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Abstract: To study the influence of original defects on the
dynamic stability of the columns under periodic transient
loadings, the approximate solution method and the Fourier
method of the stable periodic solution are adopted while
considering the influence of original defects on columns. The
dynamic stability of the columns under periodic transient
loadings is analyzed theoretically. Through the study of
different deflections, the dynamic instability of the columns is
obtained by Maple software. The results of theoretical analysis
show that the larger the original defects, the greater the
unstable area, the stable solution amplitude of columns and the
risk of instability caused by parametric resonance will be. The
damping of columns is a vital factor in reducing dynamic
instability at the same original defects. On the basis of the
Mathieu-Hill equation, the relationship between the original
defects and deflection is deduced, and the dynamic instability
region of the columns under different original defects is
obtained. Therefore, reducing the original defects of columns
can further enhance the dynamic stability of the compressed
columns in practical engineering.
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he parametric vibration of columns under axial-peri-
T odic loadings has received considerable attention in
the literature. Lyapunov' ™
an exact manner, the definition of dynamic stability, and
thus the general definition of dynamic stability came into
being in mathematics. Bolotin"' systematically studied
structural stability under the influence of periodic loads,
the essence of which was a study on the influence of fre-
quency changes of harmonic loads on the solution of equa-
tion by representing the systematic dynamics as the
Mathieu-Hill equation. Even today, there are numerous
studies and documents on the Mathieu-Hill equation do-
mestically and internationally'*™' .

took the lead in explaining, in
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However, the prerequisite of the Mathieu-Hill equation
is that there are no original defects on columns. Howev-
er, original defects are unavoidable due to the asymmetry
of structural materials, the bending of structural materials
caused by self weight and the influence of construction,
which is a major threat to dynamic stability. In recent
years, the influence of original defects on structural dy-
namic stability has been studied by many scholars in Chi-
na, but a few of them have analyzed how great the influ-
ence of original defects is on the dynamic unstable region
of columns'™.

The purpose herein is to determine the maximum tran-
sient lateral response for an initially curved column. With
the influence of original defects on the dynamic stability
of columns under consideration, the dynamic stability of
columns with original defects is studied by further theoret-
ical derivation, and the impact of original defects on the
dynamic unstable region is found to provide a reference
for practical engineering construction in this paper.

1 Approximate Solution of Dynamic Unstable
Region

The research on the Mathieu-Hill equation is correct
only if there is no original curvature and original ben-
ding. If the column is originally bent, the dynamic equa-
tion cannot be represented as the Mathieu-Hill equation.
Considering the deflection caused by defects of the col-
umn as v,(x), its overall deflection will be a function of
coordinates and time, represented as v, (x, t). The rota-
tional inertial force of the transverse surface of the column
around the axis is not considered in this paper as its im-
pact is rather small if the transverse dimension is not simi-
lar to the vertical dimension, which is often the case. The
differential equation of the column’s dynamic deflection

curve can be expressed as "
84(\), -V,) azv, 62\)[
El———=-P -m 1
ox* ox’ or ()

where EI is the bending rigidity; m is the mass per unit
length; P is the dynamic load.

If the two ends of the column are hinges, the deflection
v,and v, are rather small when compared with the length .
Therefore, an approximate elastic curve is adopted, suppo-
sing

v, (x, 1) =f(t)sink%x



Stability of columns with original defects under periodic transient loadings 65

vo(x) =fosin k%x

k=1,2,3, ... (2)
where f| is the deflection caused by defects and f the over-
all deflection, in other words, the function of time. Sub-
stituting Eq. (2) into Eq. (1) yields the following ordina-
ry differential equation after transformation and iteration:

P ml* &f
K(f-f) -k ~f= -
(f=f) =K pf= =i

(3)

where P is Euler load, and it is a non-dimensional pa-

rameter, P_ = T EI/I.
2
The fundamental frequency of the column is @ = ?7

El . . . .
— . Introducing a non-dimensional time parameter
m

‘, =a)t:27’n-t (4)

then Eq. (3) can be expressed as

kP d’f
4 - f£_ _ =4
1) =TI = = g (5)

