented.

* Health status calculation

Various data analysis techniques and ad-

* Qualitative analysis

* Degradation judgment * Quantitative calculation

D

Physical model Data-driven model Hybrid model

Linear analysis

Fig.2 Typical architecture of a predictive maintenance framework

2.1 Data acquisition

Data acquisition involves collecting data from various
sources in real time and storing it in a database. The goal
is to collect as much relevant information as possible for
PdM, which is essential for assessing the current state of
the system and providing the basis for future maintenance
schedules.

In civil engineering applications, the data collected
falls into three main types: 1) Construction data. This in-
cludes information related to project locations and envi-
geographical features, structural
and building
this also involves collecting

ronmental conditions,
types, dimensions of structural members,
materials. On a microlevel,
data on the chemical composition of structural materials
and ecological substances that might affect their proper-
ties. 2) Vibration monitoring data. This includes external
loadings and the dynamic responses of structures used to

infer their condition during service life. 3) Data related to
maintenance operations. This includes the safety inspec-
tion records and repair history. All this information un-
dergoes a data preprocessing stage, which includes data
cleaning, data integration, data transformation, and fea-
ture extraction.

Data preprocessing is paramount for delivering mean-
thereby establishing high-fi-
Since original data

ingful and real information,
delity reliability data-driven models.
often contains noise and may have outliers or missing val-
ues, techniques such as wavelet methods, the Kalman fil-
tering method, digital filters, and the Savitzky-Golay fil-
tering algorithm can be adopted to reduce noise'”?".
Moreover, linear interpolations, spectral analysis, kernel
methods, the expectation-maximization algorithm, matrix
completion, and matrix factorization are among the ap-
proaches to handle missing values”’. Multiple imputa-

tion approaches can also minimize uncertainty through re-
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peated interpolation. Abnormal values caused by external
disturbances, human errors, or machine deterioration can
be detected using Gaussian-based methods, histogram-
based methods, and the DBSCAN algorithm[zzl.
Non-quantifiable variables (such as construction loca-
tions and inspection records) and numeric variables (such
as specimen values and structural responses) are available
in the database. The order of magnitude of different nu-
merical variables may vary considerably, potentially af-
fecting the training and generalization abilities of the data-
driven model. It is, therefore, essential to standardize these

! and normalize them to

variables into a consistent format
similar ranges. Techniques such as z-score normalization,
min-max scaling, mean normalization, and sigmoid normali-
zation can be adopted. The selection of normalization meth-
ods depends on the problem characteristics, PdM tasks, and
the requirements of the data-driven models™ .

After preprocessing, features should be extracted to re-
flect the system state or performance. Data transformation
methods include statistical and signal processing tech-
niques. In statistics, methods like dimension reduction
(e.g., principal component analysis (PCA)) and partial
least squares (PLS)'*', along with nonlinear transforma-
tions like locally linear embedding, are used, while in
signal processing,
analysis are performed. Time-domain analysis aims to un-
derstand machine operation or the service status of engi-
neering structures by calculating various time-domain sta-
tistical characteristics.

time-domain and frequency-domain

These include maximal and mini-
mal values, average, variance, standard deviation, root
mean square, skewness, kurtosis, and data stationarity.
Another approach is time-series analysis, which helps
identify linear dependencies, local or global similarity, or
short-range or long-range dependencies between two
waveforms. Time-domain signals can be transformed into
frequency-domain using techniques such as the Fourier
transform, the Laplace transform, wavelet transform, and
the Hilbert-Huang transform (HHT). These transforma-
tions yield results that factorize an orthogonal basis with
physical meaning"”.

Data visualization in two-dimensional (2D) or three-di-
mensional (3D) formats presents processed data and rele-
vant information, aiding in condition prediction and PdM
efficiency improvement. Therefore, in addition to data-
bases and analytical algorithms for data mining, designing
a graphical user interface for user-data interactions is cru-
cial”™*
can extract the latest analysis data and related information
These scripts, along with specific
code programs, enable dynamic data visualization and the
exploration of characteristics and correlations.

In interactive data mining, automated scripts

from the database.

2.2 Condition monitoring

Condition monitoring gathers data from sensor modules

and signal processing modules to assess the current state
of system components and detect early failures by analy-
zing system behavior trends'””’
module is divided into two parts: health assessment and
existing damage diagnosis.

