Hypersurfaces with constant mean curvature in unit sphere

Wang Peijun

Chao Xiaoli

(Department of Mathematics, Southeast University, Nanjing 210096, China)

Abstract: The pinching of n-dimensional closed hypersurface M with constant mean curvature H in unit sphere $S^{n+1}(1)$ is considered. Let $\tilde{A} = \sum_{i,j,k} h_{ijk}^2 (\lambda_i + nH)^2$, $\tilde{B} = \sum_{i,j,k} h_{ijk}^2 (\lambda_i + nH)$. $(\lambda_j + nH)$, $\tilde{S} = \sum_i (\lambda_i + nH)^2$, where $h_{ij} = \lambda_i \delta_{ij}$. Utilizing Lagrange's method, a sharper pointwise estimation of $3(\tilde{A} - 2\tilde{B})$ in terms of \tilde{S} and $|\nabla h|^2$ is obtained, here $|\nabla h|^2 = \sum_{i,j,k} h_{ijk}^2$. Then, with the help of this, it is proved that M is isometric to the Clifford hypersurface if the square norm of the second fundamental form of M satisfies certain conditions. Hence, the pinching result of the minimal hypersurface is extended to the hypersurface with constant mean curvature case.

Key words: hypersurface with constant mean curvature; unit sphere; pinching

DOI: 10. 3969/j. issn. 1003 – 7985. 2016. 01. 022

et M^n be a closed hypersurface immersed in a unit et M^n be a closed hypersurface.

sphere $S^{n+1}(1)$. The symbols S and H denote the square norm of the second fundamental form and the mean curvature of M, respectively. Assuming H = 0, i. e., the minimal hypersurface case, Simons[1] obtained the first pinching result. More precisely, he showed that if $0 \le S \le n$, then $S \equiv 0$ and M is totally umbilical or $S \equiv n$ and M is isometric to a Clifford torus. Later, Yang and Cheng^[2] studied the scalar curvature pinching theorem. Recently, Wang and $He^{[3]}$ proved that if $n \le S \le n +$ $\alpha(n)$, then $S \equiv n$ and M is a Clifford torus $S^{k}(\sqrt{k/n}) \times$ $S^{n-k}(\sqrt{(n-k)/n})(k=1,2,...,n-1)$, where $\alpha(n)$ is a positive constant depending only on n. Furthermore, many researchers began to consider the pinching problem for constant mean curvature hypersurfaces [4-8]. In 2013, Xu et al. [8] obtained the second pinching result for a closed hypersurface with sufficiently small mean curvature. However, they did not give the concrete gap. In this paper, we give a concrete expression to the pinching constant by making use of another method inspired by Wang and He^[3]. More precisely, we prove the following theorem which is a generalization of corollary 1.1

Received 2014-03-27.

Biographies: Wang Peijun (1989—), male, graduate; Chao Xiaoli (corresponding author), male, doctor, professor, xlchao@ seu. edu. cn. **Citation:** Wang Peijun, Chao Xiaoli. Hypersurfaces with constant mean curvature in unit sphere [J]. Journal of Southeast University (English Edition), 2016, 32(1): 132 – 134. DOI: 10. 3969/j. issn. 1003 – 7985. 2016. 01. 022.

in Ref. [3].

Theorem 1 Let M be an n-dimensional closed hypersurface with constant mean curvature H satisfying $|H| \le \varepsilon(n)$ in $S^{n+1}(1)$. If $S_0 \le S \le S_0 + \alpha(n, H)$,

$$S_0 = n + \frac{n^3 H^2}{2(n-1)} + \frac{n(n-2)}{2(n-1)} \sqrt{n^2 H^4 + 4(n-1) H^2}$$
(1)

$$\alpha(n, H) = \frac{2}{3} - \left[\frac{4n^3}{9(n-1)} + \frac{2}{3} n^2 + \frac{4}{9} n^2 (n+2) \right] H^2 - \frac{4n(n-2)}{9(n-1)} \sqrt{n^2 H^4 + 4(n-1) H^2}$$
(2)

