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Plateau frequency exploration of longitudinal guided 
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Abstract：To tackle the issue of notch frequency and center 
frequency drift of the L（0，1） mode guided wave in ultra‑
sonic guided wave‑based stress monitoring of prestressed 
steel strands， a method using higher‑order mode plateau fre‑
quencies is adopted.  First， the correlation between group 
velocity peaks and phase velocities at these plateau frequen‑
cies is analyzed.  This analysis establishes a quantitative rela‑
tionship between phase velocity and stress in the steel 
strand， providing a theoretical foundation for stress monitor‑
ing.  Then the two‑dimensional Fourier transform is em‑
ployed to separate wave modes.  Dynamic programming 
techniques are applied in the frequency‑velocity domain to 
extract higher‑order modes.  By identifying the group veloc‑
ity peaks of these separated higher‑order modes， the plateau 
frequencies of guided waves are determined， enabling indi‑
rect measurement of stress in the steel strand.  To validate 
this method， finite element simulations are conducted under 
three scenarios.  Results show that the higher‑order modes 
of transient signals from three different positions can be ac‑
curately extracted， leading to successful cable stress moni‑
toring.  This approach effectively circumvents the issue of 
guided wave frequency drift and improves stress monitoring 
accuracy.  Consequently， it significantly improves the appli‑
cation of ultrasonic guided wave technology in structural 
health monitoring.
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Prestressed steel strands are vital components in sus‑
pension bridges and cable‑stayed bridges， signifi‑

cantly affecting their durability， safety， and overall 
load‑bearing capacity［1‑2］.  The advancement of ultrasonic 
guided wave technology has enhanced its use in defect 
detection and stress monitoring of pipelines and various 

structural elements［3‑4］.  However， the complex interac‑
tion between wires complicates the propagation mecha‑
nism of these waves in steel strands.  Consequently， in‑
vestigating the propagation of ultrasonic guided waves 
for stress monitoring of steel cables is crucial.  In practi‑
cal engineering， especially in low‑frequency bands， the 
longitudinal L（0，1） mode is preferred owing to its faster 
guided wave velocity compared to other modes at the 
same frequency.  The “ L” in L（0，1） stands for “ Longitu‑
dinal，” indicating that the primary wave motion aligns 
with the wave propagation direction.  Chen et al. ［5］ first 
established the relationship between stress and group ve‑
locity using the L（0，1） mode， marking a pioneering ef‑
fort in this approach.  To effectively measure the tensile 
force in strands using guided waves， it is necessary to 
identify appropriate acoustic characteristic parameters 
that are highly sensitive to tensile force.

Although a large number of studies confirm the effec‑
tiveness of the L（0，1） mode for stress measurement in 
steel strands， there are few studies on the higher‑order 
modes， specifically L（0， n） when n > 5.  These modes 
hold the potential for detecting damage in the steel 
strand［6‑7］.  Studies have shown that within a certain fre‑
quency range， higher‑order mode shapes are concen‑
trated in the rod center［8］， leading to reduced energy leak‑
age and increasingly comparable phase velocity varia‑
tions.  This frequency range is suitable for monitoring the 
stress levels in the steel strand［9］.

The wave propagation properties in the frequency‑ 
wavenumber （f‑k） domain highly depend on the wave fre‑
quency component and velocity.  By recording time‑do‑
main signals at different propagation distances and apply‑
ing the two‑dimensional Fourier transform （2D‑FFT）［10］， 
it is possible to clearly distinguish each mode from the oth‑
ers within the f‑k domain.  Draudvilienė et al. ［11］ em‑
ployed the 2D‑FFT technique to identify spectral ampli‑
tude peaks at designated frequencies， demonstrating its ef‑
fectiveness in detecting Lamb wave spectral peaks on alu‑
minum plates through mathematical analysis and experi‑
mental validation.  Michaels et al. ［12］ used f‑k domain 
analysis to enhance acoustic field images for damage de‑
tection， efficiently separating time‑domain waveforms by 
filtering out source wave signals to improve the visual 
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clarity of defect scattering signals.
This study investigates the propagation characteristics 