The health assessment aims to determine whether the
health of the targeted object has declined™ . Collected

data and analysis results are used to characterize the health

. The condition monitoring

status, typically by comparing features against a health
evaluation index. This index includes trends in health his-
tory, operational status, and maintenance history.

The early failure detection component utilizes historical
data analysis or inference engine processing to identify
potential issues before they escalate. This component
compares real-time data against expected operational lim-
its and triggers a maintenance warning when an anomaly
is detected early. The inference engine processes facts
and rules to identify patterns and trends that may indicate
a potential failure. Once an alarm is triggered, the system
automatically records the time stamp and abnormal values
in the condition monitoring module for further assess-
ment. Inspectors can then check the relevant components
on-site, using their experience, equipment maintenance
manuals, or historical data trends to find possible faults
and causes.

Damage diagnosis aims to detect, locate, isolate, and
repair faults. Methods of damage diagnosis include physi-
cal models, expert system methods,
11 Physical model-based methods involve tech-

niques such as state estimation and parameter estima-
[32-34]

and data-driven
methods
tion , requiring accurate mathematical models to de-
scribe the structure. Modeling the system helps to under-
stand the mechanism and changes in the process"
practice, the model-based approach detects damage by
monitoring the residuals when the signal response reaches
a set threshold. Expert system methods rely on qualitative
empirical knowledge™'.
may not consider strict mathematical algorithms for dam-
age detection but instead employs descriptive knowledge
of damage symptoms to identify faults in other machines.
For example, in the case of a complex engine failure, de-
scriptive knowledge can pinpoint faults in similar ma-

In

This experience-based approach

chines.

Data-driven approaches include statistical, signal pro-
cessing, and artificial intelligence, which focus on moni-
toring data during system operation to diagnose damage
without needing to understand the underlying physical
mechanisms.
adaptable, especially in areas where exact physical mod-
els are difficult to obtain™”'. One such method is PCA, a
multivariate statistical analysis method used for diagno-
sing equipment damage in manufacturing processes.

They are widely applicable and highly

Damage diagnosis based on signal processing can be used
in vibration signals using techniques like wavelet trans-
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form, HHT, and Kalman filter. Recently, neural net-
works have gained attention for their effectiveness in
damage diagnosis tasks. The parameters of these networks
are trained using samples accurately solved in fields that
match the current work requirements. Neural networks
use implicit representation to encapsulate diverse knowl-
edge pertinent to specific problems within complex net-
works. This capability allows them to acquire knowledge
through parallel associative reasoning'™™”'. This method
has been successfully applied in various scenarios, inclu-
ding chemical equipment, nuclear reactors, steam tur-
bines, and rotating machinery, yielding reasonably satis-
factory results. It is important to note that the modules of
health monitoring, damage diagnosis, and damage pre-
diction share similar analysis methods.

2.3 Damage prognosis

Real-time condition monitoring ensures the security and
reliability of maintenance objects in their current state.
However, unforeseen failures or performance degradation
still pose a risk during the service life of these objects.
Therefore, damage prognosis, residual life prediction, or
state prediction are crucial for projecting the current health
state of the system into the future by estimating future us-

[40]

age profiles Table 2 summarizes certain prediction

models in the literature.

Prognosis can be performed using either a model-based
approach, a data-driven approach, or a hybrid of
both™™' (see Fig. 3). Model-based approaches build a
physical relationship between key quantities, working
time, and working conditions based on the environment,
material characteristics, and failure mechanisms of system
components. These methods predict possible failures or
the remaining service life of the components using physi-
cal laws, making them white-box models. While model-
based approaches are often accurate owing to the profes-
sional knowledge they incorporate, they require signifi-
cant time to develop an accurate model. By contrast, da-
ta-driven approaches use ML, soft computing, and statis-
tical theories to establish relationships between historical
data and target outputs. These black-box models leverage
extensive monitoring data and analysis technologies to un-
cover inherent connections among data points. The versa-
tility of data-driven approaches makes them popular and
widely adopted.

With the development of big data, data-driven PAM has
become increasingly attractive. To extract useful knowl-
edge and make appropriate decisions, ML techniques such
as random forest, K-nearest neighbors, and support vector
machines (SVMs) can be applied. Compared to traditional
statistical methods, these ML approaches can learn nonlin-

. . . . 56-57
ear features hidden in time-series data™".

