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Abstract: To accurately estimate the rock mass properties of a
high-speed railway tunnel, a back-analysis method using
multiple monitoring data based on the least-squares support
vector regression (LS-SVR) algorithm is presented. The root
mean square error (RMSE) and mean absolute percentage
error (MAPE) are used as evaluation indices. The results of
the parameter estimation are compared with those of the back
propagation neural network ( BPNN) and Gaussian process
regression (GPR). The results show that for the single type of
monitoring data, the LS-SVR model with vault settlement has
the lowest RMSE and MAPE values. Moreover, as the data
type increases, the RMSE value of the LS-SVR decreases,
especially for the model with the mixed data of vault
settlement, convergence, and floor heave. The comparison
results show that the presented model has lower RMSE and
MAPE values than BPNN and GPR. The LS-SVR model
using multiple monitoring data shows better performance than
existing back-analysis methods, improving the accuracy of the
estimation of rock mass properties.
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Complicated geological conditions (e. g., faults, high
groundwater level, soft soil, and low overburden)
exist in tunnel projects and could cause unexpected safety

1 . .
"' The accurate estimation

problems during construction
of rock mass properties is essential to simulate the actual
geological environment and timely adjust the construction
design. In general, in situ and laboratory tests can be

used to estimate the properties of rock masses. However,
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a few laboratory-scale tests are inadequate to characterize
these properties at large scales because of the inhomoge-
neity of rock mass'*”
rate mechanical parameters of rock mass is needed for
tunnel safety during construction.

Nowadays, the back-analysis method has been proven as
one of the most useful methods in estimating the properties

of rock and soil for the safe execution of underground
14-61 1

', Thus, the estimation of the accu-

structures For example, Gao et al. 1 estimated the
mechanical parameters of the surrounding rock mass for a
coal mine project using a neural network algorithm based
on measurement convergence displacements. Wu et al. ©*
identified the parameters of the rock mass properties based
on field monitoring displacement data by employing an ar-
tificial neural network. Gao'” presented an inverse back-
analysis method for underground engineering using an evo-
lutionary neural network, and the results show that the
back-calculated parameters were in good agreement with
the real values. These studies mainly focused on only
using one type of monitoring data to estimate the rock
mass parameters. Moreover, although satisfactory results
were obtained, neural network algorithms generally need a
large number of training samples to obtain satisfactory pre-
diction accuracy. Thus, it is necessary to establish a more
accurate estimation method for rock mass parameters.

In this study, a back-analysis method using multiple
monitoring data based on the least-squares support vector
regression ( LS-SVR) algorithm is proposed to estimate
rock mass properties.
monitoring data are used to train the LS-SVR back-analy-
sis model for estimating rock mass properties efficiently
and accurately. A Yangshan high-speed railway tunnel is
utilized to demonstrate the effectiveness of the presented
approach. The conclusions could provide a reference for
similar engineering problems.

1 Back-Analysis Method Based on LS-SVR
1.1 LS-SVR

Seven combinations of multiple

LS-SVR is suitable for multi-output regression prob-
lems, especially when the outputs correlate with one an-
171 In this section, we provide a brief introduc-
tion to the basic principles of LS-SVR. The problem is

other
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regarded as finding the mapping between an input vector
x={x, x,, ...,x”}T and an output vector y = {y,, ¥,, ...,
yn}T, where n is the number of samples. LS-SVR solves
this regression problem by finding a normal vector w =
{w,,w,,...,w,} and a displacement term b that minimize

the objective function with constraints'” :

min% [w > +C%£Ts

s.t. y, =(wik(x,x)) +b+g
i=1,2,..,n (1)

where «(x, x,) represents a kernel function, C is a posi-
tive real regularized parameter, and € = {g,, &,, ..., &, IS
denotes a vector of slack variables.

Because the deformation of the surrounding rock is
nonlinear, the radial basis function (RBF) kernel function
suitable for high-order nonlinear problems is adopted as

follows'*':

lx=x 1) )

Kk(x,x,) =exp( - >
-

where r denotes the kernel parameter.
The Lagrangian function for Eq. (1) is

Liw,b, & a) =%|| "k +C%8Ts—aT(w+b+£—y)
(3)

where @ = {a,, a,, .., a, 3T represents a vector consisting
of Lagrange multipliers.

