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Abstract: To solve the low efficiency of approximate queries
caused by the large sizes of the knowledge graphs in the real
world, an embedding-based approximate query method is
proposed. First, the nodes in the query graph are classified
according to the degrees of approximation required for
different types of nodes. This classification transforms the
query problem into three constraints, from which approximate
information is extracted. Second, candidates are generated by
calculating the similarity between embeddings. Finally, a deep
neural network model is designed, incorporating a loss
function based on the high-dimensional ellipsoidal diffusion
distance. This model identifies the distance between nodes
using their embeddings and constructs a score function. k
nodes are returned as the query results. The results show that
the proposed method can return both exact results and
approximate matching results. On datasets DBLP ( DataBase
systems and Logic Programming) and FUA-S ( Flight USA
Airports-Sparse), this method exhibits superior performance in
terms of precision and recall, returning results in 0. 10 and
0.03 s, respectively. This greater
compared to PathSim and other comparative methods.
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indicates efficiency

graph;

knowledge graph (KG) models entities and relations

in the real world as nodes and edges within a
graph!"!. Large-scale KGs have been constructed to repre-
sent factual information, such as YAGO and Wikipe-
dia"™, which are widely used to advance research in areas
such as question answering” ™, recommendation"', and
visualization'” . However, owing to the massive size of
real-world KGs, there is a need to manage the time com-
plexity gap associated with these graphs. KG query sys-

tems are crucial for high-performance applications and re-
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main a prevailing topic in KG research. Therefore, desig-
ning an effective and efficient query system is a key issue
in this research.

It is essential to understand that users prefer approxi-
mate queries, which enjoy increasing popularity in acade-
mia and industries, for the following two reasons: 1) Ex-
act matching conditions are very strict, often resulting in
prolonged search times. Approximate queries can enhance
efficiency by narrowing the search space by pruning and
applying thresholds; 2) Exact matching can return an
empty set, failing to meet user expectations. Approxi-
mate queries can return both exact and approximate an-
swers to enhance system generalization. The goal of this
paper is to solve an approximate KG query problem: Giv-
en a query graph, find k exact or approximate matches in
the KG and return the entities that users want.

Historically, there have been two main methods for KG
queries: RDF/SPARQL-based modes'”™ and subgraph

0-11 . . .
Uo7 - RDF is an information resource model

isomorphism
that uses triples to describe items and their relations.
SPARQL is a standard language for RDF queries, which
has attracted significant attention for real-world applica-
tions. Nevertheless,
graph schemas, and RDF queries do not support approxi-
mate querying. Those disadvantages cause poor generali-
zation and unbalanced overload on large-scale KGs. Sub-
graph isomorphism focuses on pruning to narrow the
search space, but it remains an NP-complete problem, re-
quiring substantial hardware and distributed calculation for
large-scale graphs. Both methods respond by indices on
graph structures and self-defined similarity measures for
approximate queries, presenting clear challenges in en-
hancing query and index efficiency. Approximate sub-
graph matching benefits users as exact subgraph isomor-
phism is too restrictive to capture user needs'” ™"

users need to be familiar with the

. Given
that embedding provides a vectorization property for KG
nodes and allows for a flexible design of score functions
in queries, we propose a deep learning-based query model
utilizing pre-existing embedding.

The contributions of this paper are listed in the follow-
ing: First, we formalize query graphs and extract three
limitations for approximate KG queries. Second, levera-
ging the powerful strength of the deep learning tech-
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niques

and loss function for selecting k approximate query re-
sults. This model can return both exact results and ap-
proximate results, ensuring that exact results are ranked
higher than most approximate results within the top k re-
turned results. Finally, we conduct experiments on real-
world KGs with different densities. Experimental results
demonstrate that our system outperforms other methods in
terms of effectiveness and efficiency.

, we design a deep neural network ( DNN)

1 Preliminary

Definition 1 (knowledge and query graphs) Given a
knowledge graph G(V, E, T); V denotes the set of nodes
representing entities; E denotes the set of edges; T is a
function for mapping entities to their types. T(v) € A is
the type of node v, where ve V and A is the infinite al-
phabet for all node types. Given a query graph G,(V,,
E,,T), V, denotes the set of nodes in G, while E, de-
notes the set of edges in G,,.

