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Abstract: To address the limitation of single acceleration
sensor signals in effectively reflecting the health status of
rolling bearings, a rolling bearing fault diagnosis method based
on the fusion of data-level and feature-level information was
proposed. First, according to the impact characteristics of
rolling bearing faults, correlation kurtosis rules were designed
to guide the weight distribution of multi-sensor signals. These
rules were then combined with a weighted fusion method to
obtain high-quality data-level fusion signals. Subsequently, a
feature-fusion convolutional neural network ( FFCNN) that
merges the one-dimensional (1D) features extracted from the
fused signal with the two-dimensional (2D) features extracted
from the wavelet time-frequency spectrum was designed to
obtain a comprehensive representation of the health status of
rolling bearings. Finally, the fused features were fed into a
Softmax classifier to complete the fault diagnosis. The results
show that the proposed method exhibits an average test
accuracy of over 99.00% on the two rolling bearing fault
datasets, outperforming other comparison methods. Thus, the
method can be effectively utilized for diagnosing rolling
bearing faults.
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With the rise of intelligent manufacturing, health mo-
nitoring systems for mechanical equipment and
their key components have received increasing attention.
Rolling bearings, which are commonly used standard
parts, play a vital role in the safe and stable operation of
rotating machinery. Consequently, the fault diagnosis of
rolling bearings has become an industry consensus'' ™' .
Previously, signal processing methods such as variation-

al mode decomposition'", synchrosqueezing transform'”',
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and stochastic resonance' were the preferred choices for
fault diagnosis. However, in recent years, deep learning
has emerged as a powerful tool, reducing the reliance on
expert experience by automatically extracting features.
This advancement has significantly promoted research in
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rolling bearing fault diagnosis . Yuan et a
one-dimensional vibration signals into wavelet time-fre-
quency spectra and then used convolutional neural net-
works (CNNs) to diagnose bearing faults. Similarly, Che
et al.” combined stacked denoising autoencoders with
CNNs to diagnose bearing faults in noisy environments.
The widespread use of multi-sensor signal acquisition
systems has introduced new opportunities and challenges
for rolling bearing fault diagnosis. Compared with single-
sensor signals, multi-sensor signals can provide a more
comprehensive reflection of the bearing’s health status,
leading to improved fault diagnosis results. However,
there is still no unified standard for multi-sensor informa-
tion fusion. The selection of fusion levels—data-level fu-
sion, feature-level fusion, and decision-level fusion—and
the design of fusion methods still depend on specific
tasks'"”. Song et al.''"

method using acoustic signals, acceleration signals, and

proposed a two-stage fusion

acoustic emission signals to detect compressor blade
cracks. Similarly, Ma et al. (21
fusion method based on kernel cosine similarity and a de-

introduced a data-level

cision-level fusion method based on improved Dempster-
Shafer evidence theory. Their results demonstrated that
the proposed multilevel fusion method offers better blade
crack detection performance and greater robustness.

To fully utilize multi-sensor information and enhance
rolling bearing fault diagnosis, a rolling bearing fault di-
agnosis method based on data-level and feature-level fu-
sion is proposed. First, according to the impact character-
istics of rolling bearing fault signals, the correlation kur-
tosis (CK) rule is designed to guide the weight allocation
of different sensors and obtain high-quality fused signals.
Afterward, a feature-fusion convolutional neural network
(FFCNN) is introduced to combine one-dimensional
(1D) features extracted from the fused signal with two-di-
mensional (2D) features extracted from wavelet time-fre-
quency spectra. Finally, these fused features are input in-
to a Softmax classifier to complete the fault diagnosis of
rolling bearings.
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1 Basic Theory
1.1 Data-level fusion based on correlation kurtosis rule

When a rolling bearing malfunctions, the periodic col-
lision between the faulty part and other components gen-
erates an impact component in the acceleration signal,
which is a crucial indicator of failure. Kurtosis, a statisti-
cal measure for capturing impact components in signals,
is widely employed in the fault diagnosis of rolling bear-

ings.
The kurtosis of the collected signal x(n) is as follows:
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where N is the length of x(n); u is the mean value of
x(n). According to Ref. [12],
between the fused signal and the original multi-sensor sig-
which can be calculated

the correlation coefficient

nal is introduced as the weight,
using

=2 x| )

where M represents the number of sensors;
the signal collected by the i-th sensor; x, represents the

