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Abstract To enhance the piezoelectric performance of
piezoelectric polymer thin films in general hybrid
polyvinylidene difluoride  PVDF  and nanosized barium
titanate  BaTiO3  piezoelectric films were prepared and their
piezoelectric performance examined. The hybrid nanofibers
were fabricated via electrospinning at an external voltage of 15
kV. The nonwoven fabrics were collected using a roller
collection device and their morphological structures were
analyzed via scanning electron microscopy. The crystal
structures of these piezoelectric films were characterized via
micro-Raman spectroscopy. β-phase of the composite
nanofiber membrane almost increased to twice owing to the
addition of BaTiO3 nanoparticles. Compared with pure 
electrospun PVDF piezoelectric film the piezoelectric
characteristics of the hybrid piezoelectric films were
considerably enhanced because of the additional BaTiO3

nanoparticles. The maximum instantaneous open-circuit
voltage of the hybrid PVDF-BaTiO3 nanofibers film can be
high up to 80 V. The high-performance hybrid piezoelectric
films exhibited notable prospects for applications in wearable
electronic textiles.
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W ith the development of portable and wearable de-
vices for human health control and monitoring 

the progress in the field of flexible lightweight and
small self-powering sources has been rapid 1 4 . Piezoe-
lectric materials are one of the most important materials
used for energy harvesting and many studies have been
conducted on them. They are suitable for self-powering

generators because they can generate electricity via de-
formations due to small forces from tensile stress me-
chanical impact mechanical vibration bending and
pressure 5 8 . The most common piezoelectric materials 
such as piezoelectric ceramics 9  have relatively satisfac-
tory piezoelectric properties however their application
in wearable devices is difficult because of their brittleness
and rigidity. Another group of piezoelectric materials is
semiconductor nanowires such as those made of
ZnO 10 13  InN 14  GaN 15 16  CdS 17 18  and ZnS 19 .
These piezoelectric nanowires have demonstrated a nota-
ble ability to convert mechanical vibrations into electrical
energy. However these nanowires typically must be
combined with organic compounds prior to application in
wearable devices. Furthermore polymer piezoelectric
materials are another type of piezoelectric materials. Pol-
ymer films have higher flexibility than inorganic thin film
materials 20 22 . Polyvinylidene difluoride  PVDF is con-
sidered one of the most popular piezoelectric polymers be-
cause of its relatively large piezoelectric coefficients at-
tractive mechanical properties ease of processing chem-
ical stability and biocompatibility 23 30 . These features
make PVDF particularly attractive for wearable and im-
plantable energy-harvesting devices.
　 The piezoelectric properties of PVDF considerably de-
pend on its crystalline phases. PVDF possesses five dif-
ferent crystalline phases mainly because its simple chem-
ical structure with alternating CH2 and CF2 groups can re-
sult in various polycrystalline orientations depending on
processing conditions. Various chain conformations corre-
spond to the five crystalline phases α β γ δ and ε 
depending on the chain conformation of trans  T and
gauche  G linkages 31 36 . Of the five polymorphs β-
phase exhibits the highest piezo- pyro- and ferroelectric
properties. This is because of its polar structure with ori-
ented hydrogen and fluoride unit cells along the carbon
backbone. Thus several approaches have been used in
the literature to enhance the transformation of β-phase in
a bid to obtain piezoelectric PVDF application of high
electric field mechanical stretching drawing casting 
epitaxy process and doping with organic and inorganic
materials etc.  37 . Electrospinning is one of the simplest
methods to fabricate high β-phase PVDF.



　 Electrospinning is a versatile process that can be used
to fabricate polymer nanofibers from various materials.
During electrospinning polymer molecules are typically
stretched and arranged along the fiber axis because of the
strong elongation flow in the jet. Many studies have
shown that electrospinning can transform the nonpolar
α-phase PVDF to the polar β-phase material resulting in
piezoelectric nanofibers 38 40 . Near-field electrospinning
can be used to fabricate piezoelectric PVDF nanofibers on
working substrates via in situ mechanical stretching and
electrical poling 23 27 41 . Damaraju et al.  34 observed that
increasing electrospinning voltage resulted in increased β-
phase fraction. They reported an optimized electrospin-
ning voltage of 25 kV to achieve the highest β-phase frac-
tion. In addition incorporating nanomaterials during the
electrospinning process can also increase β-phase frac-
tion. Yu et al.  42 observed that adding 5% multiwalled
carbon nanotubes  MWCNTs to the PVDF electrospin-
ning solution increased both the crystallinity and propor-
tion of β-phase. With additional MWCNTs the surface
conductivity of PVDF nanofiber mats increased which is
believed to further increase the output power. Athira et
al.  28 also observed that upon the addition of 10% Ba-
TiO3 nanoparticles the electroactive β-phase of the
PVDF increased in proportion to about 91% as a result of
the synergistic interfacial interaction between the tetragon-
al BaTiO3 nanoparticles and ferroelectric host polymer
matrix upon electrospinning. All the above-mentioned
methods can be used to increase β-phase fraction.
　 The piezoelectric performance of PVDF is determined
by its piezoelectric voltage constant  g33  and dielectric
constant  d33  . As is known PVDF has high g33 but con-
siderably low d33