Table 2 Literature review of prediction models

Approach Technology Target Application Year Reference
R . Physics-based modeling of fatigue X "
Physics-based modeling Cracks 1963 Paris et al. [!]
crack growth
Linear regression, kriging . . . _ . . 0
Model-based technique Hydroelectric units Vibration prediction and PAM 2000 Lucifredi et al. 4%
u
approaches . d o . . . .
Particle filtering Crack and batteries Prediction of remaining useful life 2013 An et al. [+
Physical mathematical Building automation uantitative degradation predic-
Y £ Q & P 2017 Cauchi et al. 1!
model systems tion
AE, XGBoost and SHAP . X Prognosis and prediction of remai- 4
Industrial equipment . . 2023 Hoffmann et al. 4!
method ning useful life
MLP and SVM External gear pumps  Damage prognosis 2023 Lakshmanan et al. ']
Rotating compo- L. .. . 47
DBN-FNN Prediction of remaining useful life 2018 Deutsch et al. 147!
Data-driven nents
approaches . Prognosis and remaining useful . 2%
HHT, SVM and SVR Bearings i . 2015 Soualhi et al. 1%
life prediction
MLP, LSTM and CSM- . . Prognosis and system condition Calvo-Bascones et
Diesel engines . 2023 4
LSTM prediction al. 1481
RF with Bayesi ti- Predicti f typhoon-induced re-
Q‘ ‘w1 ayesian opti Bridges rediction of typhoon-induced re 2021 Zhang et al, 1
mization sponse
X . Lithium-ion batter- . .. .
Particle filter and SVR . Prediction of remaining useful life 2016 Liao et al. %
ies
PI-TCN Bearings Prediction of remaining useful life 2022 Deng et al. !
Hybrid approaches . . . .
Kalman filter and OS- . . Engine degradation prognostics 5
Aircraft engines .. . L. 2019 Lu et al. %%
ELM and remaining life prediction
GAN and fuzzy logic Mechanical systems  Prediction of remaining useful life 2023 Nguyen et al. 1%
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Fig.3 Qualitative comparisons between model-based and data-driven approaches

Research on deep learning has proliferated in recent
years, introducing advanced methods for feature learning,
damage classification, and damage prediction within
PdM. Deep learning, an extension of ML, excels at ex-
tracting complex or abstract features. Techniques such as
convolutional neural networks (CNNs), deep belief net-
works ( DBNs),
short-term memory ( LSTM) models are widely applied
in PAM. To improve prediction accuracy and robust-

recurrent neural networks, and long

ness, combinations of DL approaches have been pro-
posed, achieving better performance'®. For instance,
some studies have used sparse auto-encoders for repre-
sentation learning combined with LSTM for anomaly
identification'™ . Others have proposed directed acyclic
graph networks that combined LSTM and CNN to pre-
dict the remaining useful life and many other models™’ .
In addition, Li et al. """ used particle swarm optimiza-
tion (PSO) and the Markov model to optimize the tradi-
tional unbiased gray model, resulting in improved pre-
diction accuracy.

For PdM systems with large-scale or complex compo-
nents, both model-based and data-driven approaches often
fall short of solving all damage diagnosis or prediction
problems accurately. Surveys have shown that these ap-
proaches may complement each other in PdM systems.
Therefore, researchers sometimes employ hybrid approa-
ches to meet different functional requirements in practical
applications. The work in Refs. [61 — 62] explores the
idea and case studies of using multiple approaches for
PdM, including model configuration schemes and appli-
cation scenarios that address different system require-
ments.

2.4 Maintenance plans

Maintenance planning, also known as decision mak-
ing, provides recommendations for maintenance activities
and system modifications by considering predicted failure
results, operational history, current and future mission

. . 8
profiles, and resource constraints''.

The purpose is to
eliminate anticipated functional failures or mitigate their
effects to keep structures or machines operating above
minimum acceptable performance thresholds. Frequently,
maintenance policy managers and engineers make deci-
sions based on their experiences and educated guesses.
However, with the advent of Industry 4. 0, there is a
trend toward automated and real-time decision-making al-
gorithms. Recent research has focused not only on dam-
age diagnosis and prediction but also on developing deci-
sion algorithms for PAM. Bousdekis et al. "™
the decision-making areas into five categories based on

categorized

the focus and main contribution of each work:

1) Maintenance planning and scheduling. Algorithms in
this area recommend appropriate maintenance actions
based on company policies, potential impacts, and the
risks of candidate actions.