The following linear system can be computed by sol-
ving Eq. (3)"":

HIHEN @

n

1 . - .
where H =2 + 61" denotes a positive definite matrix; £2

is defined by its elements w, ; = k(x;,x;) (j=1,2, ..., n);
and I, ={1,1, ..., 1}T represents a constant vector with n
terms.

The solutions of Eq. (4) are an optimal vector of La-
grange multipliers @” = {a,", ", ..., o, } (e, #0) and
an optimal displacement term b°. Then, the decision
function of this problem is

fx) =a k(x,x) +b" (5)

1.2 Evaluation metrics
In this study, the root mean square error (RMSE) and
mean absolute percentage error (MAPE) are used to eval-
uate the model performance. Specifically, the smaller the

RMSE and MAPE, the more accurate the model. They
are described as follows:

1 )
T2 (e =) x100% (6)

yk — YV (7)

x 100%

where y, and y, stand for the actual and estimated values
at the k-th term, respectively, and [/ is the number of tes-
ting samples.

1.3 Back-analysis technique using LS-SVR

To identify the properties of the rock mass using multi-
ple monitoring data, a back-analysis method based on
LS-SVR is proposed. The steps of the presented method
are described as follows:

1) Select appropriate property parameters for the rock
mass and determine the lower and upper bounds of these
parameters.

2) Perform the numerical model using randomly gener-
ated parameters within the predefined scale, and store the
calculated response in the dataset.

3) Normalize the dataset between O and 1 and split it
into a training set and a testing set. Train the back-analy-
sis model based on the LS-SVR algorithm based on evalu-
ation metrics, and use the grid search method to search
for the optimum hyperparameters (i. e., the positive real
regularized parameter C and RBF kernel parameter r) of
the LS-SVR.

4) Establish the LS-SVR model using the optimum hy-
perparameters. Input field monitoring data into the estab-
lished model and calculate the mechanical parameters of
the rock mass.

5) Perform the numerical model using the mechanical
parameters, and compare the results with the field moni-
toring data.

2 Applications

2.1 Project description and monitoring data

The Yangshan high-speed railway tunnel, with a length
of 850 m and a maximum overburden depth of 120 m, is
used to illustrate the proposed method. The excavation of
this tunnel started in 2019 using the New Austrian Tunne-
ling Method. The tunnel is supported by radial rock bolts
with a length of 5 m and a concrete lining with a thickness
of 0.2 m. The shallow section is approximately 100 m with
a rock mass of grade V, and it is comprised of strongly
weathered zones and shattered fault zones. The monitoring
data are important information during construction that di-
rectly reflect the tunnel status. An automatic monitoring sys-
tem is installed to obtain the monitoring data. The typical
cross-section and measuring points are shown in Fig. 1.

2.2 Numerical model and parameters

A finite difference model for the shallow section of the
Yangshan tunnel is simulated by FLAC 3D. The rock mass
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Fig.1 Typical cross-section and measuring points of the Yang-
shan tunnel (unit: m)

of the shallow section is grade V, which indicates that it
has similar rock conditions and properties. The numerical
model is chosen to be 100 m x 100 m x40 m to reduce the
boundary effect'"*". To obtain realistic model results,
numerical simulation steps are performed according to the
real construction sequences. The parameters of the tunnel
support system are determined based on previous stud-
ies'™ " Rock bolts are modeled as cable elements, and
Young’s modulus and Poisson’s ratio of the rock bolts are
210 GPa and 0. 3, respectively. The concrete lining is
modeled as the shell element, and Young’s modulus and
Poisson’s ratio of the lining are 29 GPa and 0.2, respec-
tively. Regarding the boundary conditions, the normal
movements on all sides of the 3D model are restrained,
whereas the bottom of the model is not allowed to move in
the three directions. Fig. 2 presents the case of the numer-
ical model and measuring points for the back analysis.