In a query graph, each node may contain varying a-
mounts of information. Some nodes explicitly indicate the
entities they represent, while others only specify their
types. Users are primarily interested in matching results
for specific subsets of nodes rather than all unmatched
nodes. Based on these distinctions, nodes in the query
graph are categorized into the following three types: 1)
Confirmed nodes C,. The nodes correspond to keywords
entered by users and have clear corresponding entities in
the KG; thatis, Yce Cy, ceV. 2) Result nodes R,.
Unknown nodes in G, whose matching entities meet user
requirements. Typically, the type of these nodes is speci-
fied in the query graph, i.e., Vre R,, m(r) eV, and
T(m(r)) =T(r), where m( - ) is the matching function
for nodes in G,. In this paper, we assume that | R, | =
1 and R, is recorded as r, for simplification. We first dis-
cuss the case when |R, | =1. 3) Other nodes O,. The
nodes in G, are neither confirmed nodes nor result nodes.
They lie on the paths between C, and R, or are neighbors
of these nodes.

Classifying nodes in this manner and subsequently ap-
plying different levels of approximation to different nodes
offer several advantages. First, it prevents over-approxi-
mation of crucial result nodes when generating candidate
entities in approximate queries, ensuring that the returned
results meet user requirements.
fuzzier matching on less critical nodes, reducing compu-
tational time spent on searching exact matches and impro-
ving query efficiency.

The purpose of this study is to execute approximate KG
queries with better performance and higher efficiency.
Users primarily seek the result node r,. We define a
function ¢ to quantify the approximation between a re-
turned entity v and r,. Consequently, we articulate the
problem as follows: Given a query graph G,(V,, E,, T),

Second, it allows for

the approximate query problem aims to find the k entities
with the highest i/ values relative to the result node r, and
return them, i.e., V, = argmax V= k,ve W(v,G,),
where V_is the set of entities representing the output of
the approximate query. In the context of the approximate
query problem, ¢ should consider the following condi-
tions: 1) the returned entity v should have the same type
as ry, i.e., T(v) =T(ry); 2) the distance between v
and the set C, should be approximately equal to the dis-
tance between o and CQ; 3) for every other node o €
O,,
result node, or lie on the path from a confirmed node to a
result node.

Condition 1 is an inherent requirement that must be
met. Condition 2 stems from the characteristic that the
query graph is typically smaller and more connected com-
pared to the whole KG. In this case, C, is always con-
nected to To and relatively close in distance. Therefore,
we can use the distance between C, and r, as a measure

o should either be adjacent to a confirmed node or

of approximation. To allow some flexibility, we intro-
duce a parameter € to relax the condition. Condition 3
imposes further constraints on the query results based on
O, In general, 0, is not as crucial as C, and ro- 04
usually consists of neighbors of C, and r,, or nodes in the
paths connecting them. Nodes that do not meet these cri-
teria provide minimal constraints on the query results.
Moreover, owing to the small size of G,, it is unlikely to
encounter such cases. Therefore,
nodes that have minimal constraints on the query results
in Condition 3 for efficiency.

Based on these conditions, it is essential to apply var-
ying approximation metrics to different node categories.
However, quantifying the approximation and designing an
approximate query function pose challenges. KG embed-
ding can represent nodes or edges as low-dimensional
vectors, effectively retaining the graph structure and se-

we do not consider

mantic information, and is often used to measure similari-
ty. Therefore, embedding can be considered for measur-
ing query approximation. This paper seeks to utilize em-
bedding to measure approximation. We define the embed-
ding symbol as f, a vector with the dimension of z for
low-dimensional representation.

2 Methodology
2.1 Query-based embedding

In this section, we discuss the process of generating
embeddings suitable for approximate querying. Since the
node types of both the result node and other nodes need to
be considered during approximate queries, we not only
embed the nodes in G but also their types. The embed-
ding symbols for the nodes and types are denoted as f and
f.» respectively. For each node v in KG G, f"is a vector
of dimension z denoting the embedding of node v. Simi-
larly, for each type in G, f!is a vector of dimension z
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denoting the embedding of type A.