In this section, the dynamic stability of columns is
studied by utilizing Eq. (5). Consider that the frequency

of the acting force is 6 and 21 = % is the semi-period of

the change of force. The force of the column is shown in
Fig. 1 and Fig. 2. The change of vibration in terms of
speed and deflection within one cycle is studied in this
section. When P > P_, the deflection caused by loads is
always on the rise. Therefore, the prerequisite of this sec-
tion is P < P,. From the second cycle, the starting de-
flection of the column, which is not zero, is the stable
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Fig.1 Force model of columns with original defects
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Fig.2 P-t figure of columns with original defects

solution produced at the end of last cycle. Then by apply-
ing the approximate solution, the dynamic unstable region
becomes available. Under the influence of transient load-
ings, the column will vibrate. If the vibration decreases,
the starting condition of the column is dynamically stable.
Within this period, if the vibration is periodic or nearly
periodic, the starting condition is dynamic criticality. As-
suming that after the end of every vibrating cycle, the
amplitude is sf,. If the coefficient s is greater than 1, the
vibration at the end of every cycle will continue to rise
because the deflection caused by repeated loads always in-
creases'''. Therefore, the starting condition of the column
is unstable. However, if the coefficient s =1, the range
of the dynamic unstable region can be obtained. Substitu-
tion of the boundary condition of the equation yields the
following stable solution of the first cycle:

fi =A,sint, + A cost, +f, (6)

Therefore, the starting deflection of every cycle is re-
lated to time. Assuming that f, is the starting deflection of
the cycle and the cycle studied at this time is the first
one, then in the first half of the cycle (0<t<T7/2), the
deflection will be

d? 5
&%+nf=ﬂ 7

The general solution of Eq. (7) is

f(t,) =C,sinnt, + C cosnt,, +f% (8)
n
. 4% P
- =7=] -
== (9)

where (), is the natural frequency of the column under the

impact of longitudinal forces and (2, = w, /1 - P,/P,,.
n’ is the ratio of natural frequency under the impact of
longitudinal forces and the basic frequency.

Assuming that when ¢, =0 and the starting deflection is
f., its results will depend on cycle 7. Before the load of

d
this cycle operates and with a starting speed of d{‘s =

w

f., then

c, (10)

_fe
n
At the second half of the cycle (7/2<t<T) and with

the external force P =0, the dynamic equation can be ex-

pressed as

a&’f
— +f= 11
ar r=r (11)
The general solution of Eq. (11) is
f(t,) =D,sint, + D cost, +f, (12)
At the end of a whole cycle, the parameter f, =21 2l
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:ZTrTw’ and the variation of deflection and speed is sf,

and s = sf,, respectively. Then

D, sin 2me) + D, cos 27 -1f,
6 0
) ) (13)
D,cos =T — D, sin % =sf
At the end of the first half, when ¢, = ww/6, the re-

sults produced by Egs. (8) and (12), with deflection and
speed as the substitution, respectively, should be equal.

Csmn 9 +Ccosn6+£—D sm7+D 0057+f
(14)
(Ccos,u, 9 CSIII/,,(, ) Dcos 0 -D;s 1n— (15)

Substituting Eqs. (10) and (13) into Egs. (14) and
(15) yields

(a=1) =(s=1)b]f, + (ib—sd)fg -

(,()—

(16)

[

where

c+(s—1)d]f +(a-sb)f. =0

ko 2wk .k 2wk kw
a=cos——, b=sin=——sin — +cos ——Ccos —
0 0 0 0 0

kmw 2wk km kw 2wk
c=sin——, d=sin R 08 S _ sin " es ST
0 0 0 0 0

To ensure f, #0, fg #0, the prerequisite should be

2

w -1 1
—(a-1)-(s-1)b Zb_Sd
>4 =0 (17)
-9 " "c+(s-1)d  a-sb
1)
After arrangement, we have
s —sA+B=0 (18)
where
A =cos T™cos T 41 +Lsm27+
0 2y 0
ﬂ—lsm @i €T (19)
7 0 0
2
B=2 ;1(cos2 nﬂw—cosnww+cosﬂ) +
) 0
chos M9 0s OT 4 il 1sm MM c0s T 4 L i 27(1)17
] 0 0 7 0 0 27] 0
(20)
According to the assumption above, the vibration of
the column is the critical value when s =1, and then
A+ /A -4B =2 (21)

