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Abstract To solve the low efficiency of approximate queries
caused by the large sizes of the knowledge graphs in the real
world an embedding-based approximate query method is
proposed. First the nodes in the query graph are classified
according to the degrees of approximation required for
different types of nodes. This classification transforms the
query problem into three constraints from which approximate
information is extracted. Second candidates are generated by
calculating the similarity between embeddings. Finally a deep
neural network model is designed incorporating a loss
function based on the high-dimensional ellipsoidal diffusion
distance. This model identifies the distance between nodes
using their embeddings and constructs a score function. k
nodes are returned as the query results. The results show that
the proposed method can return both exact results and
approximate matching results. On datasets DBLP  DataBase
systems and Logic Programming and FUA-S  Flight USA
Airports-Sparse  this method exhibits superior performance in
terms of precision and recall returning results in 0. 10 and
0. 03 s respectively. This indicates greater efficiency
compared to PathSim and other comparative methods.
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A knowledge graph  KG models entities and relations
in the real world as nodes and edges within a

graph 1 . Large-scale KGs have been constructed to repre-
sent factual information such as YAGO and Wikipe-
dia 2  which are widely used to advance research in areas
such as question answering 3 4  recommendation 5  and
visualization 6 . However owing to the massive size of
real-world KGs there is a need to manage the time com-
plexity gap associated with these graphs. KG query sys-
tems are crucial for high-performance applications and re-

main a prevailing topic in KG research. Therefore desig-
ning an effective and efficient query system is a key issue
in this research.
　 It is essential to understand that users prefer approxi-
mate queries which enjoy increasing popularity in acade-
mia and industries for the following two reasons 1 Ex-
act matching conditions are very strict often resulting in
prolonged search times. Approximate queries can enhance
efficiency by narrowing the search space by pruning and
applying thresholds 2  Exact matching can return an
empty set failing to meet user expectations. Approxi-
mate queries can return both exact and approximate an-
swers to enhance system generalization. The goal of this
paper is to solve an approximate KG query problem Giv-
en a query graph find k exact or approximate matches in
the KG and return the entities that users want.
　 Historically there have been two main methods for KG
queries RDF / SPARQL-based modes 7 9 and subgraph
isomorphism 10 11 . RDF is an information resource model
that uses triples to describe items and their relations.
SPARQL is a standard language for RDF queries which
has attracted significant attention for real-world applica-
tions. Nevertheless users need to be familiar with the
graph schemas and RDF queries do not support approxi-
mate querying. Those disadvantages cause poor generali-
zation and unbalanced overload on large-scale KGs. Sub-
graph isomorphism focuses on pruning to narrow the
search space but it remains an NP-complete problem re-
quiring substantial hardware and distributed calculation for
large-scale graphs. Both methods respond by indices on
graph structures and self-defined similarity measures for
approximate queries presenting clear challenges in en-
hancing query and index efficiency. Approximate sub-
graph matching benefits users as exact subgraph isomor-
phism is too restrictive to capture user needs 12 14 . Given
that embedding provides a vectorization property for KG
nodes and allows for a flexible design of score functions
in queries we propose a deep learning-based query model
utilizing pre-existing embedding.
　 The contributions of this paper are listed in the follow-
ing First we formalize query graphs and extract three
limitations for approximate KG queries. Second levera-
ging the powerful strength of the deep learning tech-



niques 15 17  we design a deep neural network  DNN 
and loss function for selecting k approximate query re-
sults. This model can return both exact results and ap-
proximate results ensuring that exact results are ranked
higher than most approximate results within the top k re-
turned results. Finally we conduct experiments on real-
world KGs with different densities. Experimental results
demonstrate that our system outperforms other methods in
terms of effectiveness and efficiency.

