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Abstract:To solve the problem that existing methods have
difficulty in accurately obtaining the spatiotemporal
distribution of vehicle loads on bridges in complicated traffic
scenes, a spatiotemporal location identification method for
vehicle loads based on multi-view information fusion is
proposed. First, the vadYOLO-StrongSORT model is
developed to detect and track vehicles simultaneously in a
single view. Furthermore, based on image calibration and
cross-view vehicle matching, an adaptive weighted least
squares method is used for multi-view information fusion to
correct the vehicle trajectory. Finally, the spatiotemporal
distribution of axle loads is reconstructed by combining vehicle
trajectories with axle configurations. The performance of the
proposed method under typical traffic conditions is evaluated
using model tests. The results show that the multi-view
information fusion method significantly improves tracking
stability, localization accuracy, and anti-occlusion
performance compared with the single view-based vehicle
location identification method. In the lane-changing scenes,
the highest average localization error of the proposed method is
less than 2. 0 cm, which is significantly better than the 17. 0
cm of the single-view method. In multivehicle occlusion
scenes, the proposed method achieves a vehicle capture rate of
up to 100% , compared with a maximum of only 72. 5% for
the single-view method. Meanwhile, vadYOLO-StrongSORT
achieves the highest identification accuracy in the experiment
compared with other detection and tracking models.
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Vehicle loads are the major live loads that highway
bridges encounter throughout their service life. The

magnitude and spatiotemporal location of vehicle loads
significantly impact the safety and durability of highway
bridges[1 3] . Recently, the number of vehicles and the
volume of vehicle loads have significantly increased.
Therefore, the actual vehicle loads on bridges may differ
from those expected during the design and construction
periods. These significantly increased vehicle loads can
pose a serious threat to bridge structural safety[4 5] .
Therefore, it is necessary to accurately identify the spatio-
temporal distribution of vehicle loads on highway bridg-
es. Such identification is beneficial for comprehensively
assessing in-service bridges and improving the design of
new bridges.
　 The spatiotemporal distribution of vehicle loads, inclu-
ding information such as the magnitude and location of
vehicle loads. The bridge weigh-in-motion (BWIM) [6]

system is currently the mainstream method for obtaining
this information, as it can effectively estimate the axle
weight of vehicles directly based on the corresponding
bridge responses. This estimation method is more flexible
and has better durability and unbiased accuracy compared
with traditional methods[7] . Currently, the BWIM system
mainly uses strain sensors and other free-of-axle detector
sensors installed under bridge decks to obtain vehicle in-
formation such as vehicle speed and axle configura-
tion[8 9] . The vehicle is assumed to cross the bridge at a
constant speed along a fixed lateral location of the bridge
to obtain the axle weight of the vehicle. However, this
assumption does not always conform to real situations,
which can lead to erroneous calculation of the axle loca-
tion and further produce errors in vehicle weight identifi-
cation in real traffic scenes. To decrease identification er-
rors due to speed variations, some scholars have proposed
methods to correct vehicle speed and achieved better re-
sults in some simple traffic scenes[10 11] . However, these
methods have similar limitations, i. e., they cannot accu-
rately identify the axle weights in complicated traffic
scenes, especially when the vehicle speed change, lane
change, and multiple vehicles simultaneously cross over
bridges. This limitation is that the specific contribution of
each axle loading to the overall bridge response is difficult
to determine. The reason for this is that the location of
each axle at each moment during vehicle crossing over the



bridge cannot be accurately and consecutively identified.
In addition, these methods can only obtain the magnitude
of the vehicle loads and not its location on the entire
bridge. Therefore, it is necessary to conduct an in-depth
study of this problem.
　 Previous studies[12 14] have proven that computer vision
technology is efficient in identifying vehicle locations and
axle configurations, which provide a new path for obtai-
ning the spatiotemporal distribution of vehicle loads.
Chen et al. [15] and Dan et al. [16] identified the spatiotem-
poral locations of vehicles from surveillance videos based
on traditional vision methods such as background differ-
ence and template matching. However, these methods are
sensitive to environmental conditions, resulting in poor
performance in the spatiotemporal information acquisition
of vehicles. In recent years, several deep learning-based
computer vision methods have been proposed. Zhang et
al. [17] used the faster region-based convolutional neural
network ( R-CNN) model to obtain vehicle trajectories
and the number of axles. Xia et al. [18] used the YOLOv4
model to track vehicles on bridges and identify the gross
vehicle weights and axle weights based on the single
view-based method. On this basis, Zhao et al. [19] used
binocular vision technology to track axle locations and ob-
tained more accurate results. Yang et al. [20] initially real-
ized the spatiotemporal distribution of vehicle loads on
bridge decks using the YOLOv3 model combined with a
pavement weigh-in-motion system. Xu et al. [21] and
Dong et al. [22] also attempted to continuously track vehi-
cles along the driving direction. However, the above
methods may work well only in some simple traffic
scenes because the identification accuracy of the spatio-
temporal locations of the axles depends highly on the ve-
hicle body tracking results and the completeness of the ax-
le information. For more complicated traffic scenes, such
as multivehicle crossing over bridges simultaneously, the
tracking process is often unstable or even fails because of
mutual occlusion of the vehicles. In addition, the track-
ing performance of vehicles from a single view is easily
affected by the environment, which further affects the ro-
bustness of the entire identification system.
　 To solve these problems of tracking failure due to mu-
tual occlusion of vehicles and low accuracy of vehicle lo-
cation identification, a novel framework and system based
on multi-view information fusion is proposed. First, a
newly proposed vadYOLO-StrongSORT model is estab-
lished to obtain vehicle trajectories and axle configura-
tions for a single view. Then, a multi-view information
fusion method based on the adaptive weighted least
squares method is developed to further update the vehicle
trajectories based on image calibration and cross-view ve-
hicle matching. Finally, the spatiotemporal distribution of
axle loads is reconstructed by combining vehicle trajecto-
ries with axle configurations. The performance of the pro-