of ultrasonic guided waves in isotropic circular rods un‑
der stress， focusing on the relationship between stress 
and group velocity curve peaks， particularly at higher‑or‑
der mode frequencies， where phase velocity changes lin‑
early with stress variations in steel strands.  A method for 
monitoring stress in steel strands based on plateau fre‑
quencies is adopted.  A numerical model is used to ana‑
lyze guided wave propagation in multi‑wire helical struc‑
tures of tensioned steel strands.  This method utilizes 
2D‑FFT to examine dispersion characteristics and applies 
ridge extraction techniques to filter excited multi‑mode 
signals.  It verifies the behavior of guided waves in 
stressed steel structures and their relationship with cable 
stress while addressing the effects of notch frequency and 
center frequency drift.  The results demonstrate potential 
applications in structural health monitoring.
1　Propagation Characteristics of Guided Wave 

in Prestressed Waveguide

The study of acoustoelastic effects typically assumes 
that the waveguide medium material is hyperelastic， and 
it contains strain energy in the waveguide medium when 
subjected to a load.  The strain energy function U ( E ) of 
a superelastic body can be approximated as follows：

U ( E ) = 1
2！ cαβγδEαβEγδ + 1

3！ cαβγδξηEαβEγδEξη + ⋯
（1）

where E is the Lagrangian strain tensor；cαβγδ represents 
the second‑order elastic parameters of the material；cαβγδξη denotes the third‑order elastic parameters of the material； 
and subscripts α，β，γ，δ，ξ，η indicate the coordinate direc‑
tion in the reference configuration of the material.

Three deformation states of an object need to be con‑
sidered when examining acoustic elasticity theoreti‑
cally.  The first state is the undeformed state or natural 
state， where there is no stress or strain.  The second 
state is the initial state or predeformed state， where the 
object has already been subjected to deformation or pre‑
stressing.  The third state is the final state or the state of 
ultrasonic guided wave detection when the object is pre‑
deformed based on superimposition of acoustic wavelet 
perturbations， which causes further deformation of the 
object.  The position vectors of the above three states 
are denoted as ζ， X， and x.  For simplicity， these vec‑
tors are expressed through their components ζα(α =
1，2，3)， and xj( j = 1，2，3)， respectively.  The relation‑
ship between these vectors and their components is the 
following［13‑15］：

XJ = XJ ( ζ ) = XJ ( ζ1，ζ2，ζ3 )        J = 1，2，3 （2）

xj = xj ( X，t ) = xj ( X1，X2，X3，t ) =
xj ( ζ1，ζ2，ζ3，t )        j = 1，2，3 （3）

When the natural state is transitioned to the initial 
state， the deformation is minor and static.  The corre‑
sponding displacement of the mass point is represented 
by the vector uin； ufi denotes the total displacement of the 
object in the final state； superscripts “ in” and “ fi” indi‑
cate the initial and final states corresponding to the strain 
tensor.  The displacement from the natural state to the fi‑
nal state is represented by the vector u.  The relationship 
between these displacements can be expressed as fol‑
lows：

X = ζ + uin （4）
x = ζ + ufi = ζ + uin + u （5）

The displacement increment caused by small perturba‑
tions of acoustic waves superimposed on the object can 
be derived from the vector arithmetic relations：

u = ufi - uin （6）
The Lagrangian strain tensor for the initial state E in

αβ and final state E fi
αβ represented in natural coordinates are 

as follows［16］：

E in
αβ = 1

2 ( ∂u in
α∂ζβ + ∂u in

β∂ζα + ∂u in
λ∂ζα

∂u in
λ∂ζβ ) （7）

E fi
αβ = 1

2 ( ∂ufi
α∂ζβ + ∂ufi

β∂ζα + ∂ufi
λ∂ζα

∂ufi
λ∂ζβ ) （8）

where uα， uβ， and uλ in the initial and final states repre‑
sent the natural coordinate components of u； subscript λ 
corresponds to subscripts α，β defined in Eq.  （1）， 
namely the direction of the coordinate.  Assuming that 
the superimposed dynamic perturbations are small：

 uα ≪  u in
α ，   E fi

αβ - E in
αβ ≪  E in

αβ （9）
Then， the strain tensor from the initial state to the final 

state can be approximated as
Eαβ = E fi

αβ - E in
αβ = 1

2 ( ∂uα∂ζβ + ∂uβ∂ζα + ∂u in
λ∂ζα

∂uλ∂ζβ + ∂u in
λ∂ζβ

∂uλ∂ζα )
（10）

In the initial state， the stress at a point can be expressed 
using the Cauchy stress component， denoted as t in

JK， 
where subscripts J and K indicate the stress component in 
the J direction acting on the face in the K direction in the 
current configuration.  The Piola‑Kirchhoff stress， de‑
fined in natural coordinates， is expressed as T in