1　 Preliminary

　 Definition 1  knowledge and query graphs 　 Given a
knowledge graph G V E T  V denotes the set of nodes
representing entities E denotes the set of edges T is a
function for mapping entities to their types. T v ∈Λ is
the type of node v where v∈V and Λ is the infinite al-
phabet for all node types. Given a query graph GQ  VQ  
EQ  T  VQ denotes the set of nodes in GQ  while EQ de-
notes the set of edges in GQ .
　 In a query graph each node may contain varying a-
mounts of information. Some nodes explicitly indicate the
entities they represent while others only specify their
types. Users are primarily interested in matching results
for specific subsets of nodes rather than all unmatched
nodes. Based on these distinctions nodes in the query
graph are categorized into the following three types 1  
Confirmed nodes CQ . The nodes correspond to keywords
entered by users and have clear corresponding entities in
the KG that is ∀c∈CQ  c∈V. 2 Result nodes RQ .
Unknown nodes in GQ whose matching entities meet user
requirements. Typically the type of these nodes is speci-
fied in the query graph i. e.  ∀r∈RQ  m r ∈V and
T m r  = T r  where m · is the matching function
for nodes in GQ . In this paper we assume that RQ =
1 and RQ is recorded as rQ for simplification. We first dis-
cuss the case when RQ = 1. 3 Other nodes OQ . The
nodes in GQ are neither confirmed nodes nor result nodes.
They lie on the paths between CQ and RQ or are neighbors
of these nodes.
　 Classifying nodes in this manner and subsequently ap-
plying different levels of approximation to different nodes
offer several advantages. First it prevents over-approxi-
mation of crucial result nodes when generating candidate
entities in approximate queries ensuring that the returned
results meet user requirements. Second it allows for
fuzzier matching on less critical nodes reducing compu-
tational time spent on searching exact matches and impro-
ving query efficiency.
　 The purpose of this study is to execute approximate KG
queries with better performance and higher efficiency.
Users primarily seek the result node rQ . We define a
function ψ to quantify the approximation between a re-
turned entity v and rQ . Consequently we articulate the
problem as follows Given a query graph GQ VQ  EQ  T  

the approximate query problem aims to find the k entities
with the highest ψ values relative to the result node rQ and
return them i. e.  Vr = argmax V r

= k v∈Vψ v GQ   
where Vr is the set of entities representing the output of
the approximate query. In the context of the approximate
query problem ψ should consider the following condi-
tions 1 the returned entity v should have the same type
as rQ  i. e.  T  v ≡T  rQ   2  the distance between v
and the set CQ should be approximately equal to the dis-
tance between rQ and CQ  3  for every other node o∈
OQ  o should either be adjacent to a confirmed node or
result node or lie on the path from a confirmed node to a
result node.
　 Condition 1 is an inherent requirement that must be
met. Condition 2 stems from the characteristic that the
query graph is typically smaller and more connected com-
pared to the whole KG. In this case CQ is always con-
nected to rQ and relatively close in distance. Therefore 
we can use the distance between CQ and rQ as a measure
of approximation. To allow some flexibility we intro-
duce a parameter 􀆠 to relax the condition. Condition 3
imposes further constraints on the query results based on
OQ . In general OQ is not as crucial as CQ and rQ . OQ

usually consists of neighbors of CQ and rQ or nodes in the
paths connecting them. Nodes that do not meet these cri-
teria provide minimal constraints on the query results.
Moreover owing to the small size of GQ  it is unlikely to
encounter such cases. Therefore we do not consider
nodes that have minimal constraints on the query results
in Condition 3 for efficiency.
　 Based on these conditions it is essential to apply var-
ying approximation metrics to different node categories.
However quantifying the approximation and designing an
approximate query function pose challenges. KG embed-
ding can represent nodes or edges as low-dimensional
vectors effectively retaining the graph structure and se-
mantic information and is often used to measure similari-
ty. Therefore embedding can be considered for measur-
ing query approximation. This paper seeks to utilize em-
bedding to measure approximation. We define the embed-
ding symbol as f a vector with the dimension of z for
low-dimensional representation.