posed method is verified using model tests.

1　 Theory and Method

1. 1　 Detection and tracking model for the vehicle and
axle

1. 1. 1　 Detection model for the vehicle and axle
　 YOLOv7[23] is an emerging object detection model with
superior detection speed and accuracy compared with oth-
er single-stage object detection models. The detection
process is shown in Fig. 1. First, the backbone network
extracts feature information from the input image through
a series of key modules. Among them, the Conv + BN +
SiLU ( CBS) module enhances the number of features
learned by the backbone extraction network by stacking
and integrating feature layers and the concat operation.
The efficient layer aggregation network (ELAN) module
integrates the results of the CBS layers to enhance the va-
rious levels of feature learning. In addition, max pooling
1 (MP1) downsamples the input feature maps to support
the extraction of higher-level features in subsequent net-
work layers. Effective fusion of low-resolution features
with high-resolution features is realized by the upsample
(UP) operation on the neck network. The spatial pyra-
mid pooling and channel spatial pyramid convolution
(SPPCSPC) module performs feature extraction through
a path aggregation feature pyramid network and a parallel
Maxpool layer to avoid image distortion. Subsequently,
the target bounding boxes and categories of each grid are
predicted simultaneously in the head network. Finally,
the prediction result containing the location and the proba-
bility of the object is the output. However, when applied
to complicated traffic scenes, this model is not efficient
because unstable detection of vehicles and missing detec-
tion of axles often occur. Herein, an improved vadYOLO
object detection model is proposed, and its architecture is
shown in Fig. 1.
　 First, to improve the ability of the model to identify
vehicles and axles in complicated traffic scenes, the
squeeze-and-excitation (SE) [24] module is embedded be-
tween the backbone and neck networks of the YOLOv7
model. The SE module is an attentional mechanism that
improves the performance of convolutional neural net-
works (CNNs) by adaptively learning the importance of
feature mappings. The acting process of the SE module is
illustrated in Fig. 1. Before applying the SE module ( in-
dicated by the blue cuboid), each channel of the feature
map has the same weight. After passing through the SE
module (marked by a multicolored cuboid with each col-
or representing a different weight), the weight of each
feature channel becomes different. This step enables the
neural network to focus on the vehicles and axles that
should be detected.
　 Generally, the imaging sizes of axles are smaller than
those of vehicle bodies,whereas the downsampling factor
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Fig. 1　 Network structure of the proposed vadYOLO-based detection model

of the YOLOv7 model is larger. This difference makes it
challenging to learn the feature information of the axles
for the deep feature map. Therefore, a four-fold down-
sampling layer is added to the YOLOv7 model to enhance
the receptive fields, which makes the YOLOv7 model
more sensitive to axles.
　 Furthermore, the imaging sizes of vehicles increase as
they move closer to the camera and decrease as they move
away from the camera. The YOLOv7 model considers the
complete intersection over union (CIoU[25] ) as the loss
function of location regression, in which the aspect ratio
describes the relative value. However, a certain degree of
ambiguity exists in this process. When vehicles are away
from the camera, the differences in aspect ratios between
these vehicles can become too unapparent to distinguish
these objects for the CIoU loss function. Note that the ef-
ficient intersection over union ( EIoU[26] ) loss function
considers these issues. The number of high-quality anchor
boxes (vehicles) with small regression errors is less than
that of low-quality anchor boxes ( axles) with large re-
gression errors in a single image. Low-quality anchor bo-
xes usually produce excessive gradients that affect the
training performance; thus, the EIoU loss function cannot
directly work well. Therefore, the CIoU loss function of
YOLOv7 is replaced by the Focal-EIoU[26] loss function.
1. 1. 2　 Tracking model for the vehicle
　 StrongSORT[27] is a tracking model with outstanding
performance. In this model, the method used to track the
object is based on its appearance features, and Kalman
filtering is used to predict the motion of the object to re-
duce confusion and false associations due to the similarity
of the features, thus tracking the object more clearly.
This model was selected for tracking vehicles in this study,
and the specific tracking process is described in Ref.
[27] . First, the original frames of the video are ob-

tained, and the vehicles are detected through the vadYO-
LO network. Then, after using the enhanced correlation
coefficient method for camera motion compensation, the
noise scale adaptive Kalman filter is used to obtain the
motion features of vehicles. A bottleneck feature extractor
that uses ResNetSt50 as the main network is used to ob-
tain the appearance features of the vehicle. Additionally,
an exponential moving average feature update strategy is
used to enhance the feature-matching performance. After
calculating the cost and gate matrices, the pixel trajecto-
ries of the vehicles are obtained using Vanilla global line-
ar assignment matching.