2) Decision making based on reliability and degrada-
tion. This area needs algorithms that incorporate degrada-
tion rates to minimize long-term costs and schedule miti-
gating maintenance actions. It considers the trade-off be-
tween maintenance costs and structural reliability.

3) Joint optimization. This includes algorithms that op-
timize maintenance operations while considering other
production and supply chain-related objectives.

4) Multi-state and multi-component system optimiza-
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tion. This involves algorithms that identify the intermedi-
ate stages of the health state, leading to intermediate deci-
sion making.

5) Maintenance cost and risk estimation and optimiza-
tion. This area addresses cost and risk estimation aspects,
facilitating decision making for optimal maintenance ac-
tions. They may also estimate maintenance costs for dif-
ferent scenarios or identify critical components.

6) Different application scenarios, PdM goals, and pre-
dictive models lead to various concerns and maintenance
plans during the decision stage. Therefore, maintenance
plans should be tailored to the specific needs of applica-
tions, considering industry standards, cost optimization
objectives, production requirements, actual operational
needs, and professional knowledge.

2.5 Existing PdM systems

The development of PAM systems has introduced new
technologies, such as cloud computing and 10T, enabling
real-time monitoring and predictive analytics for efficient
maintenance management. Some PdM systems incorpora-
ting these technologies have been developed, such as the
open system architecture for condition-based monitoring
(OSA-CBM) '™ cloud-enhanced PdM systems'* and
PdM 4. 0. OSA-CBM provides a standardized frame-
work for implementing visual PAM systems. It integrates
multiple mutually exclusive components and standardizes
the inputs and outputs between these components. This
feature integrates disparate hardware and software compo-
nents, which facilitates the efficient management of com-
plex systems. OSA-CBM adds data structures to the ISO
13374 functional modules,
functional modules in the ISO 13374 standard, offers aux-
iliary messaging methods and information, and has built-
in meta-data to describe the PdM system. Currently,
OSA-CBM has six functional blocks: data acquisition,
data manipulation,

defines the interfaces to the

health assessment,
. . . 8]
prognostic assessment, and advisory generation' .

In addition, cloud-enabled PdM uses cloud technology
to store data gathered from sensors, actuators, and other
control factors. It performs tasks such as database con-

struction, data cleansing, data integration, feature extrac-

state detection,

tion, and the implementation of prediction algorithms in
the cloud. This approach allows the same predictive mod-
el to be utilized for various devices, enabling prompt ac-
tion to prevent asset failures.

PdM 4.0 aims to make industrial maintenance smarter
for better production management by integrating system
components, [oT, and big data analytics. The PdM 4.0
framework consists of several stages: production simula-
tion, data collection, data storage, preprocessing, data
analysis, decision support, and maintenance implementa-
tion. Inspired by the needs of Industry 4.0, PdM 4.0 is
still in its early stages of development. Each sector should

create a customized PdM 4. 0 system tailored to its unique
features and technological capabilities to offer real-time
asset monitoring and predictive alarms.

3 Applications of PdM in the Field of Civil En-
gineering

The application of PdM in civil engineering is crucial
for assessing structural health, predicting damage, and
optimizing maintenance management and risk assessment
in infrastructure projects. Various PdM frameworks and
applications have been developed and demonstrated, in-
cluding system architectures for housing and utility infra-
structures'™', condition-based PdM systems'”’ for under-
ground engineering'®', and maintenance decision-making
models for road engineering'®”
domain primarily focuses on theoretical frameworks and
applicable technologies. This chapter presents various
PdM frameworks and applications in civil engineering.
The literature review of applications is summarized in Ta-
ble 3.

In housing and utility infrastructures, Kovalev et al. '*’
proposed a PdM architecture that utilizes data mining
techniques for damage detection and prediction. For un-
derground engineering, Yuan et al. """ developed a condi-
tion-based PdM system applied to shield tunnels, incorpo-

. Existing research in this

rating a failure mode and effect analysis approach to de-
velop reliability prediction models and estimate the risk of

66 .
! monitored

failure and residual useful life. Zhou et al.'
the deformation of underground tunnels caused by the ex-
cavation of deep foundation pits in soft ground, using a
coupled model AMSSA-Elman-AdaBoost to predict de-
formation trends with good accuracy. In road engineer-
ing, Li et al."" used a GA-improved hybrid neural net-
work ( GA-HNN) and a GA-improved backpropagation
neural network ( GA-BPNN) for maintenance decision
making, while Ding et al. '™ used a GA to optimize a
back propagation (BP) neural network to predict soft soil
subgrade settlement on highways.