Based on the three conditions extracted from the query
graph, type, connectivity, and distance, these compo-
nents should be considered in the embedding process.
Given that KGs are typically sparse graphs, the connec-
tivity between nodes is enough for querying purposes.
Therefore, we use the Euclidean distance between embed-
dings to measure both connectivity and distance. Accord-
ing to Condition 2, for v,, v,eV, the smaller the distance
between v, and v,, the smaller [|f"-f"|, should be.
Based on this property, we can use any graph embedding
method that focuses on the connections between nodes. In
this paper, we choose DeepWalk, the most commonly
used and efficient embedding method. Existing KG em-
bedding methods often require extensive training, which
can be time-consuming and demanding on hardware re-
sources. Moreover, when nodes and edges within the KG
dynamically change, the embeddings must be retrained,
posing a significant hardware challenge. Additionally,
some KGs consist of encrypted data where nodes are re-
presented by regular IDs rather than semantic entities. In

such scenarios, DeepWalk is a suitable solution as it ful-
fills the requirements of our query model by serving as a
time-efficient and convenient embedding method. It does
not rely on expensive hardware or the inclusion of seman-
tic entities, making it a practical choice. It is important
to avoid selecting embedding methods specifically de-
signed for heterogeneous graphs that consider node types.
Instead, we embed the types in the KG separately. This
is because when performing approximate queries, some
types may require an exact match, and using embeddings
designed for heterogeneous graphs can easily lead to type-
matching errors. Instead, we construct a weighted graph
specifically for types. In this graph, the types are treated
as nodes, and the edge weights are proportional to the
number of connecting edges between the entities corre-
sponding to the types in G. We also choose DeepWalk
for implementing type embedding, where the walking
probabilities are proportional to the weights of the edges
in the type graph.

2.2 Embedding-based approximate query model

(EAQM)

In this section, we introduce a deep neural network
model to return k best results from candidate generation
and the DNN model. We first generate a candidate set by
calculating the Euclidean distance between the embed-
dings of nodes with type T(r,) and confirmed nodes.

To address Condition 2, we have developed a DNN-
based approximate query model. This model constructs a
neural network that takes the embedding vectors of two
nodes as input and outputs a vector @, where the dimen-
sion of vector @ is 2z, and z is the dimension of the em-
beddings f* and f* for node v and type A, respectively.

We posit that embedding vectors in high-dimensional
space demonstrate an ellipsoidal shape. Fig. 1 (a) de-
picts an example of the relationship between embedding
vectors in high-dimensional space, showcasing entities
connected to v enclosed by different elliptical curves.
This example, relying on DBLP, shows node v represen-
ting the conference “AAAI. ” The triangular nodes denote
three papers which published at “AAAI, ” and the circular
nodes denote the authors of those papers. The curve equa-
tion is represented by S. Nodes at a distance of one hop
from entity v are enclosed by curve §,, while nodes at a
distance of two hops are situated between curves S, and
S,. Similarly, it can be inferred that node embedding at a
distance of n hops from v should lie between curves S, _,
and S,. Hence, we propose the following idea: if we can
determine the equation for S, we can use the embedding
to estimate the number of hops between two nodes. Fur-
thermore, since the embedding in space expands outward
in a certain pattern as the number of hops increases, differ-
ent curves S, share the same eccentricity. Given a chosen
node v, we establish the equation for curve S, as follows:

S (x,v) = n%(x SIS S8
(1)

where vector x is the input variable with a dimension of
2z, and the symbol A’ represents the type of node v. Vec-
tor [f" f] is formed by concatenating the node embed-
ding and type embedding of entity v into a vector with a
dimension of 2z. Including type embedding is necessary
as the distance between entities often depends on their

/\ Nodes with one hop away from v

~

(O Nodes with two hop away from v

(a)
S S S S

Concat

Training

(b)
Embedding-based approximate query model. (a) Em-
beddings in high-dimensional space; (b) EAQM structure

Fig. 1
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types. For example, in DBLP, the distance between an
“Author” and a “Conference” is at least two hops.

