BiHom-H-pseudoalgebras and their constructions

Shi Guodong Wang Shuanhong

(School of Mathematics, Southeast University, Nanjing 211189, China)

AbstractThe definition and an example of BiHom-associative H-pseudoalgebra are given. A BiHom-H-pseudoalgebra is an H-pseudoalgebra(A,μ) with two maps α,β∈HomH(A,A) satisfying the BiHom-associative law which generalizes BiHom-associative algebras and associative H-pseudoalgebras. Secondly, a method which is called the Yau twist of constructing BiHom-associative H-pseudoaglebra (A,(IHHHα)μ,α,β) from an associative H-pseudoalgebra (A,μ) and two maps of H-pseudoalgebras α,β, is introduced. Thirdly, a generalized form of the Yau twist is discussed. It concerns constructing a BiHom-associative H-pseudoalgebra (A,μ(αβ),αα,ββ) from a BiHom-associative H-pseudoalgebra (A,μ,α,β) and two maps α,β∈HomH(A,A). Finally, a method of constructing BiHom-associative H-pseudoalgebra on tensor product space AB of two BiHom-associative H- pseudoalgebras is given.

Key wordsBiHom-associative H-pseudoalgebrsa; Yau twist; tensor product BiHom-associative H-pseudoalgebras

BiHom-algebra was introduced by Graziani et al[1]. The concept arose from the research of algebra in group-Hom categories, and it is an important generalization of Hom-algebra[2-4]. H-pseudoalgebra was introduced by Bakalov et al[5]. It is an algebra in the pseudotensor category M*(H), and it is a generalization of the conformal algebra introduced by Kac[6]. We can also regard it as multidimensional conformal algebra. The structure of H-pseudoalgebra has some connections with mathematical physics and nonlinear equations[7-9] and it has been developed into more general forms[10-11].

The purpose of this paper is to define an algebraic system which generalizes BiHom-algebra and H-pseudoalgebra, so as to research its basic properties.

1 Preliminaries

Remark 1 Throughout this paper, we define that

1) k is a field, and the base vector spaces of all algebraic structures are over k.

2) H is a cocommutative Hopf algebra.

3) We use the sweedler notation to express the coproduct of H: Δ(h)=h1h2, for any hH.

Definition 1[5] An associative H-pseudoalgebra is a pair (A,μ=*) which satisfies:

1) A is an H-module.

2) u∈HomHH(AA,(HH)⊗HA) and we denote μ(ab)=a*b. It is equivalent to (H-bilinearity) fa*gb=((fg)⊗H1)(a*b).

3) (associative law) (a*b)*c=a*(b*c).

Remark 2 We explicitly describe the associative law of H-pseudoalgebra.

If we denote

a*gi)⊗Hei, ei*gij)⊗Heij b*li)⊗Hdi, a*lij)⊗Hdij

Then,

(a*b)*gifij2gij)⊗Hei a*(b*c)
hilij1lilij2)⊗Hdij

Definition 2[5] A map of H-pseudoalgebras from (A,μA) to (B,μB) is defined as follows:

1) f∈HomH(A,B);

2) μB(ff)=(IHHf)μA.

Definition 3[10] A Hom-associative H-pseudoalgebra is a triple (A,μ,α) which satisfies: 1) (A,μ) is an H-pseudoalgebra; 2) α∈HomH(A,A); 3) (a*b)*α(c)=α(a)*(b*c).

Definition 4[1] A multiplicative BiHom-associative algebra is a triple (A,α,β), which satisfies:

1) A is an algebra;

2) α,β∈Homk(A,B);

3) (a*b)*β(c)=α(a)*(b*c);

4) α(ab)=α(a)α(b), β(ab)=β(a)β(b);

5) αβ=βα.

2 BiHom-Associative H-Pseudoalgebras

Definiton 5 A BiHom-associative H-pseudoalgebra is a quadruple (A,μ=*,α,β) which satisfies:

1) A is an H-module.

2) u∈HomHH(AA,(HH)⊗HA) and we denote u(ab)=a*b;

3) α,β∈HomH(A,A);

4) αβ=βα;

5) (BiHom-associative law) α(x)*(y*z)=(x*y)*β(z).

Remark 3 A is a BiHom-associative H-pseudoalgebra.

1) If H=k, A is a BiHom-associative algebra.

2) If α=β=I, A is an associative H-pseudoalgebra.