αβ.  The re‑
lationship between the two tensors is as follows：

t in
JK = 1

J in
∂XK∂ζβ

∂XJ∂ζα T in
αβ （11）

According to Eq.  （4）：

∂XK∂ζβ = δKγ( δγβ + ∂u in
λ∂ζβ ) （12）
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where J in = |
|
||||
∂X
∂ζ

|
|
|||| indicates the determinant of the matrix 

( J，α = 1，2，3)； δKγ and δγβ are Kronecker notations.
For hyperelastic bodies， the relationship between the 

Biola‑Kirchhoff stress Tαβ and the strain potential energy 
function U（E） is as follows：

Tαβ = ∂U
∂Eαβ

（13）
The acoustoelastic equation for a solid medium with 

density ρo in the natural coordinate system is given by
∂

∂ζβ (T in
αβ

∂uα∂ζλ + Γαβγδ ∂uγ∂ζδ ) = ρo ∂2uα
∂t2 （14）

Γαβγδ = cαβγδ + cαβλδ
∂u in
γ∂ζλ + cλβγδ

∂u in
α∂ζλ + cαβγδξηe

in
ξη  （15）

The acoustoelastic equation in the initial coordinate 
system can be expressed as follows：

∂
∂XJ

é
ë
êêêê( δIKt in

JL + CIJKL ) ∂uK∂XL

ù
û
úúúú = ρin ∂2uI

∂t2 （16）

CIJKL = cIJKL(1 - e in
NN ) + cIJKLMNe in

MN + cMJKL
∂u in

I∂XM
+

cIMKL
∂u in

J∂XM
+ cIJML

∂u in
K∂XM

+ cIJKM
∂u in

L∂XM
（17）

where eMN represents a small strain； eNN = e11 + e22 + e33； 
the value of CIJKL depends on the material properties and 
the initial displacement field， known as equivalent stiff‑
ness， where subscripts I， J， K， L， M and N indicate the 
direction of the coordinate in the initial configuration.

Based on the above theory， the body wave velocity 
equation in the initial coordinate system can be expressed 
as follows［17］.

The longitudinal wave propagating along the stress di‑
rection is expressed as follows：
cσL =

λ + 2μ
ρ + σ

3ρK0
é
ë
êêêê

ù
û
úúúú

λ + μ
μ ( )4λ + 10μ + 4m + λ + 2l

（18）
and the longitudinal wave propagating perpendicular to 
the direction of stress：

cσT = λ + 2μ
ρ + σ

3ρK0
é
ë
êêêê

ù
û
úúúú2l - 2λ

μ (λ + 2μ + m )   （19）
where σ is the axial stress， the bulk modulus K0 = λ +2
3 μ； λ and μ are the Lame constants； l， m and n denote 
the third‑order elastic constant.
2　Steel Strand Stress Monitoring Method Based 

on Plateau Frequency
The stable stress dependence near their peak group ve‑

locity offers a new approach for stress monitoring in the 
steel strand by utilizing higher‑order modes.  In addition， 

using the linear stress dependence predicted by the rod 
theory， the influence of stress on the phase velocity of 
the guided wave mode in the steel strand can be predicted 
using acoustic elasticity theory.

As shown in Fig. 1， the dispersion curves for a circular 
rod with a diameter of 5 mm are labeled with peak group 
velocity and plateau phase velocity of each mode， and 
each peak velocity corresponds to a specific plateau fre‑
quency.  By determining the plateau frequency from the 
peak group velocity， the plateau phase velocity at that 
frequency can then be identified.  However， high conver‑
gence is only observed in the high‑mode plateau phase 
velocity region.  By separating the single mode of ultra‑
sonic guided waves， the group velocity and correspond‑
ing frequency of each mode can be obtained.

The phase velocity of the steel strands in the stress‑free 
state is c0pv.  When the axial stress changes， the phase ve‑
locity becomes c0pv + Δcpv.  A linear relationship exists be‑
tween the change in stress and the change in phase veloc‑
ity as follows［18］：

Δcpv = κpvΔσ （20）
where κpv is an acoustoelastic constant coefficient that 
can be calculated according to the following equation：

Fig. 1　 Theoretical dispersion curve of the circular rod.  （a） 
Group velocity curve； （b） Phase velocity curve
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κpv ≈ κ l = ( )λ + 2l μ + ( )2λ + 6μ + 4m ( )λ + μ
2μ ( )3λ + 2μ ρ ( )λ + 2μ

