
Journal of Southeast University (English Edition) Vol. 41, No. 1, pp. 91⁃100 Mar. 2025 ISSN 1003⁃7985

Novel two⁃stage preflow algorithm for solving the 
maximum flow problem in a network with circles
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（College of Economics and Management， Nanjing University of Aeronautics and Astronautics， Nanjing 211100， China）

Abstract：The presence of circles in the network maximum 
flow problem increases the complexity of the preflow algo⁃
rithm.  This study proposes a novel two⁃stage preflow algo⁃
rithm to address this issue.  First， this study proves that at 
least one zero⁃flow arc must be present when the flow of the 
network reaches its maximum value.  This result indicates 
that the maximum flow of the network will remain constant 
if a zero⁃flow arc within a circle is removed； therefore， the 
maximum flow of each network without circles can be calcu⁃
lated.  The first stage involves identifying the zero⁃flow arc 
in the circle when the network flow reaches its maximum.  
The second stage aims to remove the zero⁃flow arc identi⁃
fied and modified in the first stage， thereby producing a new 
network without circles.  The maximum flow of the original 
looped network can be obtained  by solving the maximum 
flow of the newly generated acyclic network.  Finally， an ex⁃
ample is provided to demonstrate the validity and feasibility 
of this algorithm.  This algorithm not only improves compu⁃
tational efficiency but also provides new perspectives and 
tools for solving similar network optimization problems.
Key words：network with circles； maximum flow； zero⁃
flow arc； two⁃stage preflow algorithm
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The maximum flow problem， a crucial issue in net⁃
work optimization， has a wide range of engineering 

and management applications［1］.  The goal of the maxi⁃
mum flow problem is to determine the maximum flow 
through a network while adhering to arc capacity and 
node equilibrium constraints.  This problem is a crucial 
aspect of network optimization theory and is widely ap⁃
plied to simulate real⁃life decision scenarios in some 
fields， such as transportation， biology， medicine， and 
economics［2⁃3］.  Mirzaei et al.［4］ explored the maximum 

flow network interdiction problem in uncertain environ⁃
ments under information asymmetry conditions.  Over 
half a century， the network maximum flow problem has 
led to the development of various algorithms［5⁃6］.  Meh⁃
ryar et al.［7］ built a network flow model to solve the reli⁃
ability allocation problem.  Shi et al.［8］ evaluated railway 
traffic based on the Decision Making Trial and Evalua⁃
tion Laboratory （DEMATEL）， analytic hierarchy pro⁃
cess （AHP）， and analytic network process （ANP） meth⁃
ods.  Alipour et al.［9］ proposed a new method for solving 
the maximum flow of a network and verified the effec⁃
tiveness of the model using instance space analysis.  
These algorithms are generally categorized into two 
types， namely feasible flow and preflow advancement al⁃
gorithms.  （1） The feasible flow algorithm was proposed 
by Ford and Fulkerson in 1956.  This algorithm deter⁃
mines whether the network has augmented chains and 
identifies these chains.  The core idea is to use the label⁃
ing algorithm to identify extensive chains in the net⁃
work［10］.  In 1989， Ahuja et al. ［11］ utilized the distance 
signature concept introduced by Goldberg and Tarjan to 
construct incremental tracks while retaining distance in⁃
formation from the previous construction through 
re⁃signatures.  Huang［12］ developed a recursive algorithm 
to generate all feasible flow vectors satisfying at least， 
with integer⁃type flow representing undivided demands.  
（2） Preflow advancement algorithms differ from feasible 
flow algorithms.  The preflow advancement algorithm fo⁃
cuses on the remaining network and works along the 
edges to facilitate maximum flow advancement until no 
further progress can be made.  In 1974， Karzanov［13］ 
treated the acyclic graph blocking flow as a separate prob⁃
lem and established the preflow concept to address it.  
Kara et al.［14］ introduced a shared⁃memory parallel 
push⁃tagging algorithm that improves the rate of graph 
coloring on sparse networks.  Deutsch et al. ［15］ devel⁃
oped MineFlow， an open⁃source C++ library offering ef⁃
ficient and flexible precedence schemes along with a sim⁃
plified pseudoflow⁃based solver.

Many scholars have approached the network maximum 
flow problem from the following perspectives：
（1） Linear programming algorithms.  The maximum 

flow problem is a specific case of linear programming 
problem.  Holzhauser et al.［16］ proposed a specialized net⁃
work simplex algorithm by extending the traditional mini⁃

Received 2024⁃08⁃02，Revised 2024⁃10⁃08.
Biography：Dang Yaoguo （1964— ）， male， doctor， professor， 
iamdangyg@163. com.
Foundation items：The National Natural Science Foundation of China 
（No. 72001107， 72271120）， the Fundamental Research Funds for the 
Central Universities （No.  NS2024047， NP2024106）， the China Post⁃
doctoral Science Foundation （No.  2020T130297， 2019M660119）.
Citation：DANG Yaoguo，HUANG Jinxin，DING Xiaoyu，et al. Novel 
two⁃stage preflow algorithm for solving the maximum flow problem in 
a network with circles［J］. Journal of Southeast University （English Edi⁃
tion），2025，41（1）：91⁃100. DOI：10. 3969/j. issn. 1003⁃7985. 2025.  
01. 012.