Then $S \equiv S_0$. Furthermore, M is isometric to a Clifford torus $S^k(\sqrt{k/n}) \times S^{n-k}(\sqrt{(n-k)/n})$ (k=1,2,...,n) if H=0, and M is isometric to a Clifford hypersurface $C_{1,n-1}$ if $H\neq 0$, where $\varepsilon(n)$ is a sufficiently small constant depending only on n, and $C_{1,n-1}$ is defined as

$$C_{1, n-1} = S^{1} \left(\frac{1}{\sqrt{1 + \lambda^{2}}} \right) \times S^{n-1} \left(\frac{\lambda}{\sqrt{1 + \lambda^{2}}} \right)$$
$$\lambda = \frac{nH + \sqrt{n^{2}H^{2} + 4(n-1)}}{2}$$

Remark 1 When M is minimal, i. e., H = 0, we obtain from (2) that $\alpha(n, 0) = 2/3$. Then Theorem 1 reduces to Corollary 1.1 in Ref. [3].

1 Preliminaries

We use the similar notations as in Ref. [5]. Choose a local orthonormal frame $e_1, e_2, ..., e_{n+1}$ in $S^{n+1}(1)$ such that $e_1, e_2, ..., e_n$ are tangent to M. Let $\omega_1, \omega_2, ..., \omega_n$; ω_{n+1} be the corresponding dual coframe. The symmetric 2-form $h = \sum_{i,j} h_{ij} \omega_i \omega_j$ is called the second fundamental form of M. Since h_{ij} is symmetric, we can choose a local orthonormal frame $e_1, e_2, ..., e_n$ such that $h_{ij} = \lambda_i \delta_{ij}$. Then we have

$$nH = \sum_{i} \lambda_{i}, S = \sum_{i} \lambda_{i}^{2}$$

Set

$$f_{3} := \sum_{i,j,k} h_{ij} h_{jk} h_{ki} = \sum_{i} \lambda_{i}^{3}$$

$$f_{4} := \sum_{i,j,k} h_{ij} h_{jk} h_{kl} h_{li} = \sum_{i} \lambda_{i}^{4}$$

$$A = \sum_{i,j,k} h_{ijk}^{2} \lambda_{i}^{2}, B = \sum_{i,j,k} h_{ijk}^{2} \lambda_{i} \lambda_{j}, \mu_{i} = \lambda_{i} + nH$$

$$\tilde{A} = \sum_{i,j,k} h_{ijk}^{2} \mu_{i}^{2}, \tilde{B} = \sum_{i,j,k} h_{ijk}^{2} \mu_{i} \mu_{j}, \tilde{S} = \sum_{i} \mu_{i}^{2}$$

Direct calculation gives

$$\tilde{S} = S + n^2 (n+2) H^2$$
 (3)

Lemma 1^[5] Let M be an n-dimensional closed hypersurface with constant mean curvature H in $S^{n+1}(1)$, then

$$\frac{1}{2}\Delta S = S(n-S) - n^2 H^2 + nHf_3 + |\nabla h|^3$$
 (4)

$$\frac{1}{2}\Delta(\mid \nabla h \mid^{2}) = (2n+3-S)\mid \nabla h \mid^{2} - \frac{3}{2}\mid \nabla S \mid^{2} - \frac{3}{2}(A-2B) - \frac{3}{2}(\tilde{A}-2\tilde{B}) - \frac{3}{2}n^{2}H^{2}\mid \nabla h \mid^{2} + |\nabla^{2}h|^{2}$$
 (5)

$$\int_{M} (A - 2B) = \int_{M} \left[Sf_{4} - f_{3}^{2} - S^{2} + nHf_{3} - \frac{1}{4} \mid \nabla S \mid^{2} \right] (6)$$

$$\mid \nabla^{2}h \mid^{2} \ge \frac{3}{2} \left[Sf_{4} - f_{3}^{2} - S^{2} - S(S - n) - n^{2}H^{2} + 2nHf_{3} \right] + \frac{3\left[S(S - n) + n^{2}H^{2} - nHf_{3} \right]^{2}}{2(n + 4)(S - nH^{2})}$$
(7)

Lemma 2 Let M be an n-dimensional closed hypersurface with constant mean curvature H in $S^{n+1}(1)$, then

$$3(\tilde{A} - 2\tilde{B}) \leq 2\tilde{S} \mid \nabla h \mid^2 \tag{8}$$

Proof First, we use Lagrange's method to calculate the maximum of the following function:

$$\psi = \frac{3\sum_{i\neq j} h_{iij}^2 (\mu_j^2 - 4\mu_i \mu_j) + \sum_{i\neq j\neq k\neq i} h_{ijk}^2 [2(\mu_i^2 + \mu_j^2 + \mu_k^2) - (\mu_i + \mu_j + \mu_k)^2]}{\tilde{S} |\nabla h|^2}$$
(9)

under the constraints

$$\sum_{i} \mu_{i}^{2} = \widetilde{S}, \quad \sum_{i} \mu_{i} = n(n+1)H, \quad | \quad \nabla h \mid^{2} = a$$