2　 Methodology
2. 1　 Query-based embedding

　 In this section we discuss the process of generating
embeddings suitable for approximate querying. Since the
node types of both the result node and other nodes need to
be considered during approximate queries we not only
embed the nodes in G but also their types. The embed-
ding symbols for the nodes and types are denoted as f and
f t  respectively. For each node v in KG G f v is a vector
of dimension z denoting the embedding of node v. Simi-
larly for each type in G f λ

t is a vector of dimension z
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denoting the embedding of type λ.
　 Based on the three conditions extracted from the query
graph type connectivity and distance these compo-
nents should be considered in the embedding process.
Given that KGs are typically sparse graphs the connec-
tivity between nodes is enough for querying purposes.
Therefore we use the Euclidean distance between embed-
dings to measure both connectivity and distance. Accord-
ing to Condition 2 for v i  v j∈V the smaller the distance
between v i and v j  the smaller f v i - f v j

2 should be.
Based on this property we can use any graph embedding
method that focuses on the connections between nodes. In
this paper we choose DeepWalk the most commonly
used and efficient embedding method. Existing KG em-
bedding methods often require extensive training which
can be time-consuming and demanding on hardware re-
sources. Moreover when nodes and edges within the KG
dynamically change the embeddings must be retrained 
posing a significant hardware challenge. Additionally 
some KGs consist of encrypted data where nodes are re-
presented by regular IDs rather than semantic entities. In
such scenarios DeepWalk is a suitable solution as it ful-
fills the requirements of our query model by serving as a
time-efficient and convenient embedding method. It does
not rely on expensive hardware or the inclusion of seman-
tic entities making it a practical choice. It is important
to avoid selecting embedding methods specifically de-
signed for heterogeneous graphs that consider node types.
Instead we embed the types in the KG separately. This
is because when performing approximate queries some
types may require an exact match and using embeddings
designed for heterogeneous graphs can easily lead to type-
matching errors. Instead we construct a weighted graph
specifically for types. In this graph the types are treated
as nodes and the edge weights are proportional to the
number of connecting edges between the entities corre-
sponding to the types in G. We also choose DeepWalk
for implementing type embedding where the walking
probabilities are proportional to the weights of the edges
in the type graph.

2. 2 　 Embedding-based approximate query model
 EAQM 

　 In this section we introduce a deep neural network
model to return k best results from candidate generation
and the DNN model. We first generate a candidate set by
calculating the Euclidean distance between the embed-
dings of nodes with type T rQ and confirmed nodes.
　 To address Condition 2 we have developed a DNN-
based approximate query model. This model constructs a
neural network that takes the embedding vectors of two
nodes as input and outputs a vector θ where the dimen-
sion of vector θ is 2z and z is the dimension of the em-
beddings f v and f λ t for node v and type λ respectively.

　 We posit that embedding vectors in high-dimensional
space demonstrate an ellipsoidal shape. Fig. 1  a de-
picts an example of the relationship between embedding
vectors in high-dimensional space showcasing entities
connected to v enclosed by different elliptical curves.
This example relying on DBLP shows node v represen-
ting the conference 􀆵AAAI.  The triangular nodes denote
three papers which published at 􀆵AAAI  and the circular
nodes denote the authors of those papers. The curve equa-
tion is represented by S. Nodes at a distance of one hop
from entity v are enclosed by curve S1  while nodes at a
distance of two hops are situated between curves S1 and
S2 . Similarly it can be inferred that node embedding at a
distance of n hops from v should lie between curves Sn - 1

and Sn . Hence we propose the following idea if we can
determine the equation for S we can use the embedding
to estimate the number of hops between two nodes. Fur-
thermore since the embedding in space expands outward
in a certain pattern as the number of hops increases differ-
ent curves Sn share the same eccentricity. Given a chosen
node v we establish the equation for curve Sn as follows 

Sn x v = 1
n2  x -  f v 　 f λ v

t   T x -  f v 　 f λ v

t   θ - 1

 1 

where vector x is the input variable with a dimension of
2z and the symbol λv represents the type of node v. Vec-
tor  f v 　 f λ v

t  is formed by concatenating the node embed-
ding and type embedding of entity v into a vector with a
dimension of 2z. Including type embedding is necessary
as the distance between entities often depends on their

 a 

 b 
Fig. 1　 Embedding-based approximate query model.  a Em-
beddings in high-dimensional space  b EAQM structure
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types. For example in DBLP the distance between an
􀆵Author and a 􀆵Conference is at least two hops.
　 Based on Eq.  1  if we set x =  f u 　 f λu

t   we can es-
timate the number of hops between entities u and v with
given θ. Therefore we design a DNN to generate θ. As
illustrated in Fig. 1  b  the training set will comprise
randomly selected entity pairs  v i  v j  . The input to the
DNN will be  f v i 　 f λ v i

t 　 f v j 　 f λ v j

t   i. e.  the concatenated
vectors of the entities. The output will be a vector θ.
Subsequently we devise the loss function as follows 