DANG Yaoguo， HUANG Jinxin， DING Xiaoyu， and WANG Junjie 

mum cost flow.  With advancements in computer technol⁃
ogy， several scholars have combined machine learning 
techniques and simplex methods to address the network 
maximum flow problem［17］.  The Weisfeiler⁃Lehman sim⁃
plex neural network is built based on a deep learning 
model with good network stability［18］.
（2） Minimum cutoff algorithms.  The minimum cutoff 

and maximum flow problems are paired problems， where 
the maximum flow in a network corresponds to the mini⁃
mum cutoff flow.  Apaolaza et al. ［19］ developed a 
method for the fast computation of minimum cut sets in 
large networks， known as gMCS.  However， these inter⁃
cept sets do not exist because of potential disconnections 
between points， which can reduce the efficiency of this 
algorithm.  In practice， first， all possible truncation sets 
in the original network graph are considered.  Then， the 
minimum of these sets is calculated.  Thus， Miraskar⁃
shahi et al. ［20］ developed a minimum coordination sup⁃
port method for the fast enumeration of minimum cut sets 
in metabolic networks.
（3） Fuzzy solution algorithms.  Mathew et al. ［21］ and 

Zhu et al. ［22］ proposed methods for solving directed 
fuzzy networks to obtain maximum flow.  Zhang et al.［23］ 
introduced a parallel maximum flow algorithm to address 
the high computational complexity associated with the 
maximum flow algorithm.
（4） Machine learning algorithms.  Bertsimas et al. ［24］ 

provided an overview of machine learning applications 
that can be used to address optimization problems.  Bay⁃
cik［25］ presented machine⁃learning⁃based approaches to 
address the maximum flow network interdiction problem 
and efficiently solve large⁃scale problems.  Zhang et 
al.［26］ identified coupled stations in a large⁃scale public 
transportation network based on the complex network 
theory and spatial information embedding.  Wang et 
al.［27］ used intelligent optimization algorithms to deter⁃
mine the process of factors affecting air quality in the 
Yangtze River Economic Belt.

The optimization of the maximum flow in a network is 
mainly achieved by fully exploiting the characteristics of 
the network.  A ring⁃free network is a special type of net⁃
work that can reduce the difficulty and time complexity of 
solving the maximum flow problem.  Simple algorithms 
for ringless networks are discussed in the studies of Wu et 
al.［28］ and Willson［29］， describing the feasible flow and 
preflow advancement algorithms， respectively.  In a ring⁃
less network， the absence of backward arcs indicates that 
reducing the flow on a particular arc does not need to be 
considered to increase the maximum flow of the network.

Overall， existing models for calculating the maximum 
flow in networks often overlook the impacts of circles on 
the network.  Two shortcomings must be addressed in ac⁃
cordance with the aforementioned achievements.  
（1） Circles in the network can increase the computa⁃

tional complexity of the maximum flow problem.  Sev⁃
eral studies are unable to handle such problems effec⁃
tively with their algorithms.  （2） Numerous existing stud⁃
ies propose models for calculating the maximum flow in 
a network without circles.  However， converting a net⁃
work with circles into a non⁃circle network is crucial.  
This study proposes a novel two⁃stage preflow algorithm 
to calculate the maximum flow of a network with circles.  
The proposed model can convert a network with circles 
into a non⁃circle network by determining the zero⁃flow 
arc in the circle when it reaches its maximum flow.  
Then， the maximum flow of the produced non⁃circle net⁃
work can be determined using matrix representations.

The inverse research idea is applied to analyze the state 
of each arc when the network reaches its maximum flow 
and addresses the aforementioned shortcomings.  First， 
when the network reaches its maximum flow， any circle 
in the network must contain at least one arc with a mini⁃
mum possible flow of 0.  Using this property， the circle 
of the original network can be broken to transform it into 
an acyclic network.  The preflow propulsion algorithm is 
applied to solve the maximum flow of the network after 
breaking the circle.  Then， this property is applied to 
break the original network and transform it into a 
loop⁃free network.  Finally， the zero⁃flow arcs identified 
within the circles are removed from the original network 
to ensure a loop⁃free network， and the maximum flow of 
the network is solved again.  This algorithm divides the 
solution process into two stages.  The first stage breaks 
the circles and identifies the zero⁃flow arcs.  The second 
stage removes the zero⁃flow arcs from the identified 
circles to produce the corresponding graph for a network 
without circles from the original network.
1　Theoretical Basis

1. 1　Basic concepts
In real life， the term “ flow” refers to the movement of 

matter between different systems.  Various systems ex⁃
hibit flow problems， such as the flow of vehicles in pub⁃
lic transportation systems， the flow of water in water sup⁃
ply systems， the flow of cash in financial systems， and 
the flow of people， information， and materials in mili⁃
tary systems.  A common feature of these systems is the 
presence of at least one point of departure and receipt， 
along with several intermediate points， collectively form⁃
ing a network of flows.

