
Journal of Southeast University  English Edition 　 Vol. 40 No. 4 pp. 396 402 Dec. 2024　 ISSN 1003—7985

Rolling bearing fault diagnosis based on data-level
and feature-level information fusion

Shu Yongdong1 　 Ma Tianchi2 　 Lin Yonggang1

 1State Key Laboratory of Fluid Power & Mechatronic Systems Zhejiang University Hangzhou 310027 China 
 2School of Mechanical Engineering Southeast University Nanjing 211189 China 

Abstract To address the limitation of single acceleration
sensor signals in effectively reflecting the health status of
rolling bearings a rolling bearing fault diagnosis method based
on the fusion of data-level and feature-level information was
proposed. First according to the impact characteristics of
rolling bearing faults correlation kurtosis rules were designed
to guide the weight distribution of multi-sensor signals. These
rules were then combined with a weighted fusion method to
obtain high-quality data-level fusion signals. Subsequently a
feature-fusion convolutional neural network  FFCNN that
merges the one-dimensional  1D features extracted from the
fused signal with the two-dimensional  2D features extracted
from the wavelet time-frequency spectrum was designed to
obtain a comprehensive representation of the health status of
rolling bearings. Finally the fused features were fed into a
Softmax classifier to complete the fault diagnosis. The results
show that the proposed method exhibits an average test
accuracy of over 99. 00% on the two rolling bearing fault
datasets outperforming other comparison methods. Thus the
method can be effectively utilized for diagnosing rolling
bearing faults.
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With the rise of intelligent manufacturing health mo-
nitoring systems for mechanical equipment and

their key components have received increasing attention.
Rolling bearings which are commonly used standard
parts play a vital role in the safe and stable operation of
rotating machinery. Consequently the fault diagnosis of
rolling bearings has become an industry consensus 1 3 .
　 Previously signal processing methods such as variation-
al mode decomposition 4  synchrosqueezing transform 5  

and stochastic resonance 6 were the preferred choices for
fault diagnosis. However in recent years deep learning
has emerged as a powerful tool reducing the reliance on
expert experience by automatically extracting features.
This advancement has significantly promoted research in
rolling bearing fault diagnosis 7 . Yuan et al.  8 converted
one-dimensional vibration signals into wavelet time-fre-
quency spectra and then used convolutional neural net-
works  CNNs to diagnose bearing faults. Similarly Che
et al.  9 combined stacked denoising autoencoders with
CNNs to diagnose bearing faults in noisy environments.
　 The widespread use of multi-sensor signal acquisition
systems has introduced new opportunities and challenges
for rolling bearing fault diagnosis. Compared with single-
sensor signals multi-sensor signals can provide a more
comprehensive reflection of the bearing􀆳s health status 
leading to improved fault diagnosis results. However 
there is still no unified standard for multi-sensor informa-
tion fusion. The selection of fusion levels—data-level fu-
sion feature-level fusion and decision-level fusion—and
the design of fusion methods still depend on specific
tasks 10 . Song et al.  11 proposed a two-stage fusion
method using acoustic signals acceleration signals and
acoustic emission signals to detect compressor blade
cracks. Similarly Ma et al.  12 introduced a data-level
fusion method based on kernel cosine similarity and a de-
cision-level fusion method based on improved Dempster-
Shafer evidence theory. Their results demonstrated that
the proposed multilevel fusion method offers better blade
crack detection performance and greater robustness.
　 To fully utilize multi-sensor information and enhance
rolling bearing fault diagnosis a rolling bearing fault di-
agnosis method based on data-level and feature-level fu-
sion is proposed. First according to the impact character-
istics of rolling bearing fault signals the correlation kur-
tosis  CK rule is designed to guide the weight allocation
of different sensors and obtain high-quality fused signals.
Afterward a feature-fusion convolutional neural network
 FFCNN  is introduced to combine one-dimensional
 1D features extracted from the fused signal with two-di-
mensional  2D features extracted from wavelet time-fre-
quency spectra. Finally these fused features are input in-
to a Softmax classifier to complete the fault diagnosis of
rolling bearings.