Based on Eq. (1), if we set x = [f* ff”] , We can es-
timate the number of hops between entities # and v with
given 0. Therefore, we design a DNN to generate 8. As
illustrated in Fig. 1 (b), the training set will comprise
randomly selected entity pairs (v, v;). The input to the
DNN will be [f* f* f" f'1, i.e., the concatenated
vectors of the entities. The output will be a vector 6.
Subsequently, we devise the loss function as follows:

L(v;,v) =L, (v,,v;) +L,(v;,v)) (2)
L(v,v) =ReLU( =S,_ ([f" f'l.v)) (3)
Ly(v,v) =ReLU(S,([f" fi1.v)) (4)

where S, | and S, represent the (n —1)-th and the n-th el-
lipsoidal curves enclosing node v;, respectively. As men-
tioned earlier, for a node v, at a distance of n hops from
v;, its embedding (represented as f™) should lie between
curves S, , and S,. This means that f" should be outside
the curve S, _, and inside the curve S,. This condition can
be expressed as S, , >0 and S, <0, resulting in the loss
Li(v,v,) =L, (v,v;) =0. If L,(v;, v,) >0, it indicates
that f" is inside the curve § while L,(v,, v,) >0 indi-
cates that f" is outside the curve S,. Both cases signify
that the trained curve fails to accurately identify the dis-
tance between v, and v;, requiring further training. It is

n-12

important to note that there is a negative sign before S, |
in Eq. (3). This negative sign ensures that the loss needs
to be minimized, but the position of f” with respect to
S, , and S, is opposite, i.e., f” should be outside S, _,
and inside S,. After obtaining @ through training, we can

design ¢ as (v, G,) = Z

ceCypveV
nodes with the k-th maximum ¢ score.
It is not necessary to design an additional model to lim-

— L(c,v) and return the

it the type of other nodes in Condition 3. In dense
graphs, the number of nodes and edges is greater than the
number of node types, which causes a large number of
meta-paths within the graph structure. For example, in
DBLP, the type of nodes that are two hops between
“Conference” and “Author” can only be “Paper.” In
sparse graphs, which have a low density of connections,
many node pairs have only one path between them, or
nodes have only one neighbor. When the distance is con-
firmed, the path or neighbor is unique, and the corre-
sponding other nodes are easily matched. Therefore, an
approximate result can be searched on Condition 2 with-
out restricting the type of other nodes.

2.3 Optimization
2.3.1 Negative sampling

In a KG with high density and complex relations, it is
essential to set appropriate training data. For instance,
the loss with n =2 and loss with n =6 may slightly differ

when the graph is connected, and its diameter is 7. This
can lead to poor performance because a large number of
samples could be trained in the range of S,. Therefore,
negative sampling is indispensable to identify between
closer and further nodes as they are always connected.
We propose setting n as a value greater than the diameter
of the graph when n=n,,, where n,, is a threshold.
2.3.2 Multi-Node Query

The above model is built based on the assumption that
\RQ | =1. However, it becomes inefficient to utilize
EAQM on each r, and enumerate different combinations
of re R, when |R, | >1. As a result, we use a greedy
algorithm to combine different r € R, for discovering k re-
sults.

3 Experiments

3.1 Settings

We use two real-world KGs. DBLP"® is a bibliograph-
ic KG, while Flight-USA-Airports is a cryptographic
graph''.
different densities, we extract a part of the edges, deno-
ted as FUA-S. Table 1 lists the statistics of the two data-
sets, where density & is defined as 6=2 |E|/ | V|.

To compare the performance of datasets with

Table 1 Dataset statistics

Dataset ‘ V‘ ‘E ‘ ‘A ‘ )
DBLP 37 791 170 794 4 9.038 9
FUA-S 1 190 2 358 4 3.963 0

Query graphs are randomly extracted from the main
graphs. We assess the effectiveness of EAQM by manual-
ly evaluating the approximate query results using the que-
ries listed in Table 2, containing chain-shaped and star-
shaped queries. To evaluate response times, we randomly

Table 2 Queries in experiments

Query Dataset Shape Queries

Find an authorwho published a paper in coopera-
Q1 DBLP Chain tion with Thomas P. Minka, and one of his pa-
pers contains the term “expectation. ”

. Find a termthat appeared with the terms “piazza”
Q2 DBLP Chain . .

and “are” in two papers, respectively.

