Monoidal Hom-Hopf algebra on Hom-twisted product

Monoidal Hom-Hopf algebra on Hom-twisted product

You Miman  Wang Shuanhong

(Department of Mathematics, Southeast University, Nanjing 211189, China)

Abstract:Let (H,α) be a monoidal Hom-bialgebra and (B,β) be a left (H,α)-Hom-comodule coalgebra. The new monoidal Hom-algebra H is constructed with a Hom-twisted product Bσ[H] and a B×H Hom-smash coproduct. Moreover, a sufficient and necessary condition for H to be a monoidal Hom-bialgebra is given. In addition, let (H,α) be a Hom-σ-Hopf algebra with Hom-σ-antipode SH, and a sufficient condition for this new monoidal Hom-bialgebra H with the antipode S defined by S(b×h)=(1B×SH(α-1(b(-1))))·(SB(b(0))×1H) to be a monoidal Hom-Hopf algebra is derived.

Key words:monoidal Hom-Hopf algebra; Hom-twisted product; Hom-smash coproduct

Caenepeel et al.[1] described Hom-structures from the point of view of monoidal categories and introduced monoidal Hom-algebras, monoidal Hom-coalgebras, monoidal Hom-Hopf algebras, etc. In 2013, Chen et al.[2] introduced integrals for monoidal Hom-Hopf algebras and Hom-smash products. Then, Liu et al.[3] constructed a Hom-smash coproduct, which generalized the classical smash coproduct and illustrated the category of Hom-Yetter-Drinfeld modules and proved that the category is a braided monoidal category. In Ref.[4], the authors constructed a Hom-crossed product, which generalizes the classical crossed product introduced in Refs.[5-7]. Can we give a new monoidal Hom-algebra construction of the special Hom-crossed product and the Hom-smash coproduct?

In this paper, we give a positive answer to the question above.We recall the basic definitions concerning monoidal Hom-Hopf algebras, and we find a sufficient and necessary condition for H, with the Hom-twisted product Bσ[H] and the Hom-smash coproduct B×H for a comodule coalgebra (B,β) over (H,α), to form a monoidal Hom-bialgebra and derive a sufficient condition for this new bialgebra to be a monoidal Hom-Hopf algebra.

1 Preliminaries

Throughout this paper, we refer the readers to the books of Sweedler[8] for the relevant concepts on the general theory of Hopf algebras.

Let Mk=(Mk,⊗,k,a,l,r) denote the usual monoidal category of k-vector space and linear maps between them. Recall from Ref.[1] that there is the Hom-category =(H(Mk), (k, ), a new monoidal category, associated with Mk as follows:

3) The tensor product is given by (M, μ)⊗(N, ν)=(MN, μ

4) The tensor unit is given by (k, id);

⊗id)⊗ζ-1)=(μ⊗(id⊗

).

A unital monoidal Hom-assciative algebra is a vector space A together with an element 1AA and linear maps m: AAA; ab|→ab, α∈Autk(A) such that α(1A)=1A, a1A=1A a=α(a), α(a)(bc)=(ab)α(c),α(ab)=α(a)α(b), for all a, b,cA.

A counital monoidal Hom-coassociative coalgebra (C,γ) is a vector space C together with linear maps Δ: CCC, Δ(c)=c1c2 and ε: Ck such that Δ(γ(c))=γ(c1)⊗γ(c2),γ-1(c1)⊗Δ(c2)=Δ(c1)⊗γ-1(c2),c1ε(c2)=γ-1(c)=c2ε(c1),ε(γ(c))=ε(c), for all cC.

A monoidal Hom-bialgebra H=(H,α,m,η,Δ,ε) in Ref.i.e., for any h, gH, Δ(hg)=Δ(h)Δ(g), Δ(1H)=1H⊗1H, ε(hg)=ε(h)ε(g), ε(1H)=1.

S.

). Furthermore, the antipode of monoidal Hom-Hopf algebras has almost all of the properties of antipode of Hopf algebras such as S(hg)=S(g)S(h), S(1H)=1H, Δ(S(h))=S(h2)⊗S(h1),εS=ε.

S is a monoidal Hom-anti-(co)algebra homomorphism. Since α is bijective and commutes with antipode S, we can also have the inverse α-1 commuting with S, that is, Sα-1=α-1S. In the following, we recall the actions and coactions on monoidal Hom-coalgebras.

Now let (C,γ) be a monoidal Hom-coalgebra.C, ρM(m)=m(-1)m(0) such that ε(m(-1))m(0)=μ-1(m), ΔC(m(1))⊗μ-1(m(0))=γ-1(m(-1))⊗(m(0)(-1)m(0)(0)),ρM(μ(m))=γ(m(-1))⊗μ(m(0)), for all mM.