1　 Basic Theory

1. 1　 Data-level fusion based on correlation kurtosis rule

　 When a rolling bearing malfunctions the periodic col-
lision between the faulty part and other components gen-
erates an impact component in the acceleration signal 
which is a crucial indicator of failure. Kurtosis a statisti-
cal measure for capturing impact components in signals 
is widely employed in the fault diagnosis of rolling bear-
ings.
　 The kurtosis of the collected signal x n is as follows 
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where N is the length of x  n  μ is the mean value of
x n . According to Ref.  12  the correlation coefficient
between the fused signal and the original multi-sensor sig-
nal is introduced as the weight which can be calculated
using
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where M represents the number of sensors x i represents
the signal collected by the i-th sensor xf represents the
fused signal C 􀅰  denotes the correlation coefficient
between the two signals x i and xf  and can be obtained
as follows 
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where 􀭰x i and 􀭰xf are the mean values of x i and xf  respec-
tively. Accordingly the CK of the fused signal xf is de-
fined as follows 

CK xf = wfK  4 

　 As previously mentioned kurtosis effectively captures
the impact components in bearing fault signals with
higher kurtosis indicating a richer embedded impact com-
ponent. Moreover the incorporation of the correlation
coefficient helps suppress noise in the fused signal. Con-
sequently a fused signal with a higher CK value exhibits
clearer fault features and reduced noise interference facil-
itating the diagnosis of bearing faults. Fig. 1 illustrates
the structural diagram of the data-level fusion method
based on the CK rule. The original collected multi-sensor
signals are used as the training dataset with weights ran-
domly initialized for each sensor. A weighted fusion
method 13 is employed to generate data-level fusion sig-
nals. The reciprocal of the CK value of the fused signal is

designated as the loss function and the adaptive moment
estimation algorithm  ADAM  is utilized to train the
weights of each sensor aiming to attain the fused signal
with the highest CK value. The training parameters for
ADAM are configured as follows a batch size of 64 a
learning rate of 0. 001 and 50 epochs.

Fig. 1　 Data-level fusion method based on the CK rule

1. 2　 Feature-fusion convolutional neural network

　 The extensive use of deep neural networks has led re-
searchers to favor end-to-end methods wherein the origi-
nal one-dimensional acceleration signals are directly fed
into the network. Xue et al.  14 highlighted that incorpo-
rating two-dimensional information aids in further extrac-
ting fault information from the signal and achieving im-
proved feature representation. Hence an FFCNN compri-
sing a 1D-CNN and a 2D-CNN is proposed. The network
parameters for each component are detailed in Table 1 and
Table 2 respectively. Following feature extraction the
1D and 2D features are concatenated to form fused fea-
tures which are then input into a Softmax classifier to
complete the rolling bearing fault diagnosis.

Table 1　 1D-CNN network structure parameters
No. Layer Kernel size Channel size Stride
1 1D-Conv 1 3 16 1
2 1D-MaxPool 2 2
3 1D-Conv 2 3 32 1
4 1D-MaxPool 2 2
5 1D-Conv 3 3 64 1
6 1D-MaxPool 2 2
7 1D-GAP 64

Table 2　 2D-CNN network structure parameters
No. Layer Kernel size Channel size Stride
1 2D-Conv 1 3 × 3 16 1 × 1
2 2D-MaxPool 2 × 2 2 × 2
3 2D-Conv 2 3 × 3 32 1 × 1
4 2D-MaxPool 2 × 2 2 × 2
5 2D-Conv 3 3 × 3 64 1 × 1
6 2D-MaxPool 2 × 2 2 × 2
7 2D-GAP 64
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2　 Proposed Method

　 Building upon the aforementioned Fig. 2 illustrates the
flowchart of the proposed rolling bearing fault diagnosis
method integrating data-level and feature-level fusion.
The specific steps are outlined as follows 
　 1 Collect multichannel signals using multiple accelera-
tion sensors positioned at various locations.
　 2 Employ the CK rule to allocate weights to each
channel signal utilizing a weighted fusion method to pro-

duce the data-level fusion signal.
　 3 Utilize wavelet transform to derive the wavelet time-
frequency spectra corresponding to the fused signals.
　 4 Input the 1D acceleration signals and 2D wavelet
time-frequency spectra into the FFCNN to extract fused
features.
　 5 Integrate these features with the Softmax classifier
to determine the health status of the bearing thereby
completing the rolling bearing fault diagnosis.