Lei

$$\varphi = \psi + m_1 \left(\sum_i \mu_i^2 - \tilde{S} \right) + m_2 \left[\sum_i \mu_i - n(n+1)H \right] + m_2 \left(\mid \nabla h \mid^2 - a \right)$$

Since φ is continuous on closed hypersurface M, φ can reach its maximum $\varphi(\bar{q})$ at $\bar{q} = (\bar{\mu}_1, \bar{\mu}_2, ..., \bar{\mu}_n, \bar{h}_{ijk})$. Direct calculation gives that

$$\sum_{i \neq j \neq k \neq i} \overline{h}_{ijk}^{2} \left[2(\overline{\mu}_{i}^{2} + \overline{\mu}_{j}^{2} + \overline{\mu}_{k}^{2}) - (\overline{\mu}_{i} + \overline{\mu}_{j} + \overline{\mu}_{k})^{2} \right] \leqslant$$

$$\sum_{i \neq j \neq k \neq i} 2\overline{h}_{ijk}^{2} (\overline{\mu}_{i}^{2} + \overline{\mu}_{j}^{2} + \overline{\mu}_{k}^{2}) \leqslant 2\overline{S} \sum_{i \neq j \neq k \neq i} \overline{h}_{ijk}^{2}$$

$$(10)$$

Using the similar approach as in Ref. [3], we have the following estimate:

$$\sum_{i \neq i} \bar{h}_{iij}^{2} (\bar{\mu}_{j}^{2} - 4\bar{\mu}_{j}\bar{\mu}_{i}) \leq 2\tilde{S}\tilde{S}_{j} \qquad j = 1, 2, ..., n \quad (11)$$

Adding (10) and (11), we obtain

$$3 \sum_{i \neq j} \overline{h}_{iij}^{2} (\overline{\mu}_{j}^{2} - 4\overline{\mu}_{i}\overline{\mu}_{j}) + \sum_{i \neq j \neq k \neq i} \overline{h}_{ijk}^{2} [2(\overline{\mu}_{i}^{2} + \overline{\mu}_{j}^{2} + \overline{\mu}_{k}^{2}) - (\overline{\mu}_{i} + \overline{\mu}_{j} + \overline{\mu}_{k})^{2}] \leq 6\widetilde{S}\widetilde{S}_{j} + 2\widetilde{S} \sum_{i \neq j \neq k \neq i} \overline{h}_{ijk}^{2} = 2\widetilde{S} \sum_{i \neq i} 3\overline{h}_{iij}^{2} + 2\widetilde{S} \sum_{i \neq j \neq k \neq i} \overline{h}_{jk}^{2} \leq 2a\widetilde{S}$$

$$(12)$$

Then

$$\psi(\bar{q}) \leqslant \frac{2aS}{a\bar{S}} = 2 \tag{13}$$

Since $\psi(\overline{q})$ is the maximum of ψ , we have

$$3 \sum_{i \neq j} h_{iij}^{2} (\mu_{j}^{2} - 4\mu_{i}\mu_{j}) + \sum_{i \neq j \neq k \neq i} h_{ijk}^{2} [2(\mu_{i}^{2} + \mu_{j}^{2} + \mu_{k}^{2}) - (\mu_{i} + \mu_{i} + \mu_{k})^{2}] \leq 2\tilde{S} |\nabla h|^{2}$$
(14)