In Ref.[3], a left (H,α)-Hom-comodule coalgebra (B,β) is a monoidal Hom-coalgebra, with a monoidal Hom-bialgebra (H,α) and a left (H,α)-Hom-comodule (B,β), obeying the following axioms: for all bB,b(-1)ΔB(b(0))=b1(-1)b2(-1)b1(0)b2(0), b(-1)ε(b(0))=ε(b)1H.

Recall from Ref.[3] that there is the Hom-smash coproduct (B×H,β×α), with a left (H,α)-Hom-comodule (B,β) and the Hom-comultiplication given by Δ(b×h)=(b1×b2(-1)α-1(h1))⊗(β(b2(0)h2), for all bB, hH.

Recalled from Ref.[4] that the Hom-crossed product B#σH of B with H is the vector space BH, with a monoidal Hom-Hopf algebra (H,α) and a monoidal Hom-algebra (B,β). H acts weakly on B and σ: HHB is convolution invertible. The multiplication is given by (a#h)(b#k)=a[(h11β-2(b))σ(h12,α-1(k1))]# α(h2k2), for any h, kH and a, bB.

2 Monoidal Hom-Bialgebra H

If B#σH is a Hom-associative algebra with 1⊗1 as an identity element, then we call B#σH a Hom-crossed product. A necessary and sufficient condition for B#σH to be a Hom-crossed product is that σ satisfies the following conditions:

(α(h1)σ(l1,α(k1)))σ(α(h2), l2k2)=

σ(h1, l1)σ(α-1(h2l2),α-1(k))

(1)

σ(h1, l1)(h2l2a)=(α(h1)(l1β-1(a)))σ(α(h2),α(l2))

(2)

σ(1, h)=σ(h, 1)=ε(h)1B

(3)

for all h, k, lH and aB.

If the action “·” is trivial, that is, ha=εH(h)1Ba, for every hH, aB, then we write B#σH=Bσ[H]. In the following, we call the Hom-crossed product Bσ[H] a Hom-twisted product, with multiplication:

(a#h)(b#k)=β-1(ab)σ(h1, k1)#α(h2k2)

If the action “·” is trivial, then Eqs.(1) and (2) are, respectively, substituted into

σ(α(l1),α2(k1))σ(h, l2k2)=

σ(h1,l1)σ(α-1(h2l2),α-1(k))

(4)

σ(α-1(h),α-1(l))β(a)=β(a)σ(h, l)

(5)

for all h, k, lH and aB.

Lemma 1 Let (B,β) be a monoidal Hom-algebra and (H,α) be a monoidal Hom-bialgebra, with a Hom-twisted product Bσ[H] given by

(a#h)(b#k)=β-1(ab)σ(h1, k1)#α(h2k2)

Then we have the following conclusions:

1) The associativity of Bσ[H] is satisfied if and only if Eqs.(4) and (5) hold.

2) 1B#1H is the unit of Bσ[H] if and only if Eq.(3) holds.

3) Bσ[H] is an associative algebra if and only if Eqs.(3) to (5) hold.

Let (H,α) be a monoidal Hom-bialgebra. Let (B,β,ΔB,εB) be a left (H,α)-comodule coalgebra and (B,β, mB,ηB) be a monoidal Hom-algebra. Let σ: HHB be a linear map. In this section, we derive necessary and sufficient conditions for BH to be a monoidal Hom-bialgebra.

If (BH.

First, we have the following lemmas:

Lemma 2 Let Bσ[H] be a Hom-twisted product and B×H be a Hom-smash coproduct. The following are equivalent:

β(b1)ε(h)⊗β(b2)=b1σ(α-2(h), b2(-1))⊗β2(b2(0))

(6)

α-1(h)b(-1)β(b(0))=b(-1)α-1(h)⊗β(b(0))

(7)

for all bB and hH.

Lemma 3 Let Bσ[H] be a Hom-twisted product and B×H be a Hom-smash coproduct. If the identity ρ(1)=1⊗1 holds, then the following are equivalent:

σ(h, l)1σ(h, l)2=σ(h1, l1)⊗σ(h2, l2)

(8)

σ(h1, l1)(-1)α-1(h2l2)⊗β(σ(h1, l1)(0))=

h1l1σ(h2, l2)

(9)

Lemma 4 Let Bσ[H] be a Hom-twisted product and B×H be a Hom-smash coproduct. If (β(a1)⊗α(a2(-1))α-1(h1))⊗β2(a2(0))=(a1σ(α(a2(-1)1),α-1(h1))⊗α2(a2(-1)2)h2)⊗β2(a2(0)) holds, then we have

β(a1)ε(h)⊗β(a2)=a1σ(a2(-1),α-2(h))⊗β2(a2(0))

for all bB and hH.

All of the above lemmas can be directly checked, so they are left to the readers.