Some basic concepts， such as feasible flow， augmenta⁃
tion chain， intercept set， and intercept amount， are cru⁃
cial for understanding the maximum flow problems in net⁃
works.  These concepts are introduced in detail in the re⁃
lated literature and are not extensively covered in this pa⁃
per.  Several methods， such as the marker method， the 
shortest expansion path algorithm， the reservation ad⁃
vance method， and the highest marker reservation ad⁃

92



Novel two⁃stage preflow algorithm for solving the maximum flow problem in a network with circles

vance method， can solve the maximum flow problem in 
networks.  Among these methods， the marker method is 
the most widely used and easiest to understand.  The pres⁃
ent study uses the marker method to solve the maximum 
flow problem in networks.  The basic idea of the marker 
method is to incrementally identify the program flow that 
does not saturate， namely， the expansion chain （the flow 
on each line is less than the capacity， whereas the reverse 
flow is not 0）.  For the program flow， the flow is in⁃
creased to saturation， and the search for expansion chains 
is continued until none is detected.  The actual network 
flow （feasible flow） is the maximum flow in the network.

Definition 1 Given a directed network graph D =
(V，E )， V is one of the top assemblies of network D and 
E is the set of all edges of network D.  At a starting 
point， V is recorded as vs.  A receiving point， recorded 
as vt， is also detected.  The rest of the points are referred 
to as intermediate points.  For each arc eij ∈ E， the corre⁃
sponding value for cij (cij ≥ 0 ) ∈ C exists.  eij is called the 
capacity of the arc and is usually referred to as a capacity 
network with transceiver points， recorded as D =
(V，E，C )， which is a function on the set of arcs.  
F = { fij } records the actual flow rate of eij.

Definition 2 For a given network D = (V，E，C )， vs is the starting point， vt is the collection， and n is the num⁃
ber of intermediate points.  f is a feasible flow in the net⁃
work if it satisfies the capacity constraints and equilib⁃
rium conditions.
（1） Capacity constraints.  For each arc， eij ∈ E satis⁃

fies 0 ≤ fij ≤ cij.
（2） Equilibrium conditions.  For the intermediate 

points， a constant outflow equal to the inflow exists， in⁃
dicating that the following relation is detected for each in⁃
termediate point：

∑
j = 1

n

fij - ∑
j = 1

n

fji = 0 i = 1，2，⋯，n；i ≠ j （1）
The following equation is used for the sending and re⁃

ceiving points vs and vt：

∑
i = 1

n

fsi = ∑
j = 1

n

fjt = v ( f ) （2）
where v ( f ) is the network and i is the flow of viable 
streams.

The maximum flow problem involves finding the fea⁃
sible flow f.  The total traffic is maximized from the origi⁃
nating point to the receiving point of the network v ( f )， 
as follows：

max v ( f )
s. t.
0 ≤ fij ≤ cij，  eij ∈ E

∑
j = 1

n

fij - ∑
k = 1

n

fki =
ì

í

î

ïïïï

ïïïï

v ( f ) i = s
0 i = 1，2，⋯，n
-v ( f ) i = t

（3）

Definition 3 In the network， the arc fij = cij is called 
a saturated arc， the arc fij ≤ cij is called an unsaturated 
arc， the arc fij = 0 is called a zero⁃flow arc， and the arc 
fij > 0 is called a nonzero⁃flow arc.  If μ is a chain from 
starting point vs to receiving point vt and the direction of 
the chain from vs to vt can be defined， then the arc in the 
same direction as the chain is called the forward arc， re⁃
corded as e+

ij.  The arc in the opposite direction of the 
chain is called a backward arc， recorded as e-

ij.  A chain 
with only forward arcs is called a forward chain.

f is set as the feasible flow， and μ is the chain from vs to vt.  If μ satisfies the following conditions， then f is an 
extended chain of feasible flows：

On arc eij ∈ u+， if 0 ≤ fij ≤ cij， then every arc of e+
ij is 

an unsaturated arc.
On arc eij ∈ u-， if 0 ≤ fij ≤ cij， then every arc of e-

ij is a 
nonzero⁃flow arc.

Definition 4 D = (V，E，C ) is a directed network 
graph， and μ( i，i + 1，⋯，i + k，i ) is a directed chain that starts 
from vi， subsequently passes through points 
vi + 1，vi + 2，⋯，vi + k and returns to vi.  Such a chain is 
called a directed circle， recorded as k( i，i + 1，⋯，i + k，i ).