Hence, it is straightforward to compute that

$$3(\tilde{A} - 2\tilde{B}) = 3 \sum_{i,j,k} h_{ijk}^2(\mu_j^2 - 2\mu_j\mu_i) =$$

$$-3 \sum_i \mu_i^2 h_{iii}^2 + 3 \sum_{i \neq i} h_{iij}^2(\mu_j^2 - 4\mu_j\mu_i) +$$

$$\begin{split} & \sum_{i \neq j \neq k \neq i} h_{ijk}^{2} [2(\mu_{i}^{2} + \mu_{j}^{2} + \mu_{k}^{2}) - (\mu_{i} + \mu_{j} + \mu_{k})^{2}] \leq \\ & 3 \sum_{i \neq j} h_{iij}^{2} (\mu_{j}^{2} - 4\mu_{j}\mu_{i}) + \\ & \sum_{i \neq j \neq k \neq i} h_{ijk}^{2} [2(\mu_{i}^{2} + \mu_{j}^{2} + \mu_{k}^{2}) - (\mu_{i} + \mu_{j} + \mu_{k})^{2}] \leq \\ & 2\tilde{S} \mid \nabla h \mid^{2} \end{split}$$

2 Proof of Theorem 1

Proof By using (4), (5) and direct computations, we have

$$\int_{M} S(n-S) = \int_{M} (n^{2}H^{2} - nHf_{3} - | \nabla h |^{2}) \quad (15)$$

$$\int_{M} \frac{1}{2} | \nabla S |^{2} = \int_{M} [S^{2}(S-n) + n^{2}H^{2}S - nHSf_{3} - S | \nabla h |^{2}] \quad (16)$$

$$\int_{M} | \nabla^{2}h |^{2} = \int_{M} \left[\left(S - 2n - 3 + \frac{3}{2}n^{2}H^{2} \right) | \nabla h |^{2} + \frac{3}{2} (A - 2B) + \frac{3}{2} (\tilde{A} - 2\tilde{B}) + \frac{3}{2} | \nabla S |^{2} \right]$$

$$(17)$$

It is proved directly that $S \ge S_0$ is equivalent to

$$\sqrt{n + \frac{n^3 H^2}{4(n-1)}} - \sqrt{S - nH^2} + \frac{n(n-2) |H|}{2 \sqrt{n(n-1)}} \le 0$$

Then

$$\begin{split} S(S-n) &+ n^2 H^2 - nHf_3 = \\ &- (S-nH^2) \left[n + nH^2 - (S-nH^2) - nH \sum_i (\lambda_i - H)^3 \right] \geqslant \\ (S-nH^2) \left[-n - nH^2 + S - nH^2 - \frac{n(n-2) |H|}{2 \sqrt{n(n-1)}} \sqrt{S-nH^2} \right] = \\ &- (S-nH^2) \left[\sqrt{n + \frac{n^3 H^2}{4(n-1)}} + \sqrt{S-nH^2} - \frac{n(n-2) |H|}{2 \sqrt{n(n-1)}} \right] \times \\ \left[\sqrt{n + \frac{n^3 H^2}{4(n-1)}} - \sqrt{S-nH^2} + \frac{n(n-2) |H|}{2 \sqrt{n(n-1)}} \right] \geqslant 0 \end{split}$$

Note that
$$L = \frac{3[S(S-n) + n^2H^2 - nHf_3]^2}{2(n+2)(S-nH^2)} \ge 0$$
, then

(7) gives

$$|\nabla^{2} h|^{2} \ge \frac{3}{2} [Sf_{4} - f_{3}^{2} - S^{2} - S(S - n) - n^{2}H^{2} + 2nHf_{3}]$$
(19)

We derive from (6), (15) and (19) that

$$\int_{M} | \nabla^{2} h |^{2} \geqslant$$

$$\int_{M} \left[\frac{3}{2} (Sf_{4} - f_{3}^{2} - S^{2} + nHf_{3} - | \nabla h |^{2}) \right] \geqslant$$

$$\int_{M} \left[\frac{3}{2} (A - 2B) + \frac{3}{8} | \nabla S |^{2} - \frac{3}{2} | \nabla h |^{2} \right] (20)$$

By the above inequality and (17), we deduce

$$\int_{M} \left[\left(S - 2n - \frac{3}{2} + \frac{3}{2}n^{2}H^{2} \right) \mid \nabla h \mid^{2} + \frac{3}{2}(\tilde{A} - 2\tilde{B}) + \frac{9}{8} \mid \nabla S \mid^{2} \right] \geqslant 0$$
(21)

So we obtain, from (3), (8), (16) and (21), that

$$\int_{M} \left[\left(-\frac{1}{4}S - 2n - \frac{3}{2} \right) \mid \nabla h \mid^{2} + \left(\frac{3}{2}n^{2} + n^{2}(n+2) \right) \right].$$

$$H^{2} \mid \nabla h \mid^{2} + \frac{9}{4}S(S(S-n) + n^{2}H^{2} - nHf_{3}) \right] \ge 0$$
(22)