 43 . Several studies have reported that
introducing high dielectric constant piezoelectric material
filler into PVDF matrix can increase the dielectric con-
stant of PVDF nanoparticles such as carbon nanotubes 
graphene BaTiO and ZnO have been used most of the
time to realize this improvement. Lee et al.  44 fabricated
a highly sensitive and multifunctional sensor using a
PVDF / ZnO nanorod composite thin film. In addition 
they demonstrated hybrid fiber generators consisting of
ZnO nanowires and PVDF infiltrating polymer  45 . Li et
al.  46 also demonstrated a novel generator film compri-

sing hybrid PVDF and ZnO nanowires it was suggested
that the ZnO nanowires served not only as a piezoelectric
material but also as an additive that facilitated the forma-
tion of β-phase and the stability of the PVDF film by
stretching and increasing the contact surface area.
　 In this study PVDF-BaTiO3 composite nanofibers were
fabricated via electrospinning and collected via a drum-
type collector. BaTiO3 is considered the most environ-
mentally friendly material and it also exhibits high pie-
zoelectric and ferroelectric characteristics along with a
high dielectric constant. Nanofibers collected by the drum
collector have high orderliness compared with those with-
out drum collector. To investigate the effect of added
nanoparticles on the microstructure of PVDF nanofibers 
micro-Raman spectroscopy was conducted to measure the
relative fraction of β-phase PVDF in individual hybrid
and pure nanofibers respectively. By comparing the en-
ergy-harvesting efficiency of PVDF-BaTiO3 hybrid nano-
fibers with that of pure PVDF nanofibers we observed
that the added nanoparticles not only facilitated the forma-
tion of β-phase but also enhanced their piezoelectric char-
acteristics.

1　 Fabrication of Nanofibers

　 Fig. 1 shows the electrospinning setup for fabricating
PVDF-BaTiO3 hybrid nanofibers. To prevent BaTiO3 nan-
oparticles from clustering in the PVDF solution 10% Ba-
TiO3 nanoparticles were first ultrasonically dispersed in
N N-dimethylformamide solution for 12 h. Thereafter 
the PVDF powder was dissolved in the mixture solution 
followed by stirring with a high-speed magnetic stirrer un-
til complete dissolution. The molecular weight of the
PVDF powder was about 1. 2 × 105 . All these experimen-
tal supplies were purchased from Sigma. The mixed solu-
tion was stirred at 80 ℃ to expedite the dissolution. Pure
PVDF solution was also separately prepared at the same
weight concentration for comparison with hybrid PVDF-
BaTiO3 nanofibers. During the electrospinning process a
5-mL syringe was used to draw the polymer solution. A
0. 4 mm × 25 mm metal needle was connected to the end
of the syringe reservoir. The syringe was mounted on a
syringe pump which provided a constant flow rate of 10

Fig. 1　 Electrospinning-aligned PVDF and BaTiO3 nanofiber film with the roller collector
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μL / min. Electrospinning was conducted at 15 kV with a
constant distance of 150 mm between the tip of the spin-
neret and the collector. The high voltage was supplied by
an EMCO DX250 DC-DC converter. A roller collector
with a rotation speed maintained at 300 r / min was used to
obtain aligned nanofibers. The films used for the piezoe-
lectric performance test were obtained via electrospinning
with 10 mL of the polymer solution.
　 The morphology of the nanofibers was characterized
using an FEI-Helios NanoLab 600i instrument. The Ra-
man spectra of PVDF and hybrid PVDF-BaTiO3 nanofi-
bers were collected from the nanofiber film at room tem-
perature via 10-mW laser radiation at 532 nm. The spec-
tra were accumulated for 3 min and taken with a slit width
equivalent to 1. 5 cm - 1 resolution using the Alpha300
R WITec system.