X, represents
fused signal; C( - ) denotes the correlation coefficient
between the two signals, x, and x;, and can be obtained
as follows:
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where x; and x, are the mean values of x, and x,, respec-
tively. Accordingly, the CK of the fused signal x, is de-
fined as follows:

Co(x) =wK (4)

As previously mentioned, kurtosis effectively captures
the impact components in bearing fault signals, with
higher kurtosis indicating a richer embedded impact com-
ponent. the incorporation of the correlation
coefficient helps suppress noise in the fused signal. Con-
sequently, a fused signal with a higher CK value exhibits
clearer fault features and reduced noise interference, facil-
itating the diagnosis of bearing faults.
the structural diagram of the data-level fusion method
based on the CK rule. The original collected multi-sensor
signals are used as the training dataset, with weights ran-
A weighted fusion

Moreover,

Fig. 1 illustrates

domly initialized for each sensor.
method'"' is employed to generate data-level fusion sig-

nals. The reciprocal of the CK value of the fused signal is

designated as the loss function, and the adaptive moment
estimation algorithm ( ADAM) is utilized to train the
weights of each sensor, aiming to attain the fused signal
with the highest CK value. The training parameters for
ADAM are configured as follows: a batch size of 64, a

learning rate of 0.001, and 50 epochs.
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Fig.1 Data-level fusion method based on the CK rule

1.2 Feature-fusion convolutional neural network

The extensive use of deep neural networks has led re-
searchers to favor end-to-end methods, wherein the origi-
nal one-dimensional acceleration signals are directly fed
into the network. Xue et al. """ highlighted that incorpo-
rating two-dimensional information aids in further extrac-
ting fault information from the signal and achieving im-
proved feature representation. Hence, an FFCNN compri-
sing a 1D-CNN and a 2D-CNN is proposed. The network
parameters for each component are detailed in Table 1 and
Table 2, respectively. Following feature extraction, the
1D and 2D features are concatenated to form fused fea-
tures,
complete the rolling bearing fault diagnosis.

which are then input into a Softmax classifier to

Table 1 1D-CNN network structure parameters

No. Layer Kernel size Channel size Stride
1 1D-Conv 1 3 16 1
2 1D-MaxPool 2 2
3 1D-Conv 2 3 32 1
4 1D-MaxPool 2 2
5 1D-Conv 3 3 64 1
6 1 D-MaxPool 2 2
7 1D-GAP 64

Table 2 2D-CNN network structure parameters

No. Layer Kernel size Channel size Stride
1 2D-Conv 1 3x3 16 I x 1
2 2D-MaxPool 2x 2 2x 2
3 2D-Conv 2 3x3 32 Ix1
4 2D-MaxPool 2x 2 2x%x 2
5 2D-Conv 3 3x3 64 Ix 1
6 2D-MaxPool 2x 2 2x 2
7 2D-GAP 64
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2 Proposed Method

Building upon the aforementioned, Fig.?2 illustrates the
flowchart of the proposed rolling bearing fault diagnosis
method, integrating data-level and feature-level fusion.
The specific steps are outlined as follows:

1) Collect multichannel signals using multiple accelera-
tion sensors positioned at various locations.

2) Employ the CK rule to allocate weights to each
channel signal, utilizing a weighted fusion method to pro-
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duce the data-level fusion signal.

3) Utilize wavelet transform to derive the wavelet time-
frequency spectra corresponding to the fused signals.

4) Input the 1D acceleration signals and 2D wavelet
time-frequency spectra into the FFCNN to extract fused
features.

5) Integrate these features with the Softmax classifier
to determine the health status of the bearing, thereby
completing the rolling bearing fault diagnosis.