  （21）

where κ l is the acoustoelastic constant， and the physical 
meaning of the other parameters can be referred to in Sec‑
tion 1， and their values can be determined by the mate‑
rial properties.  For materials with established acoustic 
parameters， the longitudinal and transverse ultrasonic 
waves under different stress states can be calculated us‑
ing numerical algorithms.  The acoustic and mechanical 
parameters for steel， as provided by Chen et al.［19］， can 
be used in this context.  Once the acoustoelastic constant 
is determined， changes in stress Δσ can be derived from 
alterations in phase velocity Δcpv.  The phase velocity of 
a single mode can be calculated by measuring the wave‑
form phase time variation Δtp as follows：

Δcpv = - ( )c0pv
2

d Δtp （22）
where d is the stress propagation distance.  From Eqs.  
（20） and （21）， the following is obtained：

Δσ = - ( )c0pv
2

k ld
Δtp （23）

The phase velocity c0pv of the structure in the stress‑free 
state is equal to the longitudinal wave velocity c0l .  There‑
fore， the above equation can be rewritten as follows：

Δσ = - ( )c0l 2

k ld
Δtp （24）

3　Excitation and Separation of Multimodes of 
Steel Strand

The finite element model of the steel strand is used to 
obtain the required time‑domain signals.  Following this， 
the mode extraction and separation of the higher‑order 
longitudinal mode are carried out.  To accurately monitor 
the stress in the prestressed steel strand， the modelling 
and parameter selection should be based on satisfying the 
acoustoelastic effect.
3. 1　Finite element model

The steel strands consist of seven wires， with the core 
wire surrounded by six others.  This study uses the 
ABAQUS/Explicit software to simulate a finite element 
model of the steel strand with the length L of 480 mm， 
the nominal diameter D of 15. 7 mm and the pitch ρh of 
240 mm.

To ensure accurate spatial and temporal resolution in 
the simulation results， specific criteria for mesh size and 
time increments should be satisfied.  The frequency band 
selected for analysis is within the maximum frequency 
fmax= 4 MHz， aiming to minimize the effects of mode 
separation in higher frequency bands.  The maximum 

mesh length should meet the following requirements：
Lmax = λmin8 - 1 = cσT /fmax7 = 0. 115 mm （25）

where λmin denotes the shortest wavelength.  Therefore， 
the minimum axial element size of the steel strands is 0. 1 
mm， while the element type is defined as C3D8R 
（three‑dimensional stress 8‑node linear hexahedron ele‑
ment， simplified integral）.  The mesh results are illus‑
trated in Fig. 2.

The sensitivity of the guided wave to stress in finite 
element simulations of the steel strand under axial ten‑
sion is influenced by the duration of continuous excita‑
tion.  To address this， the simulation is divided into 
three stages： applying axial tension， activating the exci‑
tation source， and propagating the guided wave.  This 
method prevents the disruption of guided wave propaga‑
tion owing to instantaneous tension， allowing the wave 
to propagate after the strand stabilizes under axial 
force.  The analysis uses a fully automatic integration 
time step.

In scenarios where the steel strand is subjected to 
axial tension， finite slip surface contact simulates ex‑
trusion and sliding friction between the steel wires， 
while penalty contact ensures that different steel wire 
units do not penetrate each other.  The contact between 
normal steel wires is set as hard contact， while tangen‑
tial friction is modeled using the penalty friction for‑
mula， with a friction coefficient of 0. 6.  At one end of 
the model， all wires are fixed with no displacement 
and rotation， while the other end releases only axial 
displacement.  Initially， tension is applied at the end of 
releasing axial displacement to simulate axial tension， 
with a force of 1 116 MPa.  In the second step， guided 
wave propagation is simulated under stable axial force 
by applying a broadband concentrated Rick wave at the 
tensile end.  The time‑frequency domain curve of the 
excitation signal is shown in Fig. 3.  Its peak frequency 
is near 1. 4 MHz， covering a frequency range from 0 
to 4 MHz.