2　 Nanofiber Characterization Experiment
2. 1　 Morphological characterization of nanofibers

　 Fig. 2 a shows a scanning electron microscopy image
of pure PVDF nanofibers electrospun at 15% concentra-
tion and collected using an ordinary flat collector. The
surface is smooth and the average diameter range of the
nanofibers is about 200 nm. Compared with disordered
nanofibers Fig. 2 b shows the aligned PVDF nanofibers
collected using the roller collector. Clearly the arrange-
ment of nanofibers obtained by the roller receiver is more
orderly than that of those collected using the flat collec-
tor. Fig. 2 c shows hybrid PVDF-BaTiO3 nanofibers al-
so collected using the roller collector. BaTiO3 nanoparti-
cles can be clearly observed from the surface of the nano-
fibers and the distribution of the nanoparticles is relative-
ly uniform without serious agglomeration phenomenon.
This is attributed to the ultrasonic vibration of BaTiO3

nanoparticles during the preparation of the organic solu-
tion. During the experiment we observed that the nanofi-
bers obtained via electrospinning were discontinuous 
even beady if the PVDF concentration was lower than
15% .

2. 2　 Characterization of nanofiber crystal structure

　 Fig. 3 a shows the Raman spectra recorded using the
532-nm laser line for each of the PVDF powder pure
PVDF nanofibers and hybrid PVDF-BaTiO3 nanofibers.
The Raman characteristic peaks of α-phase PVDF are
mainly manifested at 276 413 609 and 794 cm - 1  as
shown in Fig. 3 a for PVDF powder. However the Ra-
man characteristic peaks of β-phase PVDF are mainly
manifested at 510 and 839 cm - 1 . The transition from α-
phase to β-phase can be monitored by comparing the rela-
tive intensities of the bands at 794 indicative of α-phase 
and 839 cm - 1  indicative of β-phase  32 33 . In the Raman
spectra of PVDF powder the relative intensity of the
band at 794 cm - 1was considerably higher than that of the

 a 

 b 

 c 
Fig. 2 　 Scanning electron microscopy image of electrospun
nanofibers.  a  Disordered PVDF nanofibers  b  Aligned PVDF
nanofibers  c Hybrid PVDF-BaTiO3 nanofibers

band at 839 cm - 1  indicating a predominance of α-
phase  as shown in Fig. 3  a . However this relation-
ship is reversed in the Raman spectra of electrospun
PVDF nanofibers  indicating a considerable increase in β-
phase content in Fig. 3 b . This transformation occurred
because the molecular chains of PVDF powder were
straightened and polarized under high voltage during the
electrospinning process. The same transformation can be
observed from the Raman spectra of hybrid PVDF-BaTiO3

nanofibers.
　 Compared with pure PVDF nanofibers the intensity ra-
tio of the β-phase peak  839 cm - 1  to the α-phase peak
 794 cm - 1  considerably increased from 1. 5 to 2. 6 for
the hybrid PVDF-BaTiO3 nanofibers. This indicates that
the addition of BaTiO3 nanoparticles increased the fraction
of β-phase. This increase is attributed to the interactions
at the surface of the nanoparticles. The hydrogen of the
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 c 
Fig. 3　 Raman spectra of various samples.  a PVDF powder 
 b PVDF nanofibers  c Hybrid PVDF-BaTiO3 nanofibers

carboxyl group on the nanoparticle surface is hydrogen
bonded to the fluorine of the polymer chain and it forms
CH2 / CF2 dipoles. These interactions result in the forma-
tion of β-phase crystals with an all-trans conformation in
the polymer chain. Conversely nanoparticles act as the
nucleating agent of β-phase. The Raman characteristic
peaks of BaTiO3 nanofibers at 265 305 and 720 cm - 1

also can be observed for the hybrid nanofibers as shown
in Fig. 3 c .

2. 3　 Piezoelectric output voltage experiment

　 A piezoelectric performance measurement circuit was
designed for the prepared nanofibrous membrane and it
was packaged in patches as shown in Fig. 4 a . The pi-
ezoelectric nanogenerator film was sandwiched by two
layers of conductive copper tapes. A force was applied to
all samples with a period of 50 ms. An oscilloscope
screen image representing the amount of the cyclic force
and the output voltage of PVDF is shown in Fig. 4 b .
　 The maximum output voltage of the two piezoelectric
films was measured by gradually increasing the pressure 
as shown in Fig. 4 b . After repeated measurements the
maximum instantaneous open-circuit voltage peak of the
PVDF piezoelectric film was stable at 40-55 V and that

 a 

 b 
Fig. 4　 Measurement of piezoelectric performance.  a Output
voltage test  b Output voltage result