If A> <4B, the expression of s is plural. Therefore,
the starting assumption that deflection and speed increase

imultaneously s times cannot be satisfied. Through the fit
of Maple, the dynamic unstable region can be expressed
as shown in Fig. 3.
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Fig.3 The approximate solution of the dynamic unstable re-
gion of the column with original defects

In the theoretical derivation above, the approximate so-
lution of the dynamic unstable region is acquired while the
initial defects are ignored. When the load is less than the
critical Euler load, a similar vibration will also occur. The
amplitudes will increase by a large amount as time passes
and there will be consecutive stimulating areas. Compared
with the work of MaKushen'', the unstable region pro-
duced here may have ignored a few vibration parameters
since there is no comparison addressing initial defects.
Therefore, this approximate method may not be exact.

2 Stable Solution of Columns with Original De-
fects

The cyclical transient load is expressed as

P(1) =P, + Y, P,coskot (22)

k
According to the Fourier transformation''?’
P
P, = >
P,,(:ZflJ k=1,3,5,...
Tk
P, =0 k=2,4,6, ... (23)

By utilizing the Fourier transformation, it is clear that
Eq. (3) is logical only when k is an odd number. If k is
an even number, the excitation coefficient will be zero,
which is obviously illogical. Based on the research of Bo-
lotin on columns without original defects, there is the as-
sumption:

2P

Prk:E

(24)

The vibration of the column can be expressed as a line-
ar differential equation'"”:

wh

cr

fr+2ef" + (1 =2u,coskér) f = P (P, + P, coskor)

(25)
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where ¢ is the damping coefficient and w, the excitation
coefficient of k.

Me=o(p_ —P,)
The stable solution is
f=a + bsin(kOt) + ccos(kOr) (27)
where
| ()’ 2
P 7 %,
PPy O (kO o\ (kedy Py
(= )0 ) () 15
| _Uo)’
. 7 2y
GO (KO oy L (keAY Py
(=T V=" )+ (ae) -5
koA
o= Ox 2ty
GO (GO o\ (keA L Py
(1=t ) (=g ) +(on) 15
(28)
where A = 2me representing the fixed vibra-

w J/1-P,/P_
tion damping ratio under the influence of longitudinal

force.
The largest amplitude of the stable solution is

NIEC)

2pifo

A=
(k0)2) k9)* > koA\* . P
- (1-—"5—-2 - -—
(1=t ) (=T -2) (o) 15
(29)
Without the consideration of damping,
2
A= L #ifo (30)
(1-(k9) -2u7 ) i)
@ M) Tp

cr

To ensure that the amplitude is the largest, the denomi-
nator of Eq. (30) is zero. In other words,

2
1-”‘%-2@:0 (31)
Assume that!""
2=t (32)

where 7 is a positive integer and represents the unstable re-
gion. After substituting Eq. (32) into Eq. (31), we obtain

2
6= TQ V1 =2u;
When the excitation coefficient y, is relatively small,

p=21
t

1=1,2,3, ... (33)

t=1,2,3, ... (34)

The stable solution now matches the unstable region

and is proved to a large extent. When the perturbed fre-
quency and the transient natural frequency form a steady
ratio, parametric resonance will occur. If y, is ignored, it
is clear that every unstable region depends on the corre-
sponding simple harmonic waves, which share great com-
monalities with the research of Kpr)IOBm. The premier
objective is to find the connection among the excitation
coefficient, the original bending and the maximal value of
the lateral amplitude. Assume that

M=2

Jo
where M is the ratio of the largest amplitude of the stable
solution and the original midspan deflection.