A signal acquisition point is set every 0. 1 mm along 
the axial direction of the center bar of the steel strands at 
the excitation end， resulting in a total of 2 400 points to 
form a space‑time matrix.  The axial acceleration time‑do‑

Fig. 2　Mesh division of the steel strand
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main signals from each node are extracted and analyzed 
using 2D‑FFT to derive the dispersion curve within the 
frequency range of excitation.  Fig. 4 depicts the normal‑
ized signal amplitude diagram of transient acceleration at 

three different positions within the core of the receiving 
steel strands.  This figure reveals that multiple mode su‑
perpositions make it difficult to identify modes based 
solely on time‑domain signals.
3. 2　Acquisition of platform frequency

The 2D‑FFT is applied to the space‑time matrix de‑
rived from axial transient acceleration signals along the 
center bar of the steel strands， resulting in the f‑k curve 
depicted in Fig. 5.  When axial force is exerted， the sur‑
rounding wire rope exerts a torsional force on the central 
rod， altering guided wave propagation， as shown by the 
applied load force.  Analysis of the figure reveals that the 
longitudinal mode predominantly carries energy， display‑
ing multiple modes simultaneously， each exhibiting dis‑
tinct dispersion characteristics compared to single‑line 
waveguides.

The f‑k domain dispersion curves of the steel strands 
are extracted from the ridges using dynamic program‑
ming［20］， as shown in Fig. 6（a）.  As evident in the fig‑
ure， the first four modes of energy ridges are identified， 
but owing to spectral noise， higher‑order mode ridges are 
less clear.  However， the overall result is not affected by 
the change of the position of a small part of the ridge 
line.  According to its position， f‑k signal points can be 
recorded in a certain area around the ridge line.  
Multi‑mode f‑k domains are separated based on ridge ex‑
traction results， as shown in Figs.  6（b）‑（e）， success‑
fully isolating the first four modes.  The separated single 
mode stands out visually， unaffected by the other 
modes， while the remaining modes appear brighter in the 
f‑k domain.

A particular mode can be isolated from the 
multi‑modal signal of the strand to determine the group 
velocity at a specific frequency.  By associating the peak 
group velocity with the phase velocity at the platform fre‑
quency， it is possible to infer the correlation between 
phase velocity change and stress within the strand.

Fig. 4　Normalized signal amplitude of the transient accelera⁃
tion signal at the position located a distance x l from the excita⁃
tion end.  （a） x l = 100 mm； （b） x l = 200 mm； （c） x l = 300 mm

Fig. 5　Frequency‑wavenumber curve corresponding to 60% of 
ultimate tensile strength

Fig. 3　 Ricker wavelet excitation signal.  （a） Time⁃domain 
waveform； （b） Spectrum waveform
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4　Conclusions

（1） The research established a quantitative relation‑
ship between phase velocity and stress in steel strands.  
By analyzing the correlation between group velocity 
peaks and phase velocities at plateau frequencies， a theo‑
retical basis for stress monitoring was provided.  Results 
show that， at higher‑order mode frequencies， there is a 
linear relationship between the phase velocity change and 
the stress change of the steel strand.
（2） A new method for separating guided wave modes 

was developed using 2D‑FFT to convert signals into the 
frequency‑wavenumber domain， coupled with dynamic 
programming to extract higher‑order modes.  This ap‑
proach successfully separated the first four modes （L（0，
1） to L（0，4）） from a complex multi‑mode signal.
（3） A novel stress monitoring approach was adopted 

using plateau frequencies of guided waves.  By associat‑
ing group velocity peaks to phase velocities at these pla‑
teau frequencies， the stress in steel strands can be indi‑
rectly measured.  This method effectively minimizes the 
influence of guided wave frequency drift and improves 
stress monitoring accuracy.
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钢绞线应力监测的纵向超声导波平台频率获取
张静 1， 李雪健 1， 李刚 1， 袁冶 2， 杨栋 3

（1.合肥工业大学土木工程学院，合肥 230009；2.香港大学土木工程学院，香港 999077；

3.广州大学工程抗震研究中心，广州 510006）
摘要： 通过研究超声导波在预应力钢绞线应力监测中遇到的 L（0，1）模态导波缺口频率及陷频中心漂移的

问题，提出一种基于高阶模态平台频率的应力监测方法。首先分析群速度峰值与平台频率处相速度的关联

特性，建立了相速度与钢绞线应力之间的定量关系，为应力监测提供理论依据；接着采用二维傅里叶变换对

导波模态进行分离，在频率-波速域应用动态规划技术提取高阶模态，通过分离后的高阶模态群速度峰值确

定导波平台频率，实现钢绞线应力间接测量；最后，基于有限元模型验证了 3 种不同工况下所提平台频率选

取方法的有效性。结果表明，利用 3个不同位置的瞬态信号均能从中准确提取高阶模态并实现应力监测，且

可有效避免导波频率漂移的影响，提高监测准确性，有助于增强超声导波技术在结构健康监测中的应用

效果。
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