Definition 5 D = (V，E，C ) is a directed network 
graph， and k( i，i + 1，⋯，i + k，i ) is a directed circle that starts 
from vi and returns to vi.  When the network reaches its 
maximum flow， the flows in each arc of the circle are 
fi，i + 1，fi + 1，i + 2，⋯，fi + k - 1，i + k，fi + k，i.  Then， the smallest 
arc flow in the circle is denoted as fmin， where

fmin = minì
í
î

ïï
ïï

fj，j + 1        j = i，i + 1，⋯，i + k - 1
fj，i             j = k

Different states often exist simultaneously when the 
network reaches its maximum flow.  Suppose fj，j + 1 ( j =
i，i + 1，⋯，i + k ) is one of the flows of circle 
k( i，i + 1，⋯，i + k，i ) of the arc.  The states of the network under 
the network fj，j + 1 ( j = i，i + 1，⋯，i + k ) differ when the 
network reaches its maximum flow.  The smallest of all 
possible fj，j + 1 ( j = i，i + 1，⋯，i + k ) flows is referred to 
as the minimum possible flow （maximum lower bound 
flow）， regarded as min fj，j + 1.Fig. 1 shows two states when the same network 
reaches its maximum flow.  Based on Definition 5， 
k(1，2，3，1) is a circle of the network.  Thus， fmin =
min ( f12，f23，f31 ) = 0， and arc e31 is the minimum flow 
arc.  The minimum possible flows for all arcs in the circle 
are min f12 = 4， min f23 = 1， and min f31 = 0.
1. 2　Theorems and corollaries

Theorem 1 D = (V，E，C ) is a directed network 
graph， and k( i，i + 1，⋯，i + k，i ) is a directed circle that starts 
from point vi and returns to point vi.  The first number in 
parentheses is the capacity， and the second number is the 
flow.  The capacity of each arc is ci，i + 1， ci + 1，i + 2，⋯， 
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ci + k，i.  The minimum possible flows for each arc in the 
circle when the network reaches its maximum flow are 
min fi，i + 1， min fi + 1，i + 2， ⋯， min fi + k - 1，i + k， and min fi + k，i .  
The circle k( i，i + 1，⋯，i + k，i ) must be at least one arc with a 
minimum possible flow equal to 0.

Proof Fig. 2 illustrates the flow diagram of a circle 
within the network at maximum flow.  fi，i + 1 is the flow 
from point vi to point vi + 1； fsi is the total of the flows of 
all arcs， except for fi - 1，i flowing in the point vi； fit is the 
sum of all arcs， except for point fi，i + 1 flowing from 
point vi.

（1） If fmin = 0， then a zero⁃flow arc already exists in 
the circle at this time， and the minimum possible flow of 
an arc in the circle is 0.
（2） If fmin ≠ 0， then the arc with the flow rate fmin in 

the circle does not have the minimum possible flow rate.
For the circles shown in Fig. 2， the equilibrium equa⁃

tion for each point can be expressed as follows：
ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

fs，i + fi + k，i = fi，t + fi，i + 1                          m = 0
fs，i + m + fi + m - 1，i + m = fi + m，t + fi + m，i + m + 1
                                                                       m = 1，2，⋯，k - 1
fs，i + k + fi + k - 1，i + k = fi + k，t + fi + k，i       m = k

（4）
The two sides of Eq.  （1） are added separately to yield 

all points with balanced equations， as follows：
∑
m = 0

k

fs，i + m + fi + k，i + ∑
m = 1

k - 1
fi + m - 1，i + m + fi + k - 1，i + k =

∑
m = 0

k

fi + m，t + fi，i + 1 + ∑
m = 1

k - 1
fi + m，i + m + 1 + fi + k，i （5）

Simplifying Eq.  （5） yields the following expression：
∑
m = 0

k

fs，i + m = ∑
m = 0

k

fi + m，t （6）

The maximum flow that can impact the network is the 
sum of the flows from each point to the outside of the 
circle ∑

m = 0

k

fi + m，t.  Thus， the flow of all arcs in the circle 
can be simultaneously subtracted from fmin， which neither 
affects the equilibrium conditions nor changes the maxi⁃
mum flow of the network.  Therefore， the arc with flow 
rate fmin is not considered the minimum possible flow 
rate.  Given that the network is already at its maximum 
flow， no new incremental chains must appear when the 
traffic to all arcs in the circle is simultaneously subtracted 
from fmin.  All arcs flow in the circle minus fmin.  Thus， 
the maximum flow of the entire network remains un⁃
changed.  If a new incremental chain appears， then the 
original network has not reached its maximum flow， con⁃
tradicting the premise that the network has reached its 
maximum flow.  Therefore， at this time， the original 
flow rate fmin in the circle of this arc is considered the 
minimum possible flow rate， which is 0.  This finding 
proves the minimum possible flow rate.