Rock mass

(a)

Concrete lining

Rock bolt

(b)
@ Measuring point of vault settlement
© Measuring point of convergence
o Measuring point of floor heave

Finite difference model of the Yangshan tunnel and

Fig. 2
measuring points. (a) Finite difference model(unit: m); (b) Tunnel

support system

For the properties of the rock mass, the Mohr-Coulomb
failure model is used to model the rock mass. Tab. 1 lists
the ranges of the parameters that are based on preliminary
geotechnical studies of the predominant rock types en-
countered at the tunnel site.

Tab.1 Lower/upper bounds of the rock mass parameters

Density/ Young’s Poisson’s Cohesion/  Friction angle/
(kg - m~3) modulus/MPa  ratio kPa (°)
1 900-2 100 50-500 0.2-0.3 80-120 25-35

To ensure construction safety, the monitoring data
are recorded over 30 d. The monitoring data are used as
input to the back-analysis technique of LS-SVR. Fig. 3
shows the monitoring data with tunnel face advancement.
To verify the accuracy of the finite difference model, a
verification case is conducted. Initial values of the rock
mass parameters correspond to the average values of their
parameter ranges. Fig. 3 also shows the comparison be-
tween the numerical solution and measuring data at the
same location. Evidently, significant residuals exist,
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which means that it is necessary to employ the back-anal-
ysis technique to make the values of the rock mass param-
eters close to real ones.

2.3 Parameter back analysis with multiple monitoring

The numerical model with random rock mass parameters
in the given ranges is run 130 times to prepare the training
samples'” . Each numerical model is executed for 30 d, and
the monitoring data of the vault settlement, convergence,
and floor heave is recorded. Then, the monitoring data col-
lected during construction is inputted into the LS-SVR model
to estimate the rock mass properties.

To obtain accurate rock mass properties, seven combi-
nations of multiple monitoring data are used to train the
LS-SVR model, including vault settlement ( V), conver-
gence (C), floor heave (F), mixed data of vault settle-
ment and convergence (V + C), mixed data of vault set-
tlement and floor heave (V + F), mixed data of conver-
gence and floor heave (C + F), and mixed data of vault
settlement, convergence, and floor heave (V + C + F).
Tab. 2 shows the training results of the LS-SVR for the
back analysis. For the single type of monitoring data, the
LS-SVR model with vault settlement has the lowest RMSE
value, which indicates that it shows the best performance.
Moreover, as the data type increases, the RMSE value of
the LS-SVR decreases, especially for the model with the
mixed data of vault settlement,
heave. Hence, the mixed data can model the relationship
between the monitoring data and rock mass properties with
good satisfactory prediction accuracy.

convergence, and floor

Tab.2 Training results of the back-analysis model for seven
combinations of multiple monitoring data

Data type  V C ST V+C V+ST C+ST V+C+ST

RMSE 0.10 0.13 0.11 0.04 0.05 0.07 0.02

Tab. 3 shows the estimation of rock mass properties for
seven combinations of multiple monitoring data. A com-
parison between the monitoring data and predicted data
from the back-analysis parameters from LS-SVR is shown
in Fig. 4. The RMSE and MAPE values between the mo-
nitoring data and predicted data are shown in Fig. 5. As
shown in Figs. 4 and 5, the predicted data exhibit a notably
good agreement with the monitoring data for seven models.
Moreover, the RMSE and MAPE values of the LS-SVR
model with the mixed data of vault settlement, convergence,
and floor heave are the lowest, which indicates that it exhib-
its superiority in estimating rock mass properties.