3) If α=β, A is a Hom-associative H-pseudoalgebra.

Example 1 (A,α,β) is a finite dimensional BiHom-associative H-pseudoalgebra, H is a Hopf algebra. Then,(HA,*,IHα,IHβ)is a BiHom-associative algebra by

(fa)*(g*b)=(fg)⊗H(1⊗ab)

Definiton 6 A BiHom-associative H-pseudoalgebra(A,μ,α,β)is multiplicative if

(IHHHα)μ=μ(αα), (IHHHβ)μ=μ(ββ)

Example 2 We take α=β=I, the BiHom-assciative H-pseudoalgebra is multiplicative.

Definition 7 Let (A,μB,αB,βB), (B,μB,αB,βB) be two (multiplicative) BiHom-associative H-pseudoalgebras, and a map of (multiplicative) BiHom-associative H-pseudoalgebras is defined as

1) f∈HomH(A,B);

2) (IHHHf)μA=μB(ff);

3) αBf=A,βBf=A.

Now, we introduce a method of constructing BiHom-associative H-pseudoalgebras from associative H-pseudoalgebras.

Theorem 1 1) (A,μA) is an associative H-pseudoalgebra, αA:AA, βA:AA are two maps of H-pseudoalgebra which satisfies

αA°βA=βA°αA

(IHHHαA)μA=μA(αAβA)

Then, (A,μ*=(IHHHαA)μA,αA,βA) is a multiplicative BiHom-associative H-pseudoalgebra.

2) (B,μB) is an H-pseudoalgebra, and αB,βB:BB are maps of H-pseudoalgebras which satisfies

αB°βB=βB°αB

(IHHHαB)μB=μB(αBβB)

f:AB is a map of H-pseudoalgebras which satisfies

A=αBf, f βA=βBf

Then, f:(A,(IHHHαA)μA,αA,βA)→(B,(IHHHαB)μB,αB,βB) is a map of multiplicative BiHom-associative H-pseudoalgebras.

Proof We denote μ*(ab)=a**b. For any f,gH, a,bA,

(fa**gb)=(IHHHαA)μA(fagb)= (IHHHα)((fg)⊗H1)(a*b)= ((fg)⊗H1)(IHHHαA)(a*b)= ((fg)⊗H1)(a**b)

Then μ* is a pseudoproduct for A.

The proof of BiHom H-associative law is as follows:

a**b=αA(a)*βA(b)=(IHHHαA)(a*b)=

gi)⊗HαA(ei)

αA(ei)**βA(c)=(IHHHαA)(αA(ei)*βA(c))=

(IHHHαA)(IHHHαA)(eic)=

gijHαA2(eij)

So,

(a**b)**βA(c)=

gifij2gij)⊗HαA2(eij)=

(IHHHαA2)((a*b)*c)=

(IHHHαA2)(a*(b*c))=(IHHHαA2

hilji1lilij2))⊗Hdij)

Similarly,

αA(a)**(b**c)=(IHHHαA2

hilij1lilij2)⊗Hdij)=

(a**b)**βA(c)

The proof of multiplicative for (A,μ*=(IHHHα)μ,α,β) is

α(a)**α(b)=(IHHHα)(a**b),β(a)**β(b)=

(IHHHα)(β(a)*β(b))=

(IHHHα)(IHHHβ)(a*b)=

(IHHHβ)(IHHHα)(a*b)=

(IHHHβ)(a**b)

(IHHHf)(IHHHαA)μA(ab)=

(IHHHf)(αA(a)*βA(b))=

A(a)*A(b)=

αBf(a)*βBf(b) =

(IHHHαB)(f(a)*f(b))=

(IHHHαB)μB(ff)(ab)

Example 2 H is a cocommutative Hopf algebra and G(H) is the set of group like elements of H. H{e1, e2} is a free H-pseudoalgebra of rank 2, with pseudoproduct given by

e1*e1=aHe1, e2*e2=bHe2

e1*e2=aHe2, e2*e1=-aHe2

We define α,β:H{e1,e2}→H{e1,e2}:

α(e1)=ge1, α(e2)=ge2 β(e1)=he1, β(e2)=he2, g,hG(H)

satisfying

(gg)a=(gh)a, (gg)b=(gh)

Then, α,β are endomorphisms of H{e1,e2}, and(H{e1,e2},μ1=(IHHα)μ,α,β)is a multiplicative BiHom-associative H-pseudoalagebra with pseudoproduct μ1 given by

μ1(e1e1)=(gg)aHe1 μ1(e2e2)=(gg)bHe2 μ1(e1e2)=(gg)aHe2 μ1(e2e1)=-(gg)aHe2

Definition 8 The BiHom-associative H-pseudoalgebra (A,μ*=(IHHHα)μ,α,β)is called the Yau twist of H-pseudoalgebra(A,μ) and is denoted by Aα,β.