Citation 1 As shown in Fig. 2， D = (V，E，C ) is a di⁃
rected network graph， k( i，i + 1，…，i + k，i ) is a directed net⁃
work that starts from vi and returns to vi， points vi and 
vi + 1 are any two points adjacent to each other in the 
circle， and ei，i + 1 includes arc links vi and vi + 1.  If the 
flow fi，i + 1 of arc ei，i + 1 is the minimum possible quantity 
min fi，i + 1， then this arc is removed from the network 
when the network reaches its maximum flow state.  The 
maximum flow reduction for the entire network min fi，i + 1 
and the zero⁃flow arc in the circle remain unchanged.

Proof Fig. 3 shows the two points vi，vi + 1 in the 
circle when the entire network reaches its maximum 
flow.  FiTI = fi + k，i + fsi is the sum of all arc flows into 
point vi.  fit is the sum of all remaining arc flows out of 
point vi excluding fi，i + 1.  fs，i + 1 is the sum of all remaining 
flows into the arc at point vi excluding fi，i + 1.  Fi + 1TO =
fi + 1，i + 2 + fi + 1，t is the sum of all flows out of point vi + 1.  
min fi，i + 1 is the minimum possible flow achieved by arc 
ei，i + 1 while guaranteeing the maximum flow in the net⁃
work.  Δfit and Δfs，i + 1 are the possible increase in the 
flows of fit and fs，i + 1， respectively.

fi，i + 1 is considered the smallest possible value of 

Fig. 1　Schematic of two important concepts

Fig. 2　Flow diagram of a circle within the network diagram

Fig. 3　State diagram of points vi and vi + 1 in the circle when 
the network diagram reaches its maximum flow
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min fi，i + 1； thus， Δfit = Δfs，i + 1 = 0.  If Δfit and Δfs，i + 1 are 
not 0， then fi，i + 1 must be reduced further to increase fit or fs，i + 1.
（1） If min fi，i + 1 = 0， then the zero⁃flow arc in that 

circle is arc ei，i + 1.  Removing this arc from the network 
does not affect the entire network.
（2） If min fi，i + 1 ≠ 0， then the arc ei，i + 1 is removed 

from the network.  FiTI and Fi + 1TO are reduced by 
min fi，i + 1， and fit，fs，i + 1 remains unchanged.  Given that 
Δfit = Δfs，i + 1 = 0， the new extended chain that is not cre⁃
ated by the removal of arc ei，i + 1 from the network does 
not cause an increase in flow on any other arc in the net⁃
work， and the maximum flow of the entire network is re⁃
duced by min fi，i + 1.  The zero⁃flow arc in the circle re⁃
mains unchanged.

Citation 2 D = (V，E，C ) is a directed network 
graph， and k( i，i + 1，…，i + k，i ) is a directed circle that starts 
from point vi and returns to point vi.  The network graph 
has multiple possible states when the network reaches its 
maximum flow.  In this case， a state where all of the arcs 
in the circle simultaneously take the minimum possible 
flow exists.

Proof As shown in Fig. 2， each arc in the circle is 
connected to four arcs.  For example， for arc ei，i + 1， 
esi，ei + k，i and eit，ei + 1，i + 2 exist at the input and output， re⁃
spectively， where esi，eit is the sum of the input and out⁃
put arcs outside the circle.  According to Citation 1， arcs 
eit and es，i + 1 must obtain the maximum possible flow 
when arc ei，i + 1 obtains the minimum flow.  Moreover， 
the flow on arc ei + k，i，ei + 1，i + 2 remains unaffected.  In par⁃
ticular， when an arc in the circle obtains the minimum 
flow， the front and back arcs in the circle can simultane⁃
ously obtain the minimum flow.  Similarly， all arcs 
within the circle can simultaneously obtain the minimum 
possible flow.

Theorem 2 D = (V，E，C ) is a directed network 
graph， k( i，i + 1，⋯，i + k，i ) is a directed circle that starts from 
point vi and returns to point vi， and arcs ei，i + 1，
ei + 1，i + 2，⋯，ei + k，i belong to this point.  When the net⁃
work reaches its maximum flow and each arc in the circle 
obtains the minimum possible flow simultaneously， the 
original zero⁃flow arc in the circle remains unchanged af⁃
ter removing any arc from the circle.

Proof According to Citation 2， all arcs within the 
circle can simultaneously take the minimum possible 
flow when the network reaches its maximum flow.  More⁃
over， Theorem 1 states that at least one arc in the circle 
has a minimum possible flow of 0.  Therefore， according 
to Citation 1， when all arcs in the circle are guaranteed to 
achieve the minimum possible flow， removing any arc 
from the network at maximum flow does not change the 
zero⁃flow arc in the circle.