1. 2 　 Coordinate transformation from image space to
object space

　 To transfer pixel trajectories to physical trajectories, a
coordinate mapping model of the image space and object
space (see Fig. 2) must be established. Fig. 2(a) shows
the camera imaging scene, where u-o-v is the pixel coor-
dinate system, x1 -O1 -y1 is the image coordinate system,
x2y2z2 -O2 is the camera coordinate system, and XYZ-O3 is
the world coordinate system. Set the point (X1, Y1, Z1)
in the world coordinate system to be mapped to the point
(u, v) in the pixel coordinate system. Based on the pin-
hole camera model (see Fig. 2(b)), the perspective pro-
jection can be obtained by

Zc[u　 v　 1] T = KP[X1 　 Y1 　 Z1 　 1] T (1)

where Zc is the projection of point T in the world coordi-
nate system in the z2 direction under the camera coordi-

nate system x2y2z2 -O2; K =
fx 0 u0 0
0 fy v0 0
0 0 1 0
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is the inter-

nal reference of the camera; P =
R T

O1 × 3 1[ ] is the external
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(a) 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 　 (b)

Fig. 2　 Schematic of the coordinate transformation from image space to object space. (a) Camera image scene; (b) Pinhole camera model

reference of the camera, R denotes the rotation matrix,
which is used to describe the rotational transformations of
an object in space, and T denotes the translation matrix,
which is used to describe the translational transformations
of an object in space.
　 If the bridge deck is a plane and the world coordinate
system is set on this plane, the coordinate of the point
(X1,Y1) on the bridge deck can be found by

[X1 　 Y1 　 1] T =H - 1
3 × 3Zc[u　 v　 1] T (2)

where H3 × 3 is the mapping matrix from the perspective
transformation of the object space to the image space.
The specific solution can be found in Refs. [18,28] .

1. 3　 Cross-view vehicle matching

　 By matching vehicles in multiple views, the system can
simultaneously track the vehicles throughout the scene
rather than independently in each view. As a result, for
the multi-view information fusion method, matching ve-
hicles in the cross-view is required. This means matching
the pixel trajectories of the same vehicle in multiple views
as it crosses over the bridge. The specific matching steps
are as follows:
　 1) Matching preparation. First, temporal synchroniza-
tion of the multi-view system is performed, and mapping
models from pixel coordinate systems in various views to
the uniform world coordinate system are established.
Then, the pixel coordinates of the center points and ima-
ges are extracted for each frame of the vehicle tracking
boxes in each camera. Finally, the pixel coordinates are
transformed to the world coordinates, and the images are
transformed to the appearance feature matrices. The world
coordinates correspond to the appearance feature matrices
in the order of the video frames.
　 2) Matching database establishment. If vehicles are
tracked in the overlapping area (bridge deck) of N cam-
eras, each camera assigns an identity ( ID) number to the
tracked vehicle. The vehicle of the i-th ID number in the
n-th camera is denoted as OCnIDi . The sets of world coor-
dinates and appearance feature matrices of each frame for
the tracked vehicles in each camera were constructed. For
example, the set C1 = {OC1ID1,OC1ID2,…,OC1IDM} denotes
all vehicles tracked using camera 1, and M is the total
number of vehicles tracked using camera 1.

　 3) Overall feature similarity calculation. The vehicle
OC1ID1 in camera 1 is selected as the object to be matched.
The Euclidean distance of the world coordinates between
it and the vehicle OC2ID1 in the corresponding video frame
in camera 2 is computed, and a threshold is set. Addi-
tionally, the similarity between the vehicle appearance
feature matrices of the corresponding video frames is cal-
culated, and a threshold is set. The calculated results of
dividing the number of video frames within the threshold
by the total number of frames of the corresponding video
frames are counted as the spatiotemporal feature similarity
and the appearance feature similarity, respectively. The
overall feature similarity can be calculated by aS1 + (1 -
a)S2, in which a is the weighting factor, S1 is the ap-
pearance feature similarity, S2 is the spatiotemporal fea-
ture similarity. The above steps are repeated to calculate
the overall feature similarity between the vehicle OC1ID1

and all vehicles tracked using camera 2.
　 4) Matching vehicles. Set an overall feature similarity
threshold and eliminate the ID number exceeding the
threshold in the set of C2, and the set of C2 is queried. If
only one vehicle is left in the set, the matching of the ve-
hicle under camera 2 is completed. If more than one vehi-
cle is left in the set, the vehicle with the largest similarity
is considered the matching object. If there is no vehicle
left in the set, the vehicle that should be matched in cam-
era 2 is occluded during the entire tracking process. The
above steps are repeated to sequentially match the vehicle
in other cameras.