1D-CNN model

Softmax
00000

Output

|00000|00000

2D-CNN model

Fused feature

Fig.2 Flowchart of the proposed method

3 Case Study
3.1 Casel

To assess the effectiveness of the proposed method, the
bearing fault dataset from Southeast University was used
for testing purposes.

3.1.1 Introduction of dataset

The experimental setup is depicted in Fig. 3, and de-
tailed experimental parameters are presented in Ref. [ 15].
Here, only the dataset is introduced. Data from channel
2, channel 3, and channel 4, representing the accelera-
tion signals of the planetary gearbox in directions x, y,
and z, are selected for testing purposes. Following the
data-level fusion of these three-channel data, the resulting
fused signal dataset is presented in Table 3. In the experi-
ment, five bearing states were established: normal, roll-
ing ball fault, inner race fault, outer race fault, and com-
bination fault, labeled 0, 1, 2, 3, and 4, respectively.
The experiment was conducted under two distinct working
conditions, denoted 20-0 and 30-2, corresponding to dif-
ferent speed-load configurations. A total of 500 samples
were collected under each working condition, with each
sample having a length of 2 048. The size of the corre-
sponding wavelet time-frequency spectrum was 227 X
227 x 3. Samples with the same bearing status under both
working conditions were assigned the same label. Conse-
quently, there were 1 000 samples for each bearing state.
The training set and the test set were divided in a ratio of
4:1.

Motor
controller

Planetary

gearbox

H

Brake |
controller
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{ Parallel e arbox

Fig.3 Southeast University bearing test bench

Table 3 Southeast University bearing dataset

Training dataset/

Bearing states Testing dataset Label
Normal 800,200 0
Rolling ball fault 800,200 1
Inner race fault 800/200 2
Outer race fault 800,200 3
Combination fault 800,200 4

3.1.2 Assessing the effectiveness of the proposed
method

To evaluate the effectiveness of the data-level fusion
method based on the CK rule, besides the fused signals,
the signals from channel 2, channel 3, channel 4, and the
mean fusion signals are taken as inputs. Each result repre-
sents the average of 10 trials. As illustrated in Fig. 4, re-
garding the original signal, diagnostic accuracy is highest
for signals collected from channel 2 (98.20% ), while
channel 3 yields the lowest accuracy (88.20% ). Nota-

bly, the mean fusion signals fail to surpass the diagnostic
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accuracy achieved by channel 2 signals, indicating that an
unreasonable weight distribution may hinder the exploita-
tion of the complementary information from multichannel
signals. The proposed method, which utilizes the CK rule
to allocate weights to multichannel signals, achieves the
highest diagnostic accuracy of 99.00% . Furthermore, the
FFCNN effectively utilizes both 1D and 2D features to at-
tain a more comprehensive representation of the bearing
fault state, outperforming single-input methods. This
confirms the effectiveness of the proposed two-level fu-
sion method.

Channel 2 98.20%

Channel 3 88.20%
Channel 4 92.80%
Mean fusion 90.00%
1D input 91.10%

2D input 86.80%
Proposed method : : 9|9.00%

80 85 90 95 100
Accuracy/%

Fig.4 Diagnostic results of different inputs

To elucidate the functioning mechanism of the FFC-
NN, the original 1D signals, the original 2D wavelet
time-frequency spectra, features extracted by 1D-CNN,
features extracted by 2D-CNN, and the fused features are
visualized using the t-distributed stochastic neighbor em-
bedding (t-SNE) method"®. As depicted in Fig. 5, the
samples of the original signal appear mixed, making it
challenging to directly distinguish between different bear-
ing fault states. However, following 1D-CNN and 2D-
CNN processing, the extracted features demonstrate con-
siderable capabilities in differentiating between fault
states. Moreover, the FFCNN maximizes the complemen-
tarity between 1D and 2D features, enhancing its capacity
to distinguish between fault states. This further under-
scores the effectiveness of the proposed FFCNN in extrac-
ting rolling bearing fault features. Considering that sam-
ples with the same fault state under the two working con-
ditions are regarded as the same label, samples of the
same category aggregate into two clusters. This indicates
the method’s capability to discriminate between different
working conditions as well.