Corollary 1 D = (V，E，C ) is a directed network 

graph， k( i，i + 1，⋯，i + k，i ) is a directed circle that starts from 
point vi and returns to point vi， and arcs 
ei，i + 1，ei + 1，i + 2，⋯，ei + k，i belong to this point.  If the net⁃
work reaches its maximum flow and all arcs in the circle 
obtain the minimum possible flow， then removing any 
arc from the circle in the initial network and removing 
this arc from the circle of the maximum flow network 
provide the same maximum flow in the network.  More⁃
over， the zero⁃flow arc in the circle remains unchanged.

Proof If the arc ei，i + 1 is removed directly from the 
initial network， then the maximum flow of the network is 
solved after removing ei，i + 1 from Fig.  3， as shown in 
Fig. 4.

Given that the network has already reached its maxi⁃
mum flow， ΔFiTIΔfit = 0 and Δfs，i + 1ΔFi + 1TO = 0.  If arc 
ei，i + 1 is added to the network that has reached its maxi⁃
mum flow， then the following conditions are satisfied：
（1） If ΔFiTIΔFi + 1TO = 0， then the maximum flow of 

the network remains the same after adding ei，i + 1， 
min fi，i + 1 = 0.
（2） If ΔFiTIΔFi + 1TO ≠ 0， then Δfit = Δfs，i + 1 = 0， and 

the maximum flow of the network increases by min fi，i + 1 after adding ei，i + 1.  Overall， removing ei，i + 1 from the ini⁃
tial network reduces the maximum flow of the network 
by min fi，i + 1.  Combining this condition with Citation 1， 
the maximum flow of the network is the same.  More⁃
over， the maximum network flow obtained by removing 
ei，i + 1 from the initial network is similar to that obtained 
by removing ei，i + 1 from the maximum flow network.  In 
addition， the zero⁃flow arc remains the same.
2　Construction of the Two⁃Stage Preflow Algo⁃

rithm
The preflow advancement algorithm for determining 

the maximum flow of the network starts from the source 
point and advances the maximum possible flow along the 
edges of the remaining network until no further advance⁃
ment can be made.  If circles exist in the network， then 
this algorithm may need to reduce the flow on certain 
backward arcs to facilitate an increase in the overall maxi⁃
mum flow.  Therefore， arcs that are already saturated 
cannot be ignored.  However， if no circles exist in the 

Fig. 4　State diagram of the circle points vi and vi + 1 when the 
network diagram reaches its maximum flow after remov⁃
ing ei，i + 1
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network， then the saturated arcs in the remaining net⁃
work can be ignored.  The loop⁃free network is simpler 
and faster to process than a network with loops.  The fol⁃
lowing algorithm for advancing the network with circles 
is performed twice to address the maximum flow prob⁃
lem in networks.  This algorithm is divided into two 
stages.  The first stage identifies the zero⁃flow arcs in the 
circles based on the conclusion of Corollary 1 from Theo⁃
rem 1.  The second stage involves solving the maximum 
flow for the loop⁃free network that corresponds to the 
original network with circles.

According to Citation 1， when advancing to the apex 
of the circle， the first stage of solving the maximum flow 
of the network after breaking the circle ensures the mini⁃
mum possible flow through the advancement process in 
the circle arc， satisfying Δfit = Δfs，i + 1 = 0.  Priority is 
given to advancing flow through arcs outside the circle.  
Once these arcs reach saturation， flow advancement is di⁃
rected toward the arcs within the circle.

Definition 6 D = (V，E，C ) is a directed network 
graph.  The capacity of endpoints vi and vj is cij.  Thus， 
the matrix is called the initial capacity matrix， which can 
be expressed as follows：

C =

é

ë

ê

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

ú

ú
0 cs1 cs2 ⋯ csn cst0 0 c13 ⋯ c1n c1t0 c21 0 ⋯ c2n c2t⋮ ⋮ ⋮ ⋮ ⋮
0 cn1 cn2 ⋯ 0 cnt0 ct1 ct2 ⋯ ctn 0

Theorem 3 D = (V，E，C ) is a directed network 
graph.  If no circles exist in network D， then the initial 
capacity matrix C of any network must be translated into 
a strictly upper triangular initial capacity matrix C′ equal 
to the maximum flow of the initial network.

Proof Let i，j be the middle two points in the network 
graph.  Then， swapping the labels of points i and j does 
not affect the maximum flow of the network graph by 
swapping rows i and j and columns i and j， respectively， 
in the initial capacity matrix C of the network.  The net⁃
work is a loop⁃free network.  Thus， cijcji = 0 starts from 
Column 1 and subsequently searches for cij > 0 and i > j 
in each column from top to bottom.  In the presence of 
cij， rows i and j and columns i and j are swapped， respec⁃
tively， until the last column is adjusted.  Then， the entire 
initial capacity matrix is transformed into the upper trian⁃
gular initial capacity matrix C′.