1. 4　 Multi-view information fusion

　 Although single view-based methods can track and lo-
cate vehicles, relying on only one camera in a real bridge
scene is more susceptible to environmental factors such as
light variations and camera vibrations, which can affect
the accuracy and stability of localization. In contrast, the
proposed method uses multiple cameras for fusion locali-
zation. Although one camera is affected by light varia-
tions, the other cameras can still provide relatively stable
information. Therefore, the proposed method exhibits
higher robustness in response to lighting variations. To
obtain accurate and stable vehicle trajectories, a multi-
view information fusion method based on the adaptive
weighted least squares method is developed.

4 Deng Lu, Deng Jiayu, Wang Wei, He Wei, and Zhang Longwei　



　 Note that spatiotemporal synchronization is a prerequi-
site for achieving multi-view information fusion. Spatio-
temporal synchronization ensures that images captured by
various cameras are consistent in space and time. In this
study, the four cameras are connected by a videocassette
recorder that contains dedicated hardware synchronization
circuitry, which ensures that all connected cameras cap-
ture according to the same clock signal, thus reducing de-
lays at the hardware level. Spatial synchronization can be
achieved by converting the image coordinate systems from
four views into a uniform world coordinate system.
　 After the multi-view system is spatiotemporally syn-
chronized, for each camera, the relational equation of the
transformation from image space to object space can be
obtained as follows:

　
h11 - h31u i h12 - h32u i

h21 - h31v i h22 - h32v i
[ ]

X1

X2
[ ] =

h33u i - h13

h33v i - h23
[ ] (3)

where h ij( i,j = 1,2,3) is the parameter of the mapping
matrix; (X1,X2 ) is the world coordinate of the vehicle
for the i-th frame; (u i,v i) is the pixel coordinate of the
vehicle for the i-th frame.
　 When multiple cameras track the same vehicle, to ob-
tain the relational equation of the transformation for the
multi-view system, Eq. (3) can be extended to AX = b,
where
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h(1)
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,　 X =
X1

X2
[ ] (4)

where h(n)
ij (n = 1,2,…,N) is the parameter of the map-

ping matrix for the n-th camera; (u(n)
i ,v(n)

i ) is the pixel
coordinate of the i-th frame for the n-th camera.
　 AX = b is an overdetermined equation, and an adaptive

matrix of weights is developed for the weighted least
squares solution.

XWLS = (ATWiA) - 1ATWib (5)
Wi = diag(wi

1,w
i
2,…,wi

N) (6)

where Wi is the weight matrix of the i-th frame in the
multi-view system; wi

n = diag(wi
n,1,wi

n,2 ) is the weight
matrix of the i-th frame for the n-th camera; wi

n,j( j = 1,
2) is calculated by

wi
n,j =

1　 　 　 　 　 R i
n,j < R0

R0

R i
n,j

R i
n,j ≥R0{

(7a)

(7b)
where R0 is a reasonable value of the residual set, which
is determined as the average value of the residual values
R i

n,j computed by selecting several frames of the tracked
video. If the measurement point exceeds this value, the
weight can be calculated according to Eq. (7b); R i

n,j is
the value of the j-th element in the residual matrix Ri

n of
the i-th frame for the n-th camera, and Ri

n is calculated by

Ri
n = AnXOLS - bn (8)

where An and bn are the mapping matrices for the n-th
camera; XOLS is the solution of ordinary least squares.

2　 Traffic Model Test
　 Traffic model tests were conducted in an indoor labora-
tory to verify the accuracy and stability of the proposed
method. The entire indoor test scene is shown in Fig. 3.
The monitoring area ( bridge deck) is 2. 7 m long and
0. 9 m wide and comprises five traffic lanes. Four camer-
as with a 1 920 × 1 080 pixel resolution and a frame rate
of 25 frame / s were used in the tests. Three types of vehi-
cle models were considered, including a 2-axle car, two
3-axle trucks, and a 5-axle trailer. Thirty reference con-
trol points were selected on the bridge deck, as indicated
by the red points in Fig. 3, to help solve the transforma-
tion matrix ( Eq. (2)) . Note that these cameras were
placed in randomized erection positions and capture an-
gles. Just ensure that the cameras can fully cover the area
to be monitored. For actual scenes, camera positions and
capture angles may need to be adjusted according to the
actual situation.