L v i  v j = L1  v i  v j + L2  v i  v j  2 
L1  v i  v j = ReLU - Sn - 1   f v i 　 f λ v i

t   v j   3 
L2  v i  v j = ReLU Sn  f v i 　 f λ v i

t   v j   4 

where Sn - 1 and Sn represent the  n - 1 -th and the n-th el-
lipsoidal curves enclosing node v j  respectively. As men-
tioned earlier for a node v i at a distance of n hops from
v j  its embedding  represented as f v i should lie between
curves Sn - 1 and Sn . This means that f v i should be outside
the curve Sn - 1 and inside the curve Sn . This condition can
be expressed as Sn - 1 > 0 and Sn < 0 resulting in the loss
L1  v i  v j = L2  v i  v j = 0 . If L1  v i  v j > 0  it indicates
that f v i is inside the curve Sn - 1  while L2  v i  v j  > 0 indi-
cates that f v i is outside the curve Sn . Both cases signify
that the trained curve fails to accurately identify the dis-
tance between v i and v j  requiring further training. It is
important to note that there is a negative sign before Sn - 1

in Eq.  3 . This negative sign ensures that the loss needs
to be minimized but the position of f v i with respect to
Sn - 1 and Sn is opposite i. e.  f v i should be outside Sn - 1

and inside Sn . After obtaining θ through training we can
design ψ as ψ v GQ  = ∑

c∈CQ v∈V
- L c v and return the

nodes with the k-th maximum ψ score.
　 It is not necessary to design an additional model to lim-
it the type of other nodes in Condition 3. In dense
graphs the number of nodes and edges is greater than the
number of node types which causes a large number of
meta-paths within the graph structure. For example in
DBLP the type of nodes that are two hops between
􀆵Conference and 􀆵 Author  can only be 􀆵 Paper.  In
sparse graphs which have a low density of connections 
many node pairs have only one path between them or
nodes have only one neighbor. When the distance is con-
firmed the path or neighbor is unique and the corre-
sponding other nodes are easily matched. Therefore an
approximate result can be searched on Condition 2 with-
out restricting the type of other nodes.

2. 3　 Optimization
2. 3. 1　 Negative sampling
　 In a KG with high density and complex relations it is
essential to set appropriate training data. For instance 
the loss with n = 2 and loss with n = 6 may slightly differ

when the graph is connected and its diameter is 7. This
can lead to poor performance because a large number of
samples could be trained in the range of S7 . Therefore 
negative sampling is indispensable to identify between
closer and further nodes as they are always connected.
We propose setting n as a value greater than the diameter
of the graph when n≥nM  where nM is a threshold.
2. 3. 2　 Multi-Node Query
　 The above model is built based on the assumption that

RQ = 1. However it becomes inefficient to utilize
EAQM on each rQ and enumerate different combinations
of r∈RQ when RQ > 1. As a result we use a greedy
algorithm to combine different r∈RQ for discovering k re-
sults.

3　 Experiments
3. 1　 Settings

　 We use two real-world KGs. DBLP 18 is a bibliograph-
ic KG while Flight-USA-Airports is a cryptographic
graph 19 . To compare the performance of datasets with
different densities we extract a part of the edges deno-
ted as FUA-S. Table 1 lists the statistics of the two data-
sets where density δ is defined as δ = 2 E V .

Table 1　 Dataset statistics
Dataset V E Λ δ
DBLP 37 791 170 794 4 9. 038 9
FUA-S 1 190 2 358 4 3. 963 0

　 Query graphs are randomly extracted from the main
graphs. We assess the effectiveness of EAQM by manual-
ly evaluating the approximate query results using the que-
ries listed in Table 2 containing chain-shaped and star-
shaped queries. To evaluate response times we randomly

Table 2　 Queries in experiments
Query Dataset Shape Queries

Q1 DBLP Chain
Find an authorwho published a paper in coopera-
tion with Thomas P. Minka and one of his pa-
pers contains the term 􀆵expectation.  