The following is a generalization of Theorem 1.

Theorem 2 (A,μ,α,β) is a multiplicative BiHom-associative H-pseudoalgebra, and α,β∈HomH(A,A) satisfies

(IHHα)μ=μ(αβ),(IHHα)μ=μ(αα) (IHHβ)μ=μ(ββ)

and each of α, β, α, β can commute with others.

Then, (A,μ(αβ), α°α,β°β)is a multiplicative BiHom-associative H-pseudoalgebra.

Proof We denote μ(αβ)(ab)≡a**b.

The proof of BiHom-associative law is

(b**c)=(IHHHα)(b*c)=

li)⊗di)=

li)⊗α(di)

αα(a)**α(di)=αα(a)**α(di)=

(IHHHα)(αα(a)*α(di))=

(IHHHα2)(α(a)*di)

So,

αα(a)**(b**c)=(IHHHHα2)(α(a)*(b*c))

Similarly,

(a**b)**ββ(c)=

(IHHHHα2)(a*b)*β(c)

The proof of αα(a)**αα(b)=ββ(a)**ββ(b) is

αα(a)**αα(b)=

(IHHHα)(αα(a)*αα(b))=

(IHHHα)(IHHHα)(α(a)*α(b))=

(IHHHαα)(a**b)

Similarly,

ββ(a)**ββ(b)=(IHHHββ)(a**b)

Theorem 3 (A,μA,αA,βA) is a multiplicative BiHom-associative H1-pseudoalgebra and (B,μB,αB,βB) is a multiplicative BiHom-associative H2-pseudoalgebra, and then(AB,μAB,αAαB,βAβB)is a multiplicative BiHom-associative H=H1H2-pseudoalgebra by

μAB((a1b1)⊗(a2b2))=

FIgiGI)⊗H(eiEI)

We denote

a1*gi)⊗ei,b1*lI)⊗HdI

Proof The H=H1H2-module structure of AB is defined as (gh)(ab)=gahb and the pseudoproduct of AB is well defined. The H-bilinearity of μAB is obvious. We define some symbols:

a2*li)⊗Hdi, αA(a1)*di=

lij)⊗Hdij

a1*gi)⊗Hei, ei*βA(di)=

gij)⊗Heij

b2*LI)⊗HDI, αB(b1)*Di=

LIJ)⊗HDIJ

b1*GI)⊗HEI, EI*βA(DI)=

GIJ)⊗HEIJ

The proof of BiHom-associative law is as follows:

(a2b2)*(a3b3)=

HIliLI)⊗H(diDI

(αA(a1)⊗αB(b2))*(diDI)=

HIJlijLIJ)⊗H(dijDIJ)

So,

(αAαB)(a1b1)*((a2b2)*(a3b3))=

HIJ)⊗(hiHI)(lij1LIJ1)⊗

(liLI)(lij2LIJ2)⊗H(dijDIJ)

Similarly,

((a1b1)⊗(a2b2))*(β(a3)⊗β(b3))=

FI)(fij1FIJ1)⊗(giGI)(fij2FIJ2)⊗

(gijGIJ)⊗H(eijEIJ)

By the BiHom-associative law of (A,μA,αA,βA) and (B,μB,αB,βB),

(αAαB)(a1b1)*((a2b2)*(a3b3))=

((a1b1)⊗(a2b2))*(βA(a3)⊗βB(b3))

The proof of the multiplicative law is

(IH1IH2IH1IH2αAαB)((a1b1)*

(a2b2))=(IH1IH2IH1IH2αAαB

FIgiGI)⊗H(eiEI))=

FIgiGI)⊗H(αA(ei)⊗αB(EI))

On the other side,

αA(a1)*αA(a2)=(IH1IH1αA)(a1a2)=

gi)⊗H1αA(ei) αB(b1)*αB(b2)=

(IH2IH2αB)(b1b2)=

GI)⊗H2αB(EI)