Theorem 4 D = (V，E，C ) is a directed network graph 
without circles.  Maximum capacity advancement is made 
along a certain forward chain from the point of origin to 
generate a saturated chain.  The existing traffic on the arc 
must not decrease during the subsequent advances.

Proof In the Ford⁃Fulkerson scalar algorithm， all for⁃
ward arcs increase the flow with the adjustment of an in⁃

creasing chain.  Moreover， backward arcs decrease the 
flow.  If the initial network is a loop⁃free network， then 
Theorem 3 indicates that the initial capacity matrix can 
be transformed into a strict upper triangular capacity ma⁃
trix， and all arcs in the network are forward arcs.  Thus， 
no arc decreases the flow during the maximum flow ad⁃
justment in the network.

Therefore， Theorem 1 states that all circles are de⁃
tected in the initial network.  Then， an arc in a circle is 
arbitrarily selected and removed from the network.  Ac⁃
cording to Theorem 3， the initial capacity matrix is trans⁃
formed into an upper triangular capacity matrix.  Finally， 
Theorem 4 indicates that the network traffic is increased 
in the upper triangular capacity matrix by traversing it 
stepwise.  In conjunction with Theorem 2， the maximum 
flow optimization process for the upper triangular capac⁃
ity matrix must ensure that each arc in the circle achieves 
the minimum possible flow， as described in Step 4.  The 
specific steps of the maximum flow solution method of 
the network are as follows：

Phase ⅠⅠ
Step 1 Find the circle in the initial network.  If a 

circle does not exist， then proceed to Step 2； if a circle 
exists， then choose any arc to remove and proceed to 
Step 2.

Step 2 Write the capacity matrix C of the network af⁃
ter breaking the circle and the upper triangular initial ca⁃
pacity matrix C′ according to the transformation method 
in the proof of Theorem 3.

Step 3 Iterate through the numbers in the first row of 
matrix C′ in order， with each number traversed as fol⁃
lows：

① For arc capacity csj， if csj = 0， then proceed to the 
traversal of cs，j + 1.  If csj ≠ 0， then proceed to row j and 
start traversing within row j + 1 starting from cj. j + 1.  If all 
rows j + 1 are 0， then proceed to the traversal of cs，j + 1； 
otherwise， proceed to Step ②.

② For the first nonzero cjk ( j ≤ k ≤ n ) encountered at 
row j + 1， if cjk is the capacity of one of the arcs in the 
circle， then this arc is skipped； if cjk is not the arc capac⁃
ity of the circle， then proceed to row k + 1 to traverse 
from ck. k + 1 and repeat Step ② until the last column is tra⁃
versed in row l.  At this point， the series obtained by this 
round of traversal {csj，cj，k，⋯，clt } is removed， and cpq =
min {csj，cj，k，⋯，clt } is solved.  Then， all corresponding 
capacities in the series are subtracted from cpq， and the 
capacity matrix C′ is updated and transferred.

③ Then， cpq = 0.  Continue Step ② from cp，q + 1.  Re⁃
peat Step ③.  If the expanded chain can be obtained， then 
the series obtained in this round should be {c1j - cpq，cjk -
cpq，⋯，cp，q + i，cl't } (q < i < t ).  If no augmentation chain 
exists， then proceed to Step ②.  Start from cj，k + 1 and tra⁃
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verse backward until the first number that is not 0 is en⁃
countered.  If the end of cjt is traversed， then go back and 
repeat Step ② for the previously skipped arcs.  Once all 
of the arcs in the circle have been processed， go back to 
Step ① to process cs，j + 1.  The final capacity matrix C′ of 
the first stage is obtained until the end of the traversal to 
csn.  Then， proceed to Step 4 （skipping the circle arc en⁃
sures that it obtains the minimum possible flow）.

Phase ⅡⅡ
Step 4 Let the network maximum flow matrix A =

C' - C″ find all of the arcs in the circle in matrix A and 
identify all of the arcs with a flow rate of 0 in the circle.  

Remove these arcs in the initial network capacity matrix 
C to obtain the network maximum flow initial capacity 
matrix Cmax and proceed to Step 5.

Step 5 Repeat Step 2 for the maximum flow initial 
capacity matrix Cmax of the network （given that no more 
circles exist in the network， skipping the step of the arc 
in the circle is unnecessary）.  Based on Step 3， Step 4 
yields the network maximum flow matrix Amax.  The net⁃
work maximum flow is f ∗ = ∑

i = s

n

ain.
Fig. 5 shows the specific steps of the maximum flow 

solution method of the network.