2.4 Comparison of parameter estimation methods

To further verify the performance of the LS-SVR mod-
el, the backpropagation neural network ( BPNN) and
Gaussian process regression ( GPR) will be used for the
comparative purpose. The BPNN is a forward feedback
network, and it is also the most commonly used neural

Tab.3 Estimation of rock mass properties for seven combina-
tions of multiple monitoring data

Density/ Young’s Poisson’s Cohesion/ Friction
Data type 3 .
(kg + m~’) modulus/MPa ratio kPa angle /(°)
v 2 004. 68 234.13 0.2654 105.80 28.83
C 2 013.35 237.21 0.241 6 89.86 29.18
F 2 004.40 241.32 0.2532 104.54 30.22
V+C 2 014.18 248.90 0.270 4 90.41 29.31
V+F 2 010.09 241.23 0.264 7 97.56  29.87
C+F 2014.47 245.01 0.246 6 90.80 29.70
V+C+F 2017.56 239.76 0.269 6 98.37 28.85
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Fig. 4
data from the back-analysis parameters with seven combinations

Comparison between the monitoring data and predicted

of multiple monitoring data. (a) Vault settlement; (b) Conver-
gence; (c¢) Floor heave

network in underground structures'™. A genetic algo-

rithm (GA) is used to search for the optimum hyperpa-
rameter of the BPNN. GPR is a nonparametric probabilis-
tic method to solve nonlinear functions'"”. Hence, GPR
has also been applied in various studies for solving non-
linear problems in tunnel projects. All of these methods
use the same learning settings as those proposed in this
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Fig.5 RMSE and MAPE of the monitoring data and predicted
data for seven combinations of multiple monitoring data

paper. The training results and estimation results of rock
mass properties are provided in Tabs. 4 and 5. As shown
in Tab. 4, the RMSE values of GPR and the GA-BPNN
are higher than those of LS-SVR. This finding proves
that GPR and the BPNN usually require more training
samples to improve their performance for nonlinear prob-
lems. Moreover, the LS-SVR model exhibits superiority
over the other two methods.

Tab. 4
three models

Training results of the back-analysis model for the

GA-BPNN
0.05

GPR
0.03

LS-SVR
0.02

Data type

Testing error

Tab.5 Estimation results of the rock mass properties for the three models

Data type Density/(kg + m %) Young’s modulus/MPa Poisson’s ratio Cohesion/kPa Friction angle/(°)
GA-BPNN 2 015. 60 244.08 0.2570 98.74 28.49
GPR 2 012.09 241.08 0.268 6 95.03 30.27
LS-SVR 2 017.56 239.76 0.269 6 98.37 28.85

A comparison between the monitoring data and pre-
dicted data from the back-analysis parameters from the
three methods is shown in Fig. 6. To further quantify the
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Fig. 6
models. (a) Vault settlement; (b) Convergence; (c) Floor heave

Prediction results of the monitoring data for the three

performance of the methods, the RMSE and MAPE are
also calculated and shown in Fig. 7. As shown in
Figs. 6 and 7, the GA-BPNN has the poorest predic-
tion results with the highest RMSE and MAPE values.
Moreover, LS-SVR shows lower RMSE and MAPE
values than GPR, which indicates that LS-SVR has
better prediction accuracy. This is because LS-SVR ex-
hibits superior generalization capacities for small sam-
ple datasets. Based on the results of the preceding ana-
lyses, LS-SVR is suitable for estimating rock mass
properties.

05r 45

04+ 14
m 03F 13 &
< o
2 02f 12 3

01F 11

0
GA-BPNN  GPR  LS-SVR

Fig.7 Comparison results of the prediction monitoring data for
the three models

3 Conclusions

1) A back-analysis method using multiple monitoring
data based on the LS-SVR algorithm is developed to esti-
mate rock mass properties. A finite difference model is
built and simulated to prepare training samples for the
back-analysis LS-SVR model. Moreover, for the single
type of monitoring data, the LS-SVR model with vault
settlement has the lowest RMSE value, which indicates
that it shows better performance.

2) As the data type increases, the RMSE value of
the LS-SVR decreases, especially for the model with
the mixed data of vault settlement, convergence, and
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floor heave. Therefore, the mixed data can model the
relationship between the monitoring data and rock
mass properties with good satisfactory prediction ac-
curacy.

3) To demonstrate the performance of the LS-SVR
model, it is compared with BPNN and GPR. LS-SVR
has better performance than the other two models.
Hence, it is a suitable technique for estimating rock mass
properties.
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