Therefore,

(IH1IH2IH1IH2αAαB)((a1b1)*

(a2b2))=(αAαA)(a1b1)*

(αBαB)(a2b2)

Similarly,

(IH1IH2IH1IH2βAβB)((a1b1)*(a2b2))= (βAβB)(a1b1)*(αBαB)(a2b2)

References

[1]Graziani G, Makhlouf A, Menini C, et al. BiHom-associative algebras, BiHom-Lie algebras and BiHom-bialgebras[J]. Symmetry, Integrability and Geometry: Methods and Applications, 2015,11:086-1-086-34. DOI:10.3842/sigma.2015.086.

[2]Makhlouf A, Silvestrov S D. Hom-algebra structures[J]. Journal of Generalized Lie Theory and Applications, 2008, 2(2): 51-64. DOI:10.4303/jglta/s070206.

[3]Makhlouf A, Silvestrov S. Hom-algebras and Hom-coalgebras[J]. Journal of Algebra and Its Applications, 2010, 9(4): 553-589. DOI:10.1142/s0219498810004117.

[4]Yau D. Hom-algebras and homology[J]. Journal of Lie Theory, 2009, 19(2): 409-421.

[5]Bakalov B, D’Andrea A, Kac V G. Theory of finite pseudoalgebras[J]. Advances in Mathematics, 2001, 162(1): 1-140. DOI:10.1006/aima.2001.1993.

[6]Kac V. Vertex algebras for beginners[M]. Providence, Rhode Island: American Mathematical Society, 1998. DOI:10.1090/ulect/010.

[7]Dorfman I. Dirac structures and integrability of nonlinear evolution equations [M]. New York: John Wiley & Sons, 1993.

[8]Gel’Fand I M, Dorfman I Y. Hamiltonian operators and infinite-dimensional Lie algebras[J]. Functional Analysis and Its Applications, 1982, 15(3):173-187. DOI:10.1007/bf01089922.

[9]Xu X P. Equivalence of conformal superalgebras to Hamiltonian superoperators[J]. Algebra Colloquium, 2001, 8(1): 63-92.

[10]Sun Q X. Generalization of H-pseudoalgebraic structures[J]. Journal of Mathematical Physics, 2012, 53(1): 012105. DOI:10.1063/1.3665708.

[11]Wu Z X. Leibniz H-pseudoalgebras[J]. Journal of Algebra, 2015, 437: 1-33. DOI:10.1016/j.jalgebra.2015.04.019.

BiHom-H -伪代数及其构造

史国栋 王栓宏

(东南大学数学学院, 南京 211189)

摘要:首先, 给出了BiHom-结合H-伪代数的定义与例子,一个BiHom-结合H-伪代数由一个H-伪代数(A,μ)和满足BiHom-结合律的2个映射α,β∈HomH(A,A)构成,其为BiHom-结合代数和结合H-伪代数的推广.然且,介绍了名为Yau扭曲的方法, 该方法是由一个结合H-伪代数(A,μ)和2个H-伪代数同态α,β构造BiHom-结合H-伪代数(A,(IHHHα)μ,α,β).同时,介绍了Yau扭曲的推广形式,即由一个BiHom-结合H-伪代数(A,μ,α,β)和2个映射α,β∈HomH(A,A)构造BiHom-结合H-伪代数(A,μ(αβ),αα,ββ).最后,给出了在2个BiHom-结合H-伪代数的张量积空间AB上构造BiHom-结合H-伪代数的方法.

关键词:BiHom-结合H-伪代数;Yau扭曲;张量积BiHom-结合H-伪代数

DOI:10.3969/j.issn.1003-7985.2019.02.019

Received 2018-11-10,Revised 2019-03-19.

Biographies:Shi Guodong(1987—),male,graduate; Wang Shuanhong(corresponding author), male, doctor, professor, shuanhwang@seu.edu.cn.

Foundation items:The National Natural Science Foundation of China (No.11371088, 11571173,11871144), the Natural Science Foundation of Jiangsu Province (No.BK20171348).

CitationShi Guodong, Wang Shuanhong.BiHom-H-pseudoalgebras and their constructions[J].Journal of Southeast University (English Edition),2019,35(2):269-272.DOI:10.3969/j.issn.1003-7985.2019.02.019.

中图分类号:O153