Fig. 3　 Indoor laboratory test scene (unit: m)
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　 The entire test was divided into two parts: one conduc-
ted in simulated random traffic scenes and the other in ar-
tificially set traffic scenes. The detection, tracking, and
anti-occlusion performance of the proposed method, as
well as its accuracy in identifying axle configurations,
were verified through tests conducted in a simulated ran-
dom traffic scene using the adapted remote manipulation.
The localization accuracy of the proposed method was
verified using artificial placement to set the precise vehi-
cle location.

3　 Result Analysis

3. 1　 Verification of object detection and tracking per-
formance

　 Video frames of traffic flows were extracted from four
cameras to establish an image dataset. In this test, 697
images of the original dataset were expanded to 3 881 im-
ages by performing a series of data enhancement opera-
tions such as random scaling, rotation, horizontal flip-
ping, cropping, and brightness adjustment to form a di-
verse training sample to improve the generalization per-
formance of the model. Finally, we divided the training,
validation, and test sets in a ratio of 7∶ 2∶ 1 to ensure that
the model fully learns and adapts to the input images un-
der various changing conditions. The input image size in
the training network was 640 × 640 pixels, and the batch
size was eight. As shown in Fig. 4, after 1 000 epochs,
the model converged, the loss was reduced to 0. 015, and
mAP@ 0. 5 reached 98. 2% .
　 To verify the detection and tracking performance of the

Fig. 4　 Training process

proposed model ( combined with the StrongSORT algo-
rithm), a comparative validation was performed with
YOLOv5 and YOLOv7 based on the traffic flow videos.
The detection results are presented in Figs. 5 ( a) -( c) .
The original YOLO model failed to detect the axles far-
ther away from the camera as well as the partially occlu-
ded vehicles, whereas the proposed vadYOLO model can
not only accurately detect the vehicle information but also
has the highest confidence level of the overall identifica-
tion results among the three models. Figs. 5 ( d) -( f)
show the tracking results of the three models in the same
scene. The YOLOv5-StrongSORT model experienced the
problem of missing track when tracking the vehicle. Al-
though the YOLOv7-StrongSORT model tracked the vehi-
cle better, the trajectories showed some fluctuations. In
comparison, the proposed method successfully tracked all
trajectories with stable performance under all working
conditions. Two trucks with the same appearance were
successfully tracked, indicating that the proposed model
is effective in tracking vehicles with similar appearance
features.

(a) 　 (b) 　 (c)

(d) 　 (e) 　 ( f)

Fig. 5　 Various model detection and tracking results. (a) YOLOv5 detection results; (b) YOLOv7 detection results; (c) vadYOLO detec-
tion results; (d) YOLOv5-StrongSORT tracking results; (e) YOLOv7-StrongSORT tracking results; ( f) Proposed model tracking results

　 To further verify the performance of the proposed
method for vehicle detection and tracking, Fig. 6 shows
the identification results in some special scenes. Fig. 6
(a) shows the identification result in the presence of the
vehicle shadows at various angles. Fig. 6(b) shows the
identification result when the vehicles were blurred be-

cause of a higher speed. Fig. 6(c) shows the identifica-
tion result with the light variation caused by the shadow
of the large-volume vehicle. The results show that the ve-
hicles can be successfully detected and tracked using the
proposed method in the special scenes of this test.
　 Comparison results regarding the quantitative perform-
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ance of the three models are presented in Table 1. The de-
tection accuracy is characterized by model average preci-
sion. Tracking accuracy is characterized by the ratio of the
number of correct frames ( frames other than false posi-
tives, missing tracking, and abnormal identity-switching
situations) to the total number of video frames. Efficiency
is quantified by the time consumed for per-frame detection
or tracking. As shown in Table 1, when the adopted model
was changed from YOLOv5 to YOLOv7 and the proposed
vadYOLO, both the detection and tracking accuracy of the

objects and the time consumed increased. Among the three
models, YOLOv5 had the best efficiency but was also the
least accurate model. In comparison, the proposed vadYO-
LO model was tested with the highest detection and track-
ing accuracy, especially in the detection of axles, although
the efficiency slightly decreased. Specifically, the pro-
posed method achieves the average accuracy of 98. 5% ,
97. 9% , 97. 1% for vehicle body detection, small-size ve-
hicle axle detection and vehicle tracking with the 1. 2% ,
6. 2% , 2. 6% improvement, respectively.

(a) 　 (b) 　 (c)
Fig. 6　 Identification results in special scenes. (a) Vehicle shadow; (b) Vehicle blur;(c) Light changes

Table 1　 Comparison of the detection and tracking performance of various models

Model Vehicle detection
accuracy / %

Axle detection
accuracy / %

Detection efficiency /
(ms·frame - 1)

Tracking accuracy /
%

Tracking efficiency /
(ms·frame - 1)

YOLOv5-StrongSORT 96. 8 87. 7 15. 9 93. 7 20. 5
YOLOv7-StrongSORT 97. 3 91. 7 16. 2 94. 5 21. 3
vadYOLO-StrongSORT 98. 5 97. 9 16. 9 97. 1 21. 6