Fig. 2　 Flowchart of the proposed method

3　 Case Study

3. 1　 Case 1

　 To assess the effectiveness of the proposed method the
bearing fault dataset from Southeast University was used
for testing purposes.
3. 1. 1　 Introduction of dataset
　 The experimental setup is depicted in Fig. 3 and de-
tailed experimental parameters are presented in Ref.  15 .
Here only the dataset is introduced. Data from channel
2 channel 3 and channel 4 representing the accelera-
tion signals of the planetary gearbox in directions x y 
and z are selected for testing purposes. Following the
data-level fusion of these three-channel data the resulting
fused signal dataset is presented in Table 3. In the experi-
ment five bearing states were established normal roll-
ing ball fault inner race fault outer race fault and com-
bination fault labeled 0 1 2 3 and 4 respectively.
The experiment was conducted under two distinct working
conditions denoted 20-0 and 30-2 corresponding to dif-
ferent speed-load configurations. A total of 500 samples
were collected under each working condition with each
sample having a length of 2 048. The size of the corre-
sponding wavelet time-frequency spectrum was 227 ×
227 × 3. Samples with the same bearing status under both
working conditions were assigned the same label. Conse-
quently there were 1 000 samples for each bearing state.
The training set and the test set were divided in a ratio of
4∶ 1.

Fig. 3　 Southeast University bearing test bench

Table 3　 Southeast University bearing dataset

Bearing states Training dataset /
Testing dataset Label

Normal 800 / 200 0
Rolling ball fault 800 / 200 1
Inner race fault 800 / 200 2
Outer race fault 800 / 200 3
Combination fault 800 / 200 4

3. 1. 2 　 Assessing the effectiveness of the proposed
method

　 To evaluate the effectiveness of the data-level fusion
method based on the CK rule besides the fused signals 
the signals from channel 2 channel 3 channel 4 and the
mean fusion signals are taken as inputs. Each result repre-
sents the average of 10 trials. As illustrated in Fig. 4 re-
garding the original signal diagnostic accuracy is highest
for signals collected from channel 2  98. 20%   while
channel 3 yields the lowest accuracy  88. 20%  . Nota-
bly the mean fusion signals fail to surpass the diagnostic
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accuracy achieved by channel 2 signals indicating that an
unreasonable weight distribution may hinder the exploita-
tion of the complementary information from multichannel
signals. The proposed method which utilizes the CK rule
to allocate weights to multichannel signals achieves the
highest diagnostic accuracy of 99. 00% . Furthermore the
FFCNN effectively utilizes both 1D and 2D features to at-
tain a more comprehensive representation of the bearing
fault state outperforming single-input methods. This
confirms the effectiveness of the proposed two-level fu-
sion method.

Fig. 4　 Diagnostic results of different inputs

　 To elucidate the functioning mechanism of the FFC-
NN the original 1D signals the original 2D wavelet
time-frequency spectra features extracted by 1D-CNN 
features extracted by 2D-CNN and the fused features are
visualized using the t-distributed stochastic neighbor em-
bedding  t-SNE method 16 . As depicted in Fig. 5 the
samples of the original signal appear mixed making it
challenging to directly distinguish between different bear-
ing fault states. However following 1D-CNN and 2D-
CNN processing the extracted features demonstrate con-
siderable capabilities in differentiating between fault
states. Moreover the FFCNN maximizes the complemen-
tarity between 1D and 2D features enhancing its capacity
to distinguish between fault states. This further under-
scores the effectiveness of the proposed FFCNN in extrac-
ting rolling bearing fault features. Considering that sam-
ples with the same fault state under the two working con-
ditions are regarded as the same label samples of the
same category aggregate into two clusters. This indicates
the method􀆳s capability to discriminate between different
working conditions as well.
3. 1. 3　 Comparison with other methods
　 To further validate the superiority of the proposed
method several relevant methods are selected for com-
parison SDAE 17  WDCNN 18  MSCNN 19  Shen􀆳s
method 20  2MNet 21  and MLVAF-CNN 22 . Among
them 2MNet and MLVAF-CNN are both data-level and
feature-level fusion methods and their input is the origi-
nal 3-channel signals. SDAE WDCNN MSCNN and
Shen􀆳s method utilize the fused signal according to the CK
rule. The experimental results are depicted in Fig. 6. Al-
though other methods achieve diagnostic accuracy higher

 a 

 b 

 c 
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 e 

Fig. 5　 Visualization results of different features.  a 1D acceler-
ation signals  b 2D wavelet time-frequency spectra  c Features ex-
tracted from 1D-CNN  d Features extracted from 2D-CNN  e Fused
features
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than 94%  the proposed method exhibits the highest ac-
curacy 99. 00%  demonstrating its superiority.