Theorem 1 Let (H,α) be a monoidal Hom-bialgebra over a field k, and suppose that (B,β) is a left (H,α)-Hom-comodule coalgebra and a monoidal Hom-algebra with trivial action “·”. Suppose that (Bσ[H],βα) is a Hom-twisted product with a convolution invertible morphism σ and (B×H,β×α) is a Hom-smash coproduct. Then the following conditions are equivalent:

a.

2) The conditions hold for all a, bB, h, lH.

σ is a coalgebra map;

εB is an algebra map;

Δ(ab)=β-1(a1b1)σ(a2(-1), b2(-1))⊗ β(a2(0), b2(0));

β(b1)ε(h)⊗β(b2)=b1σ(α-2(h), b2(-1))⊗β2(b2(0));

α-1(h)b(-1)β(b(0))=b(-1)α-1(h)⊗β(b(0));

σ(h1, l1)(-1)α-1(h2l2)⊗β(σ(h1, l1)(0))=h1l1σ(h2, l2);

ΔB(1B)=1B⊗1B;

⑧ (B,β) is a left (H,α)-comodule algebra.

Proof 1)⟹2) follows from the Lemmas 1 to 4, so it remains to show that 2)⟹1). It is easy to check ε ((a×h)(b×k))=ε(a×h)ε(b×k), ε(1B×1H)=ε(1k) and Δ(1B×1H)=(1B×1H)⊗ (1B×1H). In order to prove that Δ((a×h)(b×k))=Δ(a×hΔ(b×k), it is enough to show that for every a, bB, h, gH.

(10)

(11)

(12)

Indeed, we use (10) and (11) to compute:

Δ((a×1H)(b×g))=Δ((a×1H)((β-1(b)×1H

(1B×α-1(g))))=

Δ(β-1(ab)×1H)Δ(1B×g)=

Δ(a×1H)(Δ(β-1(b)×1H)Δ(1B×α-1(g)))=

Δ(a×1H)Δ(b×g)

This shows that

Δ((a×1H)(b×g))=Δ(a×1H)Δ(b×g)

(13)

Similarly, we can obtain

Δ((a×h)(1B×g))=Δ(a×h)Δ(1B×g)

(14)

Now, we use Eqs.(12), (13) and (14):

Δ((a×h)(b×g))=Δ(((β-1(a)×1H

(1B×α-1(h)))(β-1(b)×1H)(1B×α-1(g))))=

Δ(a×1H)Δ((1B×α-1(h))·

((β-2(b)×1H)(1B×α-2(g)))=

Δ(a×1H)(Δ((1B×α-2(h))·

(β-2(b)×1H))Δ(1B×α-1(g)))=

Δ(a×1H)(Δ(1B×α-1(h))·

(Δ(β-2(b)×1H)Δ(1B×α-2(g))))=

Δ((β-1(a)×1H)(1B×α-1(h)))·

Δ((β-1(b)×1H)(1B×α-1(g)))=

Δ(a×h)Δ(b×g)

Following this, we will show that Eqs.(10) to (12) are true.

By Lemma 4, we see that

Δ(a×1H)Δ(1B×h)=[(a1×a2(-1)α-1(1H))⊗

(β(a2(0))×1H)][(1B×1Hα-1(h1))⊗(β(1Bh2)]=

(a1σ(α(a2(-1)), h11α(α(a2(-1))2h12))⊗

(β(a2(0))σ(1H, h21α2(h22))=

(β(a1α(a2(-1))h1)⊗(β2(a2(0)α(h2))=

Δ(β(a)⊗α(h))=Δ((a×1H)(1B×h))

Also, Eq.(10) is proved. We use ③ and ⑧:

Δ(a×1H)Δ(b×1H)=[(a1×α(a2(-1)))·

(b1×α(b2(-1)))]⊗[(β(a2(0))×1H)(β(b2(0))×1H)]=

((ab)1×α((ab)2(-1)))⊗(β((ab)2(0))×1H)=

Δ(ab×1H)=Δ((a×1H)(b×1H))

and (11) is proved. We use ④ and ⑤:

Δ(1B×h)Δ(b×1H)=[(1B×h1)⊗(1B×h2)]·

[(b1×b2(-1)1H)⊗(β(b2(0))×1H)]=

(β(b1α(b2(-1))h1)⊗(β2(b2(0)α(h2))=

Δ(β(b)⊗α(h))=Δ((1B×h)(b×1H))

and (12) is proved.

α) is a monoidal Hom-bialgebra. The proof is completed.

Definition 1 Let (H,α) be a monoidal Hom-bialgebra, (B,β) an monoidal Hom-algebra, σ: HHB a linear map and SH: HH a linear map. SH is called a Hom-σ-antipode of (H,α) if

(1⊗α)(σmH)ΔHH(1⊗SH)Δ(h)=ε(h)(1B×1H)

and

(1⊗α)(σmH)ΔHH(SH⊗1)Δ(h)=ε(h)(1B×1H)

hold for every hH. In this case, we say that (H,α) is a Hom-σ-Hopf algebra.