Now, we choose $\varepsilon(n)$ sufficiently small such that $|H| \le \varepsilon(n)$ and $\alpha(n, H) > 0$. According to $S_0 \le S \le S_0 + \alpha(n, H)$, we deduce from (15) and (16) that

$$\int_{M} S[S(S-n) + n^{2}H^{2} - nHf_{3}] \leq$$

$$(S_{0} + \alpha(n, H)) \int_{M} [S(S-n) + n^{2}H^{2} - nHf_{3}] \leq$$

$$(S_{0} + \alpha(n, H)) \int_{M} |\nabla h|^{2}$$
(23)

Then from (22) and (23), we obtain

$$0 \leq \int_{M} \left\{ -\frac{1}{4}S - 2n - \frac{3}{2} + \frac{9}{4} [S_{0} + \alpha(n, H)] + \left[\frac{3}{2}n^{2} + n^{2}(n+2) \right] H^{2} \right\} | \nabla h |^{2} =$$

$$- \int_{M} \frac{1}{4} (S - S_{0}) | \nabla h |^{2} \leq 0$$
 (24)

We finally conclude that

$$\int_{M} \frac{1}{4} (S - S_0) | \nabla h |^2 = 0$$
 (25)

Therefore, $S = S_0$ or $|\nabla h| = 0$. If $|\nabla h| = 0$, then all of the above inequalities become equalities. From (18), we also have $S = S_0$. Then $S \equiv S_0$ and M is isometric to a Clifford hypersurface. So, we complete the proof of Theorem 1.

References

- [1] Simons J. Minimal varieties in Riemannian manifolds [J]. *Ann of Math*, 1968, **88**(2): 62 105.
- [2] Yang H C, Cheng Q M. Chern's conjecture on minimal hypersurfaces [J]. *Math Z*, 1998, **227**(3): 377 390.
- [3] Wang M J, He J X. Scalar curvature of minimal hypersurfaces in a sphere [J]. *J Math Anal Appl*, 2012, **391**(1): 291 297.
- [4] Deng Q T, Gu H L, Su Y H. Constant mean curvature hypersurfaces in spheres [J]. Glasg Math J, 2012, 54(1): 77-86.
- [5] Cheng Q Y, He Y J, Li H Z. Scalar curvatures of hypersurfaces with constant mean curvature in a sphere [J]. *Glasg Math J*, 2009, **51**(2): 413 423.
- [6] Chen G Y, Li H Z. Scalar curvature of hypersurfaces with constant mean curvature in unit spheres [J]. *Internat J Math*, 2011, 22(1): 131-143.
- [7] Zhang Q. Scalar curvature of hypersurfaces with constant mean curvature in spheres [J]. *Glasg Math J*, 2012, **54** (1): 67-75.
- [8] Xu H W, Xu Z Y. The second pinching theorem for hypersurfaces with constant mean curvature in a sphere [J]. *Math Ann*, 2013, **356**(3): 869 883.

单位球面中具有常平均曲率的超曲面

王佩君 潮小李

(东南大学数学系,南京 210096)

摘要:考虑了单位球面 $S^{n+1}(1)$ 中具有常平均曲率 H 的超曲面 M 的拼脐问题. 设 $\widetilde{A} = \sum_{i,j,k} h_{ijk}^2 (\lambda_i + nH)^2$, $\widetilde{B} = \sum_{i,j,k} h_{ijk}^2 (\lambda_i + nH) (\lambda_j + nH)$, $\widetilde{S} = \sum_i (\lambda_i + nH)^2$,其中 $h_{ij} = \lambda_i \delta_{ij}$. 利用拉格朗日方法,可以得到 $3(\widetilde{A} - 2\widetilde{B})$ 关于 \widetilde{S} 和 $|\nabla h|^2$ 的估计,其中 $|\nabla h|^2 = \sum_{i,j,k} h_{ijk}^2$. 然后,利用该估计证明了: 若 M 的第二基本形式的平方范数满足一定条件,则 M 一定等距于 Clifford 超曲面. 因此,极小超曲面的拼脐结果被推广到具有常平均曲率的超曲面情形.

关键词:具有常平均曲率的超曲面;单位球面;拼脐

中图分类号:O186.1