Query an authorwho published two papers with
Q3 DBLP Star Nirmalie Wiratunga and Stewart Massie, respec-
tively, and published a paper about “folding. ”
Find an entity with type “3”that is two hops away
from entities “12134” and “13930,” and the
types of the middle nodes on the two paths are

both “3.”

Q4 FUA-S Chain

Query an entity with type “2,” that is two hops
away from entities “14273” and “14119,” and
the types of the middle nodes on two paths are
both “2.”

Q5 FUA-S Chain

Find an entity with type “1”that is two hops away
the entity “ 12822,” “13434,” and
“14627.” The types of middle nodes on the three
paths are “1,” “I,” and “0,” respectively.

from
Q6 FUA-S Star
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select 1 000 subgraphs that have the same structure as the
queries in Table 2 from each KG. We compare our ap-
proach with several baseline methods, including Path-
Sim, Nema™', VF2"" | SGQ, and VEQ"™'. All experi-
ments are conducted using Python 3.7.

3.2 Evaluating effectiveness

We implement experiments for testing the effectiveness
of EAQM. The precision of exact and approximate que-
ries is plotted for different datasets with k=1, 5, 10, 30

in Fig. 2. Figs. 2 (a) and (b) depict the precision of ex-
act queries and approximate queries performed by EAQM
on the DBLP dataset. This precision represents the rate of
results that exactly match the query graph and approxi-
mately match the query graph in the returned results. Ad-
ditionally, Figs. 2 (c) and (d) showcase the precision of
exact queries and approximate queries by EAQM on the
FUA-S dataset. The approximate query results (k =10)
containing precision (7r) and recall (p) are shown in Ta-
ble 3.

100 100
80 80
® I
= 60 = 60
2 2
2 40 2 40
20 20
0 0
(b)
100 100
80 80
® ®
= 60 s 60
< k=t
2 40 2 40
& a
20 20
0 0
Ql Q2 Q3 Ql Q2 Q3
(¢) (d
Fig.2  Query effectiveness. (a) DBLP exact query; (b) DBLP approximate query; (c) FUA-S exact query; (d) FUA-S approximate query
Table 3 Query effectiveness on DBLP and FUA-S
1 2 3 S5 6
Method Q Q Q Q4 Q Q
T p T p T p T p T p T p
PathSim 0.80 0.03 0.10 0.91
Nema 1.00 0.29 1.00 0.03 0.10 1.00 0.00 0.00 0.10 0.91 0.00 0.00
VE2 0.30 0.09 <1.00 =0.03 =<=0.10 =1.00 0.10 0.33 0.10 0.91 0.10 1.00
SGQ 0.30 0.09 <0.20 =0.01 =0.10 =1.00 0.10 0.33 0.20 0.18 0.10 1.00
VEQ 0.30 0.09 1.00 0.03 0.10 1.00 0.10 0.33 0.10 0.91 0.10 1.00
EAQM 0.70 0.20 1.00 0.03 0.10 1.00 0.20 0.67 0.80 0.73 0.10 1.00

In Fig. 2, it is evident that precision declines as k in-
creases. This occurs because the number of correct an-
swers does not exceed k. This is a common phenomenon
given that there are often only one or two correct answers
in k results. The precision for chain-shaped queries is
higher than that of star-shaped queries because the number
of confirmed nodes in a star query strengthens the condi-
tions. For example, only one correct answer is returned
on k=1 for queries Q3 and Q6, reflecting a similar pat-
tern in Fig. 2. The FUA-S dataset reveals a lower preci-
sion owing its sparsity, which causes a lower number of

correct answers. As constraints are relaxed, the precision
of approximate queries tends to be higher than that of ex-
act queries. Table 3 shows that EAQM outperforms other
baselines on DBLP and FUA-S in most cases, demonstra-
ting its advantages on KGs with different densities. While
Nema has a slight advantage over EAQM in terms of pre-
cision on the DBLP dataset, it exhibits response times
that are significantly longer, by tens of times, than those
of EAQM during efficiency experiments. This makes
EAQM a more suitable method overall when both effec-
tiveness and efficiency are considered for approximate KG
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queries. It is important to note that PathSim and VEF2
have precision values less than 1, indicating lower accura-
cy. By contrast, the remaining baselines support approxi-
mate queries, resulting in higher precision values.