Proposition 1 Let H,βα) be a monoidal Hom-bialgebra.

S(b×h)=(1B×SH(α-1(b(-1))))(SB(b(0))×1H)

for all bB and hH.

Proof We need to prove S*id=ηε=id*S holds.

(id*S)(b×h)=m(id⊗S)Δ(b×h)=

m(id⊗S)((b1×b2(-1)α-1(h1))⊗(β(b2(0)h2))=

(b1×b2(-1)α-1(h1))[(1B×SH(b2(0)(-1)α-2(h2))·

(SB(β(b2(0))(0))×1H)]=

(β-1(β-1(b11B)σ((α-1(b2(-1)α-1(h1)))1,

SH(b2(0)(-1)α-2(h2))1))×

α((α-1(b2(-1)α-1(h1)))2

SH(b2(0)(-1)α-2(h2))2))·

(SB(β2(b2(0)(0)))×1H)=

(β-1(b1)σ((b2(-1)1α-1(h1))1,

(SH(b2(-1)2α-2(h2)))1α((b2(-1)1α-1(h1))2

SH(b2(-1)2α-2(h2))2))(SB(β(b2(0)))×1H)=

(b1×1H)(SB(b2(0))×1H)ε(h)=

(1B×1H)ε(b)ε(h)=(1B×1H)ε(b×h)

A similar proof shows that S*id=ηε. This concludes our proof.

References:

[1]Caenepeel S, Goyvaerts I. Monoidal hom-Hopf algebra [J]. Communications in Algebra, 2011, 39(6): 2216-2240. DOI:10.1080/00927872.2010.490800.

[2]Chen Yuanyuan, Wang Zhongwei, Zhang Liangyun. Integrals for monoidal Hom-Hopf algebras and their applications [J]. Journal of Mathematical Physics, 2013, 54(7): 073515-1-073515-22. DOI:10.1063/1.4813447.

[3]Liu Ling, Shen Bingliang. Radford’s biproducets and Yetter-Drinfeld modules for monoidal Hom-Hopf algebras [J]. Journal of Mathematical Physics, 2014, 55(3):031701-1-031701-16. DOI:10.1063/1.4866760.

[4]Lu Daowei, Wang Shuanhong. Crossed product and Galois extension of monoidal Hom-Hopf algebras [EB/OL]. (2014-05-29). http://arxiv.org/abs/1405.7528.

[5]Blattner R, Cohen M, Montgomery S. Crossed product and inner actions of Hopf algebras [J]. Transactions of the American Mathematical Society, 1986, 298(2): 671-711. DOI:10.2307/2000643.

[6]Yukio D, Mitsuhiro T. Cleft comodule algebras for a bialgebra [J]. Communications in Algebra, 1986, 14(5): 801-817. DOI:10.1080/00927878608823337.

[7]Montgomery S. Hopf algebras and their actions on rings [M]. Providence, RI, USA:American Mathematical Society, 1992.

[8]Sweedler M E. Hopf algebras [M]. New York:WA Benjamin Inc, 1969.

Citation:You Miman, Wang Shuanhong.Monoidal Hom-Hopf algebra on Hom-twisted product[J].Journal of Southeast University (English Edition),2016,32(3):391-394.DOI:10.3969/j.issn.1003-7985.2016.03.022.

DOI:10.3969/j.issn.1003-7985.2016.03.022

Hom-扭曲积上的monoidal Hom-Hopf代数

游弥漫  王栓宏

(东南大学数学系,南京 211189)

摘要:设(H,α)是monoidal Hom-Hopf代数,(B,β)是左(H,α)-Hom-余模余代数.构造了由Hom-扭曲积Bσ[H]和Hom-冲余积B×H构成的新monoidal Hom-代数并给出了成为monoidal Hom-双代数的充分必要条件此外, 设(H,α) 是带有Hom-σ-反对极SH的Hom-σ-Hopf 代数, 并找到此monoidal Hom-双代数带有定义为S(b×h)=(1B×SH(α-1(b(-1))))(SB(b(0))×1H)的反对极S成为monoidal Hom-Hopf 代数的充分条件.

关键词:monoidal Hom-Hopf代数; Hom-扭曲积; Hom-冲余积

中图分类号:O153.3

Received:2014-06-11.

Foundation item:s:The National Natural Science Foundation of China (No.11371088, 10871042, 11571173), the Fundamental Research Funds for the Central Universities (No.KYLX15_0105).

Biographies:You Miman (1984—), female, doctor; Wang Shuanhong (corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.