Q2 DBLP Chain
Find a termthat appeared with the terms 􀆵piazza 
and 􀆵are in two papers respectively.

Q3 DBLP Star
Query an authorwho published two papers with
Nirmalie Wiratunga and Stewart Massie respec-
tively and published a paper about 􀆵folding.  

Q4 FUA-S Chain

Find an entity with type 􀆵3 that is two hops away
from entities 􀆵12134  and 􀆵13930  and the
types of the middle nodes on the two paths are
both 􀆵3.  

Q5 FUA-S Chain

Query an entity with type 􀆵2  that is two hops
away from entities 􀆵14273 and 􀆵14119  and
the types of the middle nodes on two paths are
both 􀆵2.  

Q6 FUA-S Star

Find an entity with type 􀆵1 that is two hops away
from the entity 􀆵 12822  􀆵 13434  and
􀆵14627.  The types of middle nodes on the three
paths are 􀆵1  􀆵1  and 􀆵0  respectively.
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select 1 000 subgraphs that have the same structure as the
queries in Table 2 from each KG. We compare our ap-
proach with several baseline methods including Path-
Sim Nema 20  VF2  21  SGQ and VEQ 22 . All experi-
ments are conducted using Python 3. 7.

3. 2　 Evaluating effectiveness

　 We implement experiments for testing the effectiveness
of EAQM. The precision of exact and approximate que-
ries is plotted for different datasets with k = 1 5 10 30

in Fig. 2. Figs. 2  a and  b depict the precision of ex-
act queries and approximate queries performed by EAQM
on the DBLP dataset. This precision represents the rate of
results that exactly match the query graph and approxi-
mately match the query graph in the returned results. Ad-
ditionally Figs. 2  c and  d showcase the precision of
exact queries and approximate queries by EAQM on the
FUA-S dataset. The approximate query results  k = 10  
containing precision  π and recall  ρ are shown in Ta-
ble 3.

 a 　 　 　 　 　 　  b 

 c 　 　 　 　 　 　  d 

Fig. 2　 Query effectiveness.  a DBLP exact query  b DBLP approximate query  c FUA-S exact query  d FUA-S approximate query

Table 3　 Query effectiveness on DBLP and FUA-S

Method
Q1 Q2 Q3 Q4 Q5 Q6

π ρ π ρ π ρ π ρ π ρ π ρ
　 PathSim 0. 80 0. 03 0. 10 0. 91
　 Nema 1. 00 0. 29 1. 00 0. 03 0. 10 1. 00 0. 00 0. 00 0. 10 0. 91 0. 00 0. 00
　 VF2 0. 30 0. 09 ≤1. 00 ≤0. 03 ≤0. 10 ≤1. 00 0. 10 0. 33 0. 10 0. 91 0. 10 1. 00
　 SGQ 0. 30 0. 09 ≤0. 20 ≤0. 01 ≤0. 10 ≤1. 00 0. 10 0. 33 0. 20 0. 18 0. 10 1. 00
　 VEQ 0. 30 0. 09 1. 00 0. 03 0. 10 1. 00 0. 10 0. 33 0. 10 0. 91 0. 10 1. 00
　 EAQM 0. 70 0. 20 1. 00 0. 03 0. 10 1. 00 0. 20 0. 67 0. 80 0. 73 0. 10 1. 00

　 In Fig. 2 it is evident that precision declines as k in-
creases. This occurs because the number of correct an-
swers does not exceed k. This is a common phenomenon
given that there are often only one or two correct answers
in k results. The precision for chain-shaped queries is
higher than that of star-shaped queries because the number
of confirmed nodes in a star query strengthens the condi-
tions. For example only one correct answer is returned
on k = 1 for queries Q3 and Q6 reflecting a similar pat-
tern in Fig. 2. The FUA-S dataset reveals a lower preci-
sion owing its sparsity which causes a lower number of

correct answers. As constraints are relaxed the precision
of approximate queries tends to be higher than that of ex-
act queries. Table 3 shows that EAQM outperforms other
baselines on DBLP and FUA-S in most cases demonstra-
ting its advantages on KGs with different densities. While
Nema has a slight advantage over EAQM in terms of pre-
cision on the DBLP dataset it exhibits response times
that are significantly longer by tens of times than those
of EAQM during efficiency experiments. This makes
EAQM a more suitable method overall when both effec-
tiveness and efficiency are considered for approximate KG
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queries. It is important to note that PathSim and VF2
have precision values less than 1 indicating lower accura-
cy. By contrast the remaining baselines support approxi-
mate queries resulting in higher precision values.