3. 2　 Verification of the localization accuracy in occlu-
sion-free scenes

　 To verify the localization accuracy of the proposed
method in occlusion-free scenes, single-vehicle tests were
conducted under both the straight-line driving and lane-
changing driving scenes. The vehicle was artificially
placed in a specified location so that its real location
could be obtained to verify the localization results. Under
the straight-line driving scenes, 10 detection points were
set in Lanes 1, 3, and 5. Under lane-changing driving
scenes, 31 detection points are set in a sinusoidal path to
further verify the localization performance of the proposed
method in the case of vehicle turning (change of vehicle
direction) .
　 Fig. 7 shows the typical identification results of the ve-
hicle trajectories under straight-line driving conditions,
including the tracking results of the vehicle trajectories
obtained by the single-view method and the multi-view
information fusion method, as well as the artificial setting
trajectory. Localization based on the single view-based
method is prone to an overall offset error. In contrast, the
trajectory identification result based on the proposed
method matches well with the set locations. For better
comparison, the statistical results of the localization errors
of vehicle trajectories before and after fusing the multi-
view information under the same scene are displayed in
Fig. 8(a), where the bars represent the mean error of all
frames, the error bars represent the standard deviation.
The offset error is significantly reduced by fusing the
multi-view information.

Fig. 7　 Comparison of the vehicle trajectories obtained by the
single-view and the proposed methods under straight-line driv-
ing conditions

(a)

(b)
Fig. 8 　 Error in identification results for vehicle straight-line
driving. (a) Localization errors before and after fusion; (b) Localiza-
tion error for various vehicle types and driving lanes
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　 Fig. 8( b) shows the statistical results of the localiza-
tion errors after fusing the multi-view information for all
straight-line driving conditions considered in the study.
Various vehicle types ( car, truck, and trailer), driving
lanes (Lanes 1, 3, and 5), and two directions (X-Loca-
tion and Y-Location) were considered. The localization
error under all conditions is less than 2. 0 cm. This indi-
cates that the proposed method can lead to high localiza-
tion accuracy and better tracking stability for various vehi-
cle types, lanes, and directions. In addition, the locali-
zation errors (after fusion) of various vehicles driving in
the X-direction fluctuate less, and the error values are also
lesser than those in the Y-direction. This phenomenon ari-
ses because the object-space location change in the Y-di-
rection in the camera field corresponds to a smaller pro-
jected distance. It was also found from Fig. 8(b) that a
longer vehicle generally corresponds to a larger localiza-
tion error. This may be because the center of the outer
rectangle of the vehicle ( the detection box) is the vehicle
location in the tracking algorithm. Thus, a larger aspect
ratio of the vehicle in the camera field usually results in
larger localization errors.
　 Fig. 9 shows the typical identification results of the ve-
hicle trajectories under lane-changing driving scenes. An
overall offset similar to that in straight-line driving scenes
is also observed. The proposed multi-view information
fusion method can improve localization accuracy. Fur-
thermore, this overall offset in lane-changing driving con-
ditions is smaller in the peaks and troughs of the sinusoid-
al curve path than at other locations. This is because the
vehicle direction in this position is parallel to the lane,
and the center of the vehicle detection box is closer to the
setting location.

Fig. 9　 Comparison of the vehicle trajectories obtained by the
single-view and the proposed methods under lane-changing
driving conditions

　 For further comparison, Fig. 10 shows the statistical re-
sults of the localization errors before and after fusing the
multi-view information for various vehicle types under
lane-changing driving conditions. The bars represent the
mean error of all frames, and the error bars represent the
standard deviation. As shown in Fig. 10, for various ve-
hicle types and localization directions, the multi-view in-
formation fusion method can improve localization accura-

cy. In particular, for larger trailers, the maximum of the
mean localization error in the X-direction was reduced
from 6. 0 to 1. 5 cm, achieving a reduction of over 75% ;
the maximum of the mean localization error in the Y-di-
rection was reduced from 17. 0 to 2. 0 cm, realizing a re-
duction of almost 90% .

(a)

(b)
Fig. 10　 Error in identification results of vehicle lane-changing
driving before and after fusion. (a) X-Location errors based on sin-
gle-view and multi-view fusion; (b) Y-Location errors based on single-
view and multi-view fusion

　 To more comprehensively assess the effectiveness of
the proposed method compared with the traditional single-
view method, Table 2 demonstrates the relative error val-
ues of the localization results of the three-vehicle types
with relation to the bridge width before and after the fu-
sion of localization based on the four views under two
working conditions. The overall relative error in the lane-
changing driving scene was larger than that in the straight-
line driving scene, and the error increased accordingly as
the vehicle size increased. Further observation of the table
shows that the relative error of localization based on the
single-view approach reached 18. 88% . In contrast, with
the proposed multi-view information fusion localization
method, the relative errors of the three-vehicle types un-
der the test conditions remained below 2. 15% .