Fig. 6　 Test results of different methods

3. 2　 Case 2

3. 2. 1　 Introduction of dataset
　 To further validate the effectiveness of the proposed
method in diagnosing rolling bearing faults a dataset
from a marine rudder propeller slewing bearing is utilized
for testing. The specific bearing model is SKR31326. As
depicted in Fig. 7 a three-axis acceleration sensor is posi-
tioned on the slewing bearing seat to gather signals.

Fig. 7　 Marine rudder propeller slewing bearing test bench

　 As depicted in Fig. 8 the experiment comprised two
bearing states normal and inner race fault labeled as 0
and 1 respectively. To induce an inner race fault a 2
mm crack was machined onto the inner race of the bearing

using electrical discharge machining. The experiment was
conducted under two distinct working conditions with ro-
tation speeds of 485 and 750 r / min respectively. A total
of 400 samples were collected under each working condi-
tion. The sample length was set to 2 048 with the corre-
sponding size of the wavelet time-frequency spectrum also
being 227 × 227 × 3. Similarly samples with the same
bearing state under the two working conditions were as-
signed the same label. Consequently there were 800
samples for each bearing state with the training dataset
and testing dataset divided in a 4∶ 1 ratio. Further details
of the dataset are provided in Table 4.

Fig. 8　 Inner race fault

Table 4　 Marine rudder propeller slewing bearing dataset

Bearing states Training dataset /
Testing dataset Label

Normal 640 / 160 0
Inner race fault 640 / 160 1

3. 2. 2　 Effectiveness of the proposed method
　 The specific results from 10 tests are depicted in Fig. 9.
The diagnostic accuracy of the proposed method exceeds
99. 00%  sufficiently demonstrating its effectiveness in
diagnosing rolling bearing faults. Given that this is solely
a binary classification problem different related methods
are not compared here. According to the test results from
the two datasets the proposed method exhibits exception-
al performance in rolling bearing fault diagnosis.

Fig. 9　 Test results of marine rudder propeller slewing bearing fault diagnosis
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4　 Conclusions

　 1 A weighted fusion method based on the CK rule is
used to perform data-level fusion of multichannel signals.
The resulting fused signal exhibits more pronounced fault
features facilitating subsequent feature extraction.
　 2 An FFCNN capable of effectively leveraging both
1D and 2D features to generate fused features is intro-
duced. Experimental results demonstrate that these fused
features are more sensitive to bearing fault states.
　 3 Evaluation of the Southeast University bearing data-
set and the marine rudder propeller bearing dataset reveals
the effectiveness of the proposed rolling bearing fault di-
agnosis method which integrates data-level and feature-
level information fusion. The method exhibits outstanding
fault diagnosis performance with an average diagnostic
accuracy of over 99. 00%  markedly outperforming other
diagnostic methods.
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基于数据级和特征级信息融合的滚动轴承故障诊断

舒永东1 　 马天池2 　 林勇刚1

( 1 浙江大学流体动力与机电系统国家重点实验室, 杭州 310027)
( 2 东南大学机械工程学院, 南京 211189)

摘要:针对单一加速度传感器信号难以充分反映滚动轴承健康状态的问题,提出了一种基于数据级和特征

级信息融合的滚动轴承故障诊断方法. 首先,根据滚动轴承故障的冲击特性,设计了相关峭度规则来指导多

传感器信号的权重分配,结合加权融合方法获得高质量的数据级融合信号;随后,设计了一个特征融合卷积

神经网络(FFCNN),对从融合信号中提取的一维(1D)特征和从小波时频谱中提取的二维(2D)特征进行融

合,获得滚动轴承健康状态的充分表征;最后,将融合后的特征输入 Softmax 分类器,完成故障诊断. 结果表

明,所提方法在 2 个滚动轴承故障数据集上平均测试准确率均高于 99. 00% ,优于其他对比方法,可用于滚

动轴承的故障诊断.
关键词:故障诊断;信息融合;相关峭度;特征融合卷积神经网络
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