In bridge engineering, Xin et al. '™ used an improved
variational mode decomposition ( VMD) with ARIMA-
CKDE to predict deformation. Wang et al. ' proposed
an ML PdM strategy to reduce bridge scour risk. The
bridge scour risk ratings derived from ML models were
found to be more accurate than those from junior engi-
neers. Despite the fact that the models could only aid in
decision making, they also might be a future alternative
to on-site inspections. In railway engineering, Allah et
al. " used multiple models, including decision trees
(DTs), RF, and gradient boosted trees (GBTs), to pre-
dict maintenance needs, activity types, and the trigger sta-
tus of railway switches. They used feature importance a-
nalysis and the LIME method to interpret results, provi-
ding managers with informed decision suggestions. For

1 [72]

railroad tracks, Caetano et a proposed a maintenance
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Table 3 References for PAM applications in civil engineering

Reference Year Structure Application Approach

Housing and utility in- Real-time condition monitoring, fault and routine event

Kovalev et al. 1% 2018 Machine learning

frastructures detection, fault prediction and reporting

Yuan et al. 7! 2013 Underground structures A condition-based PdM system applied to shield tunnels Weibull and lognormal distributions

Prediction of the deformation trend of tunnels due to the

Zhou et al. ') 2024  Underground tunnels

Li et al. 167 2022  Roads
i . Le8] 2023  High S
Ding et al ighways highways
Xin et al. (¢! 2022  Bridges
data
Wang et al. /"' 2023 Bridges .
tion
Allah et al. /" 2019  Rail transits A PdM for railroad turnouts

PdM method based on historical road information

Prediction of the settlement of soft soil subgrade of

Deformation prediction based on structural monitoring

AMSSA-Elman-AdaBoost

excavation of deep foundation pits in soft ground

GA-HNN and GA-BPNN

GA-BP

VMD with ARIMA-CKDE

An ML-based PdM strategy for bridge scour risk reduc-

XGBoost, SVM and RF

DT, RF and GBT

A maintenance methodology for railroad tracks using a

1. 1721

Caetano et a 2016  Rail transits

and reliability

Shan et al. [73 2024

tures

Large-scale civil struc- A deformation prediction framework validated on a civil

multi-objective optimization approach to balance cost Tree-based classification

STK-EMD-LSTM

infrastructure under construction

Prediction of vertical deformation based on strain moni-

Zhou et al. 'l 2024  High-rise buildings

toring data
2013

Zhang et al. |7 Dams

Rao et al. ! 2019  Heritage monuments

Prediction of the dam deformation

Protection of heritage monuments

Adaptive unscented Kalman filter

BP and traditional statistical model
Predictive analysis method based on
statistical technique

methodology attested to a Portuguese railroad network,
predicting the geometric degradation of the track using a
multi-objective optimization approach that combined cost
and reliability for maintenance decisions. PdM also ap-
plies to the preservation of historical monuments. Rao et
al. " proposed integrating the PdM idea with digitization
for heritage monuments in India. By using sensor data for
predictive analysis, they identified deterioration trends
and provided automated maintenance recommendations to
prevent potential damage or collapse.

For large-scale civil structures, Shan et al. proposed a
novel deformation prediction framework based on a spati-
otemporal clustering algorithm combined with an empiri-
cal mode decomposition ( EMD )-based LSTM net-
work'™! .
tion accuracy and efficiency for large-scale structures
through a three-level forecasting strategy that includes
monitoring point clustering, time-series data decomposi-
tion, and deformation prediction. The performance of the

This framework improved deformation predic-

proposed framework was validated on real-world civil in-
frastructure under construction. The results showed that
the framework could be effectively adopted for deforma-
tion prediction, safety pre-warning, and predictive main-
tenance systems for various large-scale civil structures
with diverse monitoring data. In addition, Zhou et al. 4l
predicted the axial deformation of high-rise buildings
using an adaptive unscented Kalman filter with on-site
strain monitoring data. They introduced anomaly detec-
tion to improve system robustness and validated their
method on a high-rise building. Zhang et al."” built a

fusion model based on neural network models with tradi-
tional statistical models to achieve accurate predictions of
dam deformation. These studies illustrated that PdM is al-
so well generalized to certain special buildings.