3. 3　 Verification of the anti-occlusion performance in
multivehicle occlusion scenes

　 To verify the anti-occlusion performance of the pro-
posed method, the common scenes of multiple vehicles
simultaneously driving were considered, as shown in Fig.
11. The test vehicle was operated by a remote control,
and the vehicle was not controlled to travel in a straight
line due to possible control errors. Fig. 12 shows the
tracking results of the vehicle trajectories for cameras 1
and 4. When using a single camera for vehicle tracking,
the phenomenon of vehicles occluding each other may
lead to the miss of tracking objects, making it impossible
to track the complete trajectories of vehicles.
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Table 2　 Relative error of localization in occlusion-free scenes %
Working
condition

Vehicle
type

Camera 1 Camera 2 Camera 3 Camera 4 Fusion
X Y X Y X Y X Y X Y

Straight-line
driving

Car 1. 99 5. 81 1. 41 3. 09 3. 26 5. 42 2. 46 4. 05 0. 66 0. 94
Truck 2. 02 5. 32 1. 51 3. 96 3. 36 4. 52 2. 86 4. 58 0. 83 1. 55
Trailer 5. 44 9. 42 4. 36 10. 39 5. 69 10. 04 4. 69 10. 46 1. 03 1. 89

Lane-changing
driving

Car 1. 56 3. 74 1. 15 3. 41 2. 06 4. 60 1. 14 3. 24 1. 18 1. 26
Truck 2. 13 5. 83 1. 73 3. 80 3. 79 4. 67 3. 03 4. 88 1. 19 1. 87
Trailer 5. 64 15. 66 6. 57 18. 88 6. 90 17. 45 5. 82 17. 87 1. 53 2. 14

(a)

(b)

Fig. 11 　 Multivehicle occlusion scenes. ( a) Camera 1 scenes;
(b) Camera 3 scenes

(a)

(b)

Fig. 12 　 Identification results of vehicle trajectories based on
the single view-based method. ( a) Camera 1 tracking trajectories;
(b) Camera 4 tracking trajectories

　 After fusing the four-view information, the complete
vehicle trajectories can be identified, as shown in Fig. 13
(a) . Fig. 13( b) shows the results of the vehicle speed
distribution when the first vehicle entered the monitoring
area and the last vehicle left the area. The vehicle speeds
were mainly distributed between 10 and 100 cm / s. This
shows that the proposed method can track vehicles rela-

tively well for vehicles driving at various speeds under the
test conditions. Note that there are some sudden changes
in vehicle speed. As the vehicles were controlled by man-
ually manipulating the remote control, the manipulator
performed intermittent control to keep them moving along
the set lanes.

(a)

(b)

Fig. 13　 Identification results of vehicle trajectories in multive-
hicle occlusion scenes. ( a) Vehicle trajectories for fusing four-view
information; (b) Vehicle speeds for fusing four-view information

　 To further quantitatively analyze the anti-occlusion per-
formance of the proposed method, various occlusion
scenes were also simulated, including the two-vehicle oc-
clusion, three-vehicle occlusion, and four-vehicle occlu-
sion scenes. Ten randomized trials were conducted for
each scene. Table 3 shows the statistical results for the
object capture rate of the proposed method. Table 3
shows that the more complicated the occlusion situation,
the lower the single-view object capture rate. Even for
simpler two-vehicle occlusion scenes, the vehicle capture
rate is only 97. 6% . In complicated traffic scenes with
four vehicles, the capture rate decreases dramatically to
62. 5% , with the highest capture rate being only 72. 5% .
In contrast, the proposed method maintains a target cap-
ture rate of 100% for all types of occlusion scenes.
Hence, the proposed method can effectively improve the
anti-occlusion performance of vehicle tracking in compli-
cated traffic scenes.
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Table 3　 Object capture rate in various occlusion scenes %
Number of

vehicles
Camera

1
Camera

2
Camera

3
Camera

4 Fusion

2 95. 3 93. 8 91. 5 97. 6 100
3 85. 7 77. 5 89. 5 90. 3 100
4 62. 5 70. 0 72. 5 67. 5 100

3. 4　 Results of axle identification and axle spatiotem-
poral distribution

　 Table 4 summarizes the relative errors in axle spacing
identification under various working conditions. Among

them, the identification results of the number of axles for
various types of vehicles under each working condition
are correct, and the identification accuracy reaches
100% . The relative error of axle spacing identification is
kept within 5. 0% overall. As the number of vehicles on
the bridge increases, the relative errors also increase.
Even so, the maximum error is still controlled within
5. 23% , which achieves an accuracy close to that of di-
rect measurement by road sensors and can fulfill the accu-
racy requirements of techniques such as BWIM[29] .