3. 3　 Evaluating efficiency

　 This experiment evaluates the efficiency of EAQM as
shown in Fig. 3 where query graphs are randomly se-
lected to match the shapes of the query graphs listed in
Table 2. For instance Q1-shaped query graphs have the

same structure as Q1. It is evident that response time in-
creases with the value of k. The response time of EAQM
ranges from 0. 04 to 0. 12 s on DBLP and from 0. 004 to
0. 08 s on FUA-S. Queries on DBLP consistently exhibit
longer response times owing to the larger dataset size and
density. Star-shaped queries such as Q3-shaped queries
and Q6-shaped queries take more time to compute dis-
tances because they involve more confirmed nodes. How-
ever dataset size and density significantly impact effi-
ciency.

 a 　 　 　 　 　 　 　  b 

Fig. 3　 Query time of approximate queries.  a Query time on DBLP  b Query time on FUA-S

　 Tables 4 and 5 present the response time of different
methods. The response time of VF2 is not included be-
cause VF2 is unable to respond within a reasonable time
frame often 10 d. These tables show that EAQM consist-
ently has the shortest response time among the tested
methods. For example the response time of EAQM for
Q2-shaped queries at k = 10 is 32. 35% longer than at k =
1 indicating that the value of k is influential on EAQM
performance. Compared to Q5-shaped queries the re-
sponse time for Q2-shaped queries increases by 75%

when k = 10 highlighting that the response time of
EAQM will increase on larger KGs. Regarding query
graph size EAQM presents longer response times for
star-shaped queries. For instance the response time for
Q1-shaped queries at k = 10 is 18. 56% longer than that
for Q3-shaped queries. This indicates that although
EAQM is affected by graph density dataset size and
query graph size it outperforms other baselines in terms
of efficiency. EAQM can return query results in less than
0. 10 s on DBLP and 0. 03 s on FUA-S.

Table 4　 Response time of DBLP approximate queries s

Method
Q1-shaped Q2-shaped Q3-shaped

k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10
　 PathSim 0. 669 0. 712 0. 741
　 Nema 136. 3 136. 3 136. 2 133. 4 133. 3 133. 4 127. 4 127. 5 127. 5
　 SGQ 10. 85 12. 47 11. 47 16. 11 22. 89 21. 22 6. 02 6. 60 5. 98
　 VEQ 860. 0 881. 6 862. 6 730. 0 786. 0 744. 5 988. 1 983. 8 988. 8
　 EAQM 0. 062 0. 067 0. 079 0. 046 0. 054 0. 068 0. 062 0. 071 0. 097

Table 5　 Response time of FUA-S approximate queries s

Method
Q4-shaped Q5-shaped Q6-shaped

k = 1 k = 5 k = 10 k = 1 k = 5 k = 10 k = 1 k = 5 k = 10
　 PathSim 0. 004 0. 004 0. 004
　 Nema 0. 550 0. 548 0. 557 0. 261 0. 263 0. 262 0. 305 0. 316 0. 326
　 VF2 0. 021 0. 018 0. 020 0. 037 0. 043 0. 040 1. 647 1. 627 1. 624
　 SGQ 0. 213 0. 211 0. 215 0. 047 0. 049 0. 049 0. 143 0. 130 0. 131
　 VEQ 0. 058 0. 058 0. 058 0. 105 0. 105 0. 107 0. 236 0. 242 0. 242
　 EAQM 0. 006 0. 015 0. 019 0. 005 0. 013 0. 017 0. 006 0. 012 0. 027