of the composite PVDF-BaTiO3 piezoelectric film was sta-
ble at 65-80 V. The addition of BaTiO3 increased the out-
put voltage of the piezoelectric thin films by almost
twice. This increase can be explained as follows. Firstly 
from the Raman spectra results we confirmed that the ad-
dition of BaTiO3 nanoparticles can result in more PVDF
domains transitioning from α-phase to β-phase owing to
the synergistic interfacial interaction between the tetragon-
al BaTiO3 nanoparticles and the ferroelectric host polymer
matrix upon electrospinning 28 . Secondly the roller col-
lector makes the distribution of PVDF nanofibers obtained
more orderly resulting in higher output voltage.
　 From Fig. 4 b  one can see that the output voltage is
positive when pressure acts on the thin film and the out-
put voltage is negative when pressure is withdrawn simi-
lar to pulse voltage which cannot be directly used for en-
ergy storage. We designed a circuit to further store the
output energy of the piezoelectric film as shown in Fig. 5
 a . The piezoelectric film is used to charge the Faraday
capacitor which then discharges the load upon reaching
its rated voltage. By using AC and DC the capacitor can
be charged twice in a single cycle by using a traditional
bridge rectifier circuit. The small capacitor is first
charged and discharged to the Faraday capacitor after
reaching the rated voltage value. This reduces the resist-
ance and power of the current limiting resistor Rb as well
as the power loss during charging and this also effective-
ly avoids the reduction in power extraction efficiency of
the online power supply because of the reduction in termi-
nal voltage  see Fig. 5 a  .
　 The charging time of two types of piezoelectric thin films
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Fig. 5　 Simulation of the piezoelectric thin film circuit.  a En-
ergy storage circuit  b Charging simulation results

was simulated to compare their energy supply capacity.
The capacitance value used in the simulation was 0. 47 F 
and the rated voltage of the Faraday capacitor was 6. 0 V.
The input voltage was derived from the open-circuit volt-
age waveform of the piezoelectric film characterized by a
50 ms cycle with a rise time of 2 ms and a fall time of 2
ms. The peak voltages were 60 and 80 V for the PVDF
piezoelectric film and composite PVDF-BaTiO3 piezoelec-
tric film respectively. These simulations are conducted
under high-frequency pressure applied to the films during
the capacitance charging process. The Faraday capacitor
voltage varied with time as shown in Fig. 5  b . The
charging time of the composite piezoelectric film  37
min was reduced by approximately 18 min compared
with the PVDF piezoelectric film  55 min . In the practi-
cal application of the energy storage circuit the resistance
of piezoelectric film must be considered which has been
ignored in this study. Reducing the internal resistance is
also highly important to increase the energy supply effi-
ciency of the piezoelectric film.

3　 Conclusions

　 1  PVDF thin films and composite PVDF-BaTiO3

films both prepared via electrospinning exhibited re-
markable piezoelectric characteristics and had more poten-
tial to be explored compared with traditional piezoelectric
ceramics.
　 2 The strong electric fields and stretching forces from
the electrospinning process naturally aligned dipoles in the
PVDF nanofiber crystal such that the nonpolar α-phase
 random orientation of dipoles was transformed into the
polar β-phase determining the polarity of the electrospun

nanofibers. The proportion of crystal-structure β-phase of
the PVDF fibers also increased because of the addition of
BaTiO3 nanowires.
　 3 The addition of BaTiO3 nanoparticles increased the
piezoelectric coefficient of the entire PVDF material. The
maximum output voltage generated by hybrid PVDF-Ba-
TiO3 nanofibers  10% BaTiO3 nanoparticles was almost
twice the voltage produced by pure electrospun PVDF
nanofibers. Piezoelectric films have been witnessing a
broad market with the rapid development of low-power
wearable devices. Accordingly high-performance piezoe-
lectric films can also form the basis for the development
of flexible smart wearable piezoelectric sensor devices.
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静电纺 PVDF 和 BaTiO3 复合纳米纤维发电装置

周　 蕾1 　 周鹤翔2 　 马　 建2,3

( 1 上海理工大学出版印刷与艺术设计学院, 上海 200093)
( 2 东南大学机械工程学院, 南京 211189)

( 3 东南大学教育部新型光源技术与设备工程研究中心, 南京 211189)

摘要:为提高压电聚合物薄膜的压电性能,研制了聚偏氟乙烯(PVDF)和钛酸钡(BaTiO3)纳米颗粒复合压

电薄膜,并对其压电性能进行测试. 利用静电纺丝工艺,在 15 kV 外置电压条件下制备复合纳米纤维,并使

用滚筒收集装置收集纳米纤维薄膜. 利用扫描电子显微镜表征纳米纤维结构形貌,采用拉曼光谱测量复合

压电薄膜的晶体结构. 结果表明,BaTiO3 纳米颗粒的加入可使复合纳米纤维膜的 β 相增加近 2 倍. 与纯静

电纺丝 PVDF 压电薄膜相比,添加 BaTiO3 纳米颗粒的复合压电薄膜压电性显著提高. PVDF 和 BaTiO3 复合

纳米纤维薄膜的最大瞬时开路电压可高达 80 V.
关键词:静电纺丝;聚偏氟乙烯纳米纤维;钛酸钡;压电薄膜
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904　 Electrical power generator from electrospun hybrid PVDF-BaTiO3 nanofiber membranes