Table 4　 Relative errors in axle spacing identification under various traffic conditions %

Number of vehicles
Car Truck Trailer

S1 = 12 cm S1 = 14 cm S2 = 4 cm S1 = 11 cm S2 = 5 cm S3 = 19. 5 cm S4 = 5 cm
1 2. 08 0. 75 1. 00 3. 50 1. 00 0. 50 0. 60
2 1. 92 2. 75 1. 88 1. 36 2. 22 2. 46 1. 80
3 1. 00 3. 17 1. 63 3. 36 2. 80 - 2. 92 2. 40
4 0. 88 3. 85 2. 63 5. 23 4. 10 3. 53 3. 50

　 Note: S1 represents the distance from the first axle to the second axle of the vehicle; the real value of the axle spacing is shown in parentheses.

　 Fig. 14 shows the spatiotemporal distribution of axles
on the bridge deck at the 60th, 90th, and 120th frames
based on multi-view information fusion. As shown in
Fig. 14, the axles of the four types of vehicles on the bridge

(a)

(b)

(c)

Fig. 14　 Identification results of the spatiotemporal distribution
for axle loads. (a) Frame 60 result; (b) Frame 90 result; (c) Frame
120 result

are continuously tracked and localized, and the axle spac-
ings and the number of axles for the vehicles can be clear-
ly represented. The results show that the proposed method
performs well in identifying vehicle trajectories and axle
configurations. The localization method for axles based
on matching the vehicle trajectory and the axle configura-
tions can effectively compensate for the lack of location
information when the axles are occluded and obtain the
spatiotemporal distribution of all the axles at each mo-
ment.

4　 Conclusions

　 1) An effective object detection and tracking model
vadYOLO-StrongSORT was proposed to simultaneously
detect and track both vehicle bodies and axles, which
showed better stability and higher accuracy than tradition-
al object tracking models under complicated traffic
scenes. Specifically, compared with traditional models,
the average accuracy of vehicle body detection, small-size
vehicle axle detection, and vehicle tracking of the pro-
posed model increased by 1. 2% , 6. 2% , and 2. 6% ,
reaching 98. 5% , 97. 9% , and 97. 1% , respectively.
　 2) The proposed multi-view information fusion method
for locating vehicles can significantly reduce the overall
offset error compared with single view-based methods.
Laboratory tests show that for various vehicle types under
straight-line and lane-changing driving scenes, the highest
average localization error of the proposed method can be
kept within 2. 0 cm, whereas that of single view-based
methods can reach up to 17. 0 cm. Furthermore, the rela-
tive error of vehicle localization based on multi-view fu-
sion was reduced from 18. 88% in the single-view method
to less than 2. 15% .
　 3) The proposed multi-view information fusion method
can greatly improve anti-occlusion performance in vehicle

01 Deng Lu, Deng Jiayu, Wang Wei, He Wei, and Zhang Longwei　



tracking. Random traffic tests show that for the single
view-based methods, the capture rate of the vehicle is on-
ly 97. 6% , even for a simple traffic scene in the presence
of two vehicles, and the capture rate drops sharply to
62. 5% under a complicated traffic scene in the presence
of four vehicles. In contrast, the object capture rate of
the proposed method under various occlusion conditions
can be maintained at 100% .
　 4) The proposed vadYOLO method can effectively
identify the number and spacing of vehicle axles. The test
results show that the proposed method achieves an identi-
fication accuracy comparable to that of direct measure-
ment through road sensors. The relative identification er-
rors of vehicle axle spacings were maintained within
5. 0% overall, with a maximum error is 5. 23% . These
results fulfill the requirements of the commercial BWIM
system.
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基于多视角信息融合的公路桥梁

车辆荷载时空位置识别
邓　 露1,2 　 邓佳宇1 　 王　 维1 　 何　 维1 　 张龙威3

( 1 湖南大学土木工程学院, 长沙 410082)
( 2 湖南大学工程结构损伤诊断湖南省重点实验室, 长沙 410082)

( 3 湖南科技大学土木工程学院, 湘潭 411201)

摘要:针对现有方法在复杂交通场景下难以准确获取桥上车辆荷载时空分布的问题,提出了一种基于多视

角信息融合的车辆荷载时空位置识别方法. 首先,开发了 vadYOLO-StrongSORT 模型,可在单视角下同时检

测和跟踪车辆;然后,在图像标定和跨视角车辆匹配基础上,采用自适应加权最小二乘法进行多视角信息融

合以修正车辆轨迹;最后,结合车辆轨迹和车轴配置,重构车轴荷载的时空位置分布. 通过模型试验评估了

所提方法在典型交通场景下的性能. 结果表明:相较于基于单视角的车辆位置识别方法,多视角信息融合方

法在跟踪稳定性、定位精度和抗遮挡性能上有显著提升;变道场景下,所提方法的最高平均定位误差低于

2. 0 cm,明显优于单视角方法的 17. 0 cm;多车遮挡场景下,所提方法的车辆捕获率可达 100% ,而单视角方

法最高仅为 72. 5% ;同时,与其他检测跟踪模型相比,vadYOLO-StrongSORT 在试验中取得了最高的识别

精度.
关键词:桥梁工程;车辆荷载;时空位置;多视角信息融合;车轴识别;桥梁动态称重;桥梁健康监测
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