224 Qiu Jingyi Zhang Duxi Song Aibo Wang Honglin Zhang Tianbo Jin Jiahui Fang Xiaolin and Li Yaqi　



4　 Conclusions

　 1 In this paper we propose EAQM an embedding-
based framework designed to implement approximate que-
ries on KGs. We first decompose the query graph into
three query constraints to quantify the approximation of
different nodes. EAQM then utilizes these constraints
within an embedding-based framework to implement the
approximate query. This model analyzes the embedding
distances in high-dimensional space and employs a loss
function in a DNN for training and scoring results.
　 2 Experimental results show that EAQM improves the
effectiveness of both dense and sparse graphs. Additional-
ly EAQM returns query results in less than 0. 10 s for
DBLP and 0. 03 s for FUA-S.
　 3 In the future we aim to enhance the compatibility of
embedding-based KG queries for more complex query
graphs.

References
 1 Su Y Yang S Q Sun H et al. Exploiting relevance

feedback in knowledge graph search C / / Proceedings of
the 21st ACM Knowledge Discovery and Data Mining.
Sydney Australia 2015 1135 1144. DOI 10. 1145 /
2783258. 2783320.

 2 Suchanek F M Kasneci G Weikum G. YAGO A large
ontology from Wikipedia and WordNet  J . Journal of
Web Semantics 2008 6 3  203 217. DOI 10. 1016 /
j. websem. 2008. 06. 001.

 3 Liu L H Chen Y Z Das M et al. Knowledge graph
question answering with ambiguous query C / / Proceed-
ings of the 32nd International World Wide Web Confer-
ences. Austin TX USA 2023 2477 2486. DOI 10.
1145 / 3543507. 3583316.

 4 Li H Y Zhao M Yu W Q. A multi-attention RNN-based
relation linking approach for question answering over
knowledge base  J  . Journal of Southeast University
 English Version  2020 36  4  385 392. DOI 10.
3969 / j. issn. 1003-7985. 2020. 04. 003.

 5 Zhou K Zhao W X Bian S Q et al. Improving conver-
sational recommender systems via knowledge graph based
semantic fusion  C  / / Proceedings of the 26th ACM
Knowledge Discovery and Data Mining. Virtual Event 
USA 2020 1006 1014. DOI 10. 1145 / 3394486.
3403143.

 6 Wei J Q Han S Zou L. VISION-KG Topic-centric vi-
sualization system for summarizing knowledge graph
 C / / Proceedings of the 13th International Conference
on Web Search and Data Mining. Houston TX USA 
2020 857 - 860. DOI 10. 1145 / 3336191. 3371863.

 7 Arenas M Cuenca Grau B Kharlamov E et al. Faceted
search over RDF-based knowledge graphs J . Journal of
Web Semantics 2016 37 / 38 55 74. DOI 10. 1016 /
j. websem. 2015. 12. 002.

 8 Mailis T Kotidis Y Nikolopoulos V et al. An efficient
index for RDF query containment C / / Proceedings of the
2019 International Conference on Management of Data.
Amsterdam the Netherlands 2019 1499 1516. DOI 

10. 1145 / 3299869. 3319864.
 9 Abdelaziz I Harbi R Khayyat Z et al. A survey and

experimental comparison of distributed SPARQL engines
for very large RDF data  J . Proceedings of the VLDB
Endowment 2017 10  13   2049 2060. DOI 10.
14778 / 3151106. 3151109.

 10 Zeng J U L H Yan X et al. Fast core-based top-k fre-
quent pattern discovery in knowledge graphs  C / / Pro-
ceedings of the 37th IEEE International Conference on
Data Engineering. Chania Greece 2021 936 947.
DOI 10. 1109 / ICDE51399. 2021. 00086.

 11 Sun Y Z Han J W Yan X F et al. Pathsim Meta path-
based top-k similarity search in heterogeneous information
networks C / / Proceedings of the VLDB Endowment.
Seattle WA USA 2011 992 1003. DOI 10. 14778 /
3402707. 3402736.

 12 Yang S Q Han F Q Wu Y H et al. Fast top-k search in
knowledge graphs  C / / Proceedings of the 32nd IEEE
International Conference on Data Engineering. Helsinki 
Finland 2016 990 1001. DOI 10. 1109 / ICDE. 2016.
7498307.