4 Challenges and Future Trends

While PdM is an emerging method in civil engineer-
ing, several challenging problems still need to be ad-
dressed'™ . A review of existing literature reveals that cur-
rent PAM methods need to consider the effectiveness of
big data, model robustness across different engineering
structures, and the potential ethical issues arising from the
lack of interpretability of models in decision-making
In practical engineering applications, PdM
methods must handle complex systems with multi-compo-
nent interactions and consider industry-specific technical
standards. Moreover, there is a need for further research
on maintenance strategies for such systems. The challen-
ges and development trends of PAM applications in civil
engineering are summarized as follows:

1) Data validity. PdM relies on vast amounts of moni-
toring data. However, data acquisition systems can be
costly, and sensor failures may compromise data quality.
It is necessary to have accurate, complete, robust, and
reliable data. Efficient data preprocessing methods and
IoT technology can provide low-cost and high-value big
data for PAM. These ensure that monitoring data reflects

processes.

the real state of buildings during their service life, enab-
ling the solution of practical problems from construction
to operation.
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2) Model interpretability. Deep neural networks are
mostly unexplainable. Owing to the opaque internal oper-
ation of DL models, decision errors cannot be fairly and
impartially judged according to legal requirements, lead-
ing to related engineering ethical problems. Therefore,
data visualization and model interpretability techniques
should be developed to analyze neural network models.

3) Standards for PdM.
manufacturing and Industry 4.0, there is a lack of specif-
ic standards for civil engineering, and emerging technolo-
gies have not been standardized. Therefore, it is necessa-
ry to establish standards for PAM systems, designs, and
workflows for damage diagnosis and prognosis.

4)PdM for multicomponent systems. As the economy

In the context of intelligent

and technologies advance, structural systems are becom-
ing increasingly complex, involving multiple interconnec-
ted components. However, most existing PAM approa-
ches focus on damage diagnosis and prognosis for specific
components, which may not be sufficient for complex
systems. Designing an effective deep learning-based PdAM
algorithm for multi-component systems and their depend-
encies remains an open issue.

5) Hybrid network architecture. Different models have
different features, strengths, and weaknesses. For exam-
ple, LSTM can handle long time-series data, while trans-
formers excel at processing large-scale data and deep
models. Hybrid network architectures can be explored to
improve the robustness and applicability of the model and
the entire PAM system. In addition, hybrid models can
combine specialized knowledge or engineering experience
with DL models to provide a more comprehensive and re-
liable basis for engineering decisions.

6) Maintenance strategy optimization. Most existing
works are devoted to damage diagnosis and prognosis by
applying various models. However, minimizing cost tar-
gets and downtime while maximizing automation are
equally important for designing PAM systems. Therefore,
future research should focus on optimizing maintenance
strategies.

5 Conclusions

1) The market for PdM is proliferating. The PdM strat-
egy is being embraced across various industries. This ap-
proach enables the prediction of potential system damage
in advance, the formulation of maintenance plans based
on actual production experience, and proactive measures
to prevent equipment or structural failure, thereby reduc-
ing unplanned downtime and production loss.

2) The recent digital transformation in various indus-
tries has further amplified the importance of PdM and its
research value, as well as its broad market development
prospects. A survey of PAM system architectures, purpo-
ses, approaches, and applications in civil engineering is
presented. This includes a detailed overview of PdM sys-

tem architectures, concepts of different modular systems,
and the various methods in use.

3) This survey aims to serve as a foundation for re-
searchers and practitioners to gain insights into PdM tech-
nologies and protocols. It helps them understand the over-
all architecture and the roles of the different components
that constitute PAM systems. The study also delves into
the research and application of PdM in civil engineering,
bridges, deep
foundation pits, industrial buildings, and more. Finally,
the study offers some guidance for future research on da-
ta-driven solutions and outlines certain challenges and re-
search directions, paving the way for further advance-
ments in the civil engineering field.

covering areas such as roads, tunnels,
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