3.3 Evaluating efficiency

This experiment evaluates the efficiency of EAQM, as
shown in Fig. 3, where query graphs are randomly se-
lected to match the shapes of the query graphs listed in
Table 2. For instance, Ql-shaped query graphs have the

0.16
—&— QIl-shaped

—a— Q2-shaped
0.12 —eo— Q3-shaped

0.08

Time/s

0.04

(a)
Fig. 3

Tables 4 and 5 present the response time of different
methods. The response time of VF2 is not included be-
cause VF2 is unable to respond within a reasonable time
frame, often 10 d. These tables show that EAQM consist-
ently has the shortest response time among the tested
methods. For example, the response time of EAQM for
Q2-shaped queries at k =10 is 32.35% longer than at k =
1, indicating that the value of k is influential on EAQM
performance. Compared to Q5-shaped queries, the re-
sponse time for Q2-shaped queries increases by 75%

same structure as QI. It is evident that response time in-
creases with the value of k. The response time of EAQM
ranges from 0.04 to 0.12 s on DBLP and from 0. 004 to
0.08 s on FUA-S. Queries on DBLP consistently exhibit
longer response times owing to the larger dataset size and
density. Star-shaped queries, such as Q3-shaped queries
and Q6-shaped queries, take more time to compute dis-
tances because they involve more confirmed nodes. How-
ever, dataset size and density significantly impact effi-

ciency.
0.08
—&— Q4-shaped
—4&— Q5-shaped
0.06 —e— Q6-shaped
E
£ 0.04r
[
0.02F
00 10 20 30

(b)

Query time of approximate queries. (a) Query time on DBLP; (b) Query time on FUA-S

when k = 10, highlighting that the response time of
EAQM will increase on larger KGs. Regarding query
graph size, EAQM presents longer response times for
star-shaped queries. For instance, the response time for
Ql-shaped queries at k = 10 is 18. 56% longer than that
for Q3-shaped queries. This indicates that although
EAQM is affected by graph density, dataset size, and
query graph size, it outperforms other baselines in terms
of efficiency. EAQM can return query results in less than
0.10 s on DBLP and 0.03 s on FUA-S.

Table 4 Response time of DBLP approximate queries S
Method QI -shaped Q2-shaped Q3-shaped
k=1 k=5 k=10 k=1 k=5 k=10 k=1 k=5 k=10
PathSim 0.669 0.712 0.741
Nema 136.3 136.3 136.2 133.4 133.3 133.4 127.4 127.5 127.5
SGQ 10. 85 12.47 11.47 16.11 22.89 21.22 6.02 6.60 5.98
VEQ 860.0 881.6 862.6 730.0 786.0 744.5 988.1 983.8 988.8
EAQM 0.062 0.067 0.079 0.046 0.054 0.068 0.062 0.071 0.097
Table 5 Response time of FUA-S approximate queries S
Method Q4-shaped Q5-shaped Q6-shaped
k=1 k=5 k=10 k=1 k=5 k=10 k=1 k=5 k=10
PathSim 0.004 0.004 0.004
Nema 0.550 0.548 0.557 0.261 0.263 0.262 0.305 0.316 0.326
VE2 0.021 0.018 0.020 0.037 0.043 0.040 1.647 1.627 1.624
SGQ 0.213 0.211 0.215 0.047 0.049 0.049 0.143 0.130 0.131
VEQ 0.058 0.058 0.058 0.105 0.105 0.107 0.236 0.242 0.242
EAQM 0.006 0.015 0.019 0.005 0.013 0.017 0. 006 0.012 0.027
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4 Conclusions

1) In this paper, we propose EAQM, an embedding-
based framework designed to implement approximate que-
ries on KGs. We first decompose the query graph into
three query constraints to quantify the approximation of
EAQM then utilizes these constraints
within an embedding-based framework to implement the
approximate query. This model analyzes the embedding
distances in high-dimensional space and employs a loss
function in a DNN for training and scoring results.

different nodes.

2) Experimental results show that EAQM improves the
effectiveness of both dense and sparse graphs. Additional-
ly, EAQM returns query results in less than 0. 10 s for
DBLP and 0.03 s for FUA-S.

3) In the future we aim to enhance the compatibility of
embedding-based KG queries for more complex query
graphs.
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