3.1.3 Comparison with other methods

To further validate the superiority of the proposed
method, several relevant methods are selected for com-
parison: SDAE'”', WDCNN'®', MSCNN'""'  Shen’s
method™, 2MNet"”", and MLVAF-CNN"™'.  Among
them, 2MNet and MLVAF-CNN are both data-level and
feature-level fusion methods, and their input is the origi-
nal 3-channel signals. SDAE, WDCNN, MSCNN, and
Shen’s method utilize the fused signal according to the CK
rule. The experimental results are depicted in Fig.6. Al-
though other methods achieve diagnostic accuracy higher
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Fig.5 Visualization results of different features. (a) 1D acceler-
ation signals; (b) 2D wavelet time-frequency spectra; (c) Features ex-
tracted from 1D-CNN; (d) Features extracted from 2D-CNN; (e) Fused
features
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than 94% , the proposed method exhibits the highest ac-
curacy, 99.00% , demonstrating its superiority.

94.32%

96.50%
96.20%
95.60%

97.40%
MLVAF-CNN 97.80%

Proposed method : : : : 99.90%

90 92 94 96 98 100
Accuracy/%

2MNet

Fig.6 Test results of different methods

3.2 Case2

3.2.1
To further validate the effectiveness of the proposed
method in diagnosing rolling bearing faults, a dataset
from a marine rudder propeller slewing bearing is utilized
for testing. The specific bearing model is SKR31326. As
depicted in Fig. 7, a three-axis acceleration sensor is posi-
tioned on the slewing bearing seat to gather signals.

= i

Three-axis

Introduction of dataset

acceleration sensor

Fig.7 Marine rudder propeller slewing bearing test bench

As depicted in Fig. 8, the experiment comprised two
bearing states: normal and inner race fault, labeled as 0
and 1, respectively. To induce an inner race fault, a 2
mm crack was machined onto the inner race of the bearing

100..100%

99.38%
99

98

97

Accuracy/%

96

95

100%

using electrical discharge machining. The experiment was
conducted under two distinct working conditions, with ro-
tation speeds of 485 and 750 r/min, respectively. A total
of 400 samples were collected under each working condi-
tion. The sample length was set to 2 048, with the corre-
sponding size of the wavelet time-frequency spectrum also
being 227 x 227 x 3. Similarly, samples with the same
bearing state under the two working conditions were as-
signed the same label. Consequently, there were 800
samples for each bearing state, with the training dataset
and testing dataset divided in a 4: 1 ratio. Further details
of the dataset are provided in Table 4.

Inner race fault

Fig. 8

Table 4 Marine rudder propeller slewing bearing dataset

Training dataset/
Testing dataset
640/160 0
640/160

Bearing states Label

Normal

Inner race fault

3.2.2 Effectiveness of the proposed method

The specific results from 10 tests are depicted in Fig. 9.
The diagnostic accuracy of the proposed method exceeds
99.00%, sufficiently demonstrating its effectiveness in
diagnosing rolling bearing faults. Given that this is solely
a binary classification problem, different related methods
are not compared here. According to the test results from
the two datasets, the proposed method exhibits exception-
al performance in rolling bearing fault diagnosis.
100%

99.69%
99.38%

100%

6 7 8 9 10
Trail number

Fig.9 Test results of marine rudder propeller slewing bearing fault diagnosis
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4 Conclusions

1) A weighted fusion method based on the CK rule is
used to perform data-level fusion of multichannel signals.
The resulting fused signal exhibits more pronounced fault
features, facilitating subsequent feature extraction.

2) An FFCNN, capable of effectively leveraging both
1D and 2D features to generate fused features, is intro-
duced. Experimental results demonstrate that these fused
features are more sensitive to bearing fault states.

3) Evaluation of the Southeast University bearing data-
set and the marine rudder propeller bearing dataset reveals
the effectiveness of the proposed rolling bearing fault di-
agnosis method, which integrates data-level and feature-
level information fusion. The method exhibits outstanding
fault diagnosis performance, with an average diagnostic
accuracy of over 99.00% , markedly outperforming other
diagnostic methods.
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