Fig. 5　Flowchart for solving the maximum flow algorithm in a network
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3　Case Study and Comparisons with Existing 
Models

A campus covers an area of approximately 3 000 
acres.  This area has 40 000 people who rush from the 
dormitory area to the academic buildings， laboratory 
buildings， and library in the morning.  The maximum ca⁃
pacity of the existing campus road design plan enables 
the students to rush to the teaching area promptly.  The 
maximum flow of the existing route analysis of the west 
campus gate to the east court must be calculated.  The 
campus map is shown in Fig. 6.

A campus plan is available.  A concentrated area is 
simplified to a point， and the road is simplified to a line 
by streamlining and marking the road conditions of the 
campus.  Moreover， the distance of each point and the 
width of the road are measured in accordance with the 
network map range， and the saturation flow of the road is 
calculated.  The campus transportation network map can 
be simplified as D = (V，E，C )， as shown in Fig. 7.  The 
number next to the arc in the figure is the road saturation 
capacity cij.

Step 1 Delete arc e24 if circles exist in the net⁃
work k(1，2，4，1).

Step 2 After the circle is broken， the upper triangu⁃
lar capacity matrix C' is given in accordance with the 
rank transformation method in the proof of Theorem 3， 
as follows：
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Step 3 After traversal， the final capacity matrix C″ is 
obtained after breaking the circle， as follows：
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Step 4 A = C' - C″ is obtained.  The zero⁃flow arc in 
the original network e12，e23 is identified.  Thus， Cmax is 
obtained as follows：
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，Cmax =
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Step 5 For the preflow propulsion algorithm for 
Cmax， Amax is obtained as follows：

Amax =
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Finally， the traffic of each arc in the network is ob⁃
tained， and the maximum network flow is f ∗ = ∑

i = s

n

ain = 5.  
The campus road capacity addresses the needs of all stu⁃
dents and teachers to pass by combining the results of the 
network maximum flow calculation.

Two models are selected for comparison with the pro⁃
posed model.  The compared models are denoted as 
M1［11］， M2［30］， and M3［4］.  The results are given in 
Table 1.

Fig. 6　Diagram of the main traffic routes on the campus

Fig. 7　Campus transportation network map Table 1　Comparison with the existing models
Model name

Proposed model
M1
M2
M3

Network with circles
√
×
×
×

Note: The check sign √ means the model has the desired property, 
whereas mark × indicates that the model does not have the ca⁃
pability.
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4　Conclusions

This study showed that the arcs with flow in the net⁃
work do not form a cycle when the network reaches its 
maximum flow.  The use of the preflow advancement al⁃
gorithm is further explored to solve the maximum flow in 
the network.  As long as the arcs in the cycle take the 
minimum possible flow， removing an arc in the cycle 
does not change the maximum flow of the original net⁃
work.  Based on this idea， a two⁃stage preflow advance⁃
ment algorithm is constructed.  The first stage identifies 
the zero⁃flow arc in the circle at the maximum flow state 
of the network.  The second stage focuses on solving for 
the maximum flow of the loop⁃free network after the re⁃
moval of the zero⁃flow arc in the circle.  The first stage 
improves the preflow propulsion algorithm to ensure that 
the minimum possible flow is obtained in the intraloop 
arc.  Compared with the common preflow advancement 
algorithm， the proposed method does not need to con⁃
sider the existence of reversed arcs， saving more time 
than the minimum cut set algorithm and solving the final 
state matrix of the maximum flow of the network.  In ad⁃
dition， choosing different removal arcs or using the arc⁃
flow relationship can help easily determine the zero⁃flow 
arc in the circle， and the steps implemented to solve the 
maximum flow problem can be reduced when the circle 
in the first stage breaks.

However， when there are numerous circles in the net⁃
work， the computational complexity of the proposed ap⁃
proach may exponentially grow.  The proposed approach 
can also be expanded to the network with nonconserva⁃
tion flow［12］ and acyclic networks［29］.
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两阶段预流算法构建及其在带环网络最大流中的应用
党耀国， 黄金鑫， 丁孝郁， 王俊杰

（南京航空航天大学经济与管理学院，南京 211100）
摘要： 在处理带环网络的最大流问题时，为了降低算法的复杂度，提出了一种新颖的两阶段预流算法。首

先，证明了当网络达到最大流状态时，环中必然存在至少一条最小可能流等于零的弧。在环中，如果每条弧

同时获得最小可能流量，在移除任意一条弧之后，环中原始零流弧保持不变。其次，构建了使带环网络转换

为无环网络两阶段预流算法：阶段 1 为当网络达到最大流时标记出环中的零流弧；阶段 2 为去除在阶段 1 中

找到的零流弧，从而将原本的带环网络转化为无环网络。通过求解新生成的无环网络的最大流，可以得到

原始带环网络的最大流解。最后，通过实例验证了该算法的有效性和可行性。该算法不仅提高了计算效

率，还为解决类似网络优化问题提供了新的视角和工具。

关键词：带环网络；最大流；零流弧；两阶段预流算法
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