Under a great excitation coefficient, the ratio of the ex-
cited frequency and natural frequency cannot satisfy the
conditions of parametric resonance. Therefore, only a
small excitation coefficient is studied in this paper. Fig.4
gives the highest amplitude under a small excitation coef-
ficient when the column is stable. Generally speaking,
the highest amplitude is settled after 100 cycles. It is clear
that the figure of amplitude is similar to that of the forced
vibration. When P,/P,=0.2, &£ =0, the parametric res-
onance occurs around 6/ =0.6,1,2, .... Closer to the
parametric resonance, the amplitude will show an expo-
nential rise. Moreover, the greater the ratio, the wider
the range of @ will be. All these are in accordance with
Bolotin’s study on the dynamic unstable region. From
Fig. 5, it is apparent that when A =0. 05, the M of the
second and the third are far less than the M without
damping. Hereby, damping is effective for preventing
instability.

(35)
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Fig.4 Midspan column deflection (P,/P, =0.2,A =0)
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Fig.5 Midspan column deflection (P,/P, =0.2,A =0.05)
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The analysis above shows that the major unstable re-
gion is the most dangerous. When ¢ =1, the range of 6/12
in which the column produces high amplitude is extremely
wide; when r=2 or t =3, the range of /(2 in which the
column can produce high amplitude is extremely narrow.
Damping, particularly relatively large damping, has a
great influence on the columns when # =2 or t =3. There-
fore, with certain damping, it will need an extremely
large excitation coefficient to trigger the parametric reso-
nance of the subordinate regions.

3 Dynamic Unstable Region of Columns with
Original Defects

From the analysis above, it can be concluded that the
original defects have a great impact on the dynamic unsta-
ble region of the column. The assumption is described as
below: When the largest amplitude surpasses a fixed val-
ue, the ratio of perturbed frequency and natural frequency
will belong to the unstable region. When the largest am-
plitude is equal to the fixed value, the two ends of the
dynamic unstable region can be defined and the fixed val-
ue should be the largest deflection that causes the initial
instability of the compression column. There are numer-
[15*16]. The
is adopted in this paper.

ous studies on critical deflection domestically

research theory of Dong et al. '

For slender columns,

1- w |EI
221 ) P
Joax = 2 (36)
" 2PF + i gsinZ P
wEl IN P A EI

where [ is the length of the column.

The width of the current dynamic unstable region is
mainly determined by the ratio of initial deflection and the
largest deflection causing the initial instability. In other
words, the range of its dynamic unstable region mainly
depends on the size of the original defects.

The similarities are obvious when the dynamic unstable
regions of Fig. 6 and Fig. 7 are compared with that of Bo-
lotin. Thus, the theory that there is a consecutive dynam-
ic unstable region is proved. Generally speaking, the cy-
clic force will cause transverse vibration under any fre-
quency. On most occasions, generally-used vibration iso-
lation and damping are of no use for parametrically excit-
ed vibration. As for the safety and reliability of the col-
umn, the first unstable region is the most dangerous.
When the damping is large enough, the column needs a
sufficiently large excitation coefficient to produce the sec-
ond and the third unstable region. From the analysis a-
bove, it can be concluded that the larger the original de-
fects, the higher the amplitude and the wider the unstable

region will be, which means that most of the frequency
ratios of the parametric resonance may be located at the
unstable region.
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4 Conclusions

1) The existence of original defects does not change the
fact that there is parametric resonance when the columns
are stressed. However, for the dynamic unstable region,
the larger the original defects, the wider the unstable re-
gion will be. Thus, the possibility of instability caused
by parametric resonance will also increase.

2) Original defects are proportional to the amplitude of
columns. The existence of damping baffles vibration, and
thus prevents the amplitude rising to infinity.

3) The unstable region is related to its corresponding
simple harmonic wave. The occurrence of k parametric
resonance is only related to the k simple harmonic wave
of the longitudinal force.
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