 13 Wang Y X Khan A Wu T X et al. Semantic guided
and response times bounded top-k similarity search over
knowledge graphs C / / Proceedings of the 36th IEEE In-
ternational Conference on Data Engineering. Dallas 
TX USA 2020 445 456. DOI 10. 1109 / IC-
DE48307. 2020. 00045.

 14 Qin Z Y Bai Y S Sun Y Z. GHashing Semantic graph
hashing for approximate similarity search in graph data-
bases  C / / Proceedings of the 26th ACM Knowledge
Discovery and Data Mining. Virtual Event USA 2020 
2062 2072. DOI 10. 1145 / 3394486. 3403257.

 15 Biao Y Lin G Y Zhang W G. Adaptive topology learn-
ing of camera network across non-overlapping views J .
Journal of Southeast University  English Version  2015 
31 1  61 66. DOI 10. 3969 / j. issn. 1003-7985. 2015.
01. 011.

 16 Zhao N N Jiang R. Poisoning attack detection scheme
based on data integrity sampling audit algorithm in neural
network  J  . Journal of Southeast University  English
Version  2023 39  3   314 322. DOI 10. 3969 / j.
issn. 1003-7985. 2023. 03. 012.

 17 Wang Y H He J Z Zhang M Z et al. Concrete crack
identification in complex environments based on SSD and
pruning neural network J . Journal of Southeast Univer-
sity  English Version  2023 39  4  393 399. DOI 
10. 3969 / j. issn. 1003-7985. 2023. 04. 008.

 18 Han M Kim H Gu G et al. Efficient subgraph matc-
hing Harmonizing dynamic programming adaptive
matching order and failing set together  C / / Proceed-
ings of the 2019 ACM Conference on Management of Da-
ta. Amsterdam the Netherlands 2019 1429 1446.
DOI 10. 1145 / 3299869. 3319880.

 19 Chen S W. Graph embedding  EB / OL .  2022  2023-
12-08 . https / / github. com / shenweichen / GraphEmbed-
ding.

 20 Khan A Wu Y H Aggarwal C C et al. Nema Fast
graph search with label similarity  C / / Proceedings of
the VLDB Endowment. Riva del Garda Italy 2013 181
192. DOI 10. 14778 / 2535569. 2448952.

324　 Embedding-based approximate query for knowledge graph



 21 Cordella L P Foggia P Sansone C et al. A  sub graph
isomorphism algorithm for matching large graphs  J  .
IEEE Transactions on Pattern Analysis and Machine Intel-
ligence 2004 26  10   1367 1372. DOI 10. 1109 /
TPAMI. 2004. 75.

 22 Kim H J Choi Y Y Park K S et al. Versatile equiva-
lences Speeding up subgraph query processing and sub-
graph matching C / / Proceedings of the 2021 ACM Con-
ference on Management of Data. Virtual Event China 
2021 925 937. DOI 10. 1145 / 3448016. 3457265.

基于嵌入的知识图谱近似查询

邱敬怡1 　 章杜锡2 　 宋爱波1 　 王红林3 　 张添博1 　 金嘉晖1 　 方效林1 　 李雅琦1

( 1东南大学计算机科学与工程学院,南京 211189)
( 2国网浙江省电力有限公司宁波供电公司,宁波 315000)

( 3南京信息工程大学人工智能学院,南京 210044)

摘要:为解决现实生活中知识图谱规模庞大而导致近似查询效率低下的问题,提出了一种基于嵌入的知识

图谱近似查询方法. 首先对查询图中的节点进行分类,根据不同类型节点所需的近似程度,将查询问题转化

为 3 个约束条件,提取近似信息. 然后,通过计算嵌入之间的相似度,生成候选集. 最后,设计了一个深度神

经网络模型和基于高维椭球形扩散距离的损失函数,根据嵌入判断节点间距离,并构建打分函数,返回 k 个

节点作为查询结果. 结果表明,所提方法可以同时返回精确匹配结果和近似匹配结果. 该方法在 DBLP 和

FUA-S 两个数据集上均获得了最高的准确率和召回率,且可分别在 0. 10 和 0. 03 s 内返回结果,效率高于

PathSim 等对比方法.
关键词:近似查询;知识图谱;嵌入;深度神经网络
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