|Table of Contents|

[1] Yin Xiang*, Wu Jianzhuan,. Circular Chromatic Numbers of Some Distance Graphs [J]. Journal of Southeast University (English Edition), 2001, 17 (2): 75-77. [doi:10.3969/j.issn.1003-7985.2001.02.018]
Copy

Circular Chromatic Numbers of Some Distance Graphs()
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
17
Issue:
2001 2
Page:
75-77
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2001-12-30

Info

Title:
Circular Chromatic Numbers of Some Distance Graphs
Author(s):
Yin Xiang1* Wu Jianzhuan2
1Department of Applied Mathematics, Nanjing University of Chemical Technology, Nanjing 210009, China
2Department of Applied Mathematics, Southeast University, Nanjing 210096, China
Keywords:
distance graph fractional chromatic number circular chromatic number
PACS:
O157.5
DOI:
10.3969/j.issn.1003-7985.2001.02.018
Abstract:
The circular chromatic number of a graph is an important parameter of a graph. The distance graph G(Z, D), with a distance set D, is the infinite graph with vertex set Z={0, ±1, ±2, …} in which two vertices x and y are adjacent iff |y-x|∈D. This paper determines the circular chromatic numbers of two classes of distance graphs G(Z, Dm, k, k+1) and G(Z, Dm, k, k+1, k+2).

References:

[1] X. Zhu, Star chromatic numbers and products of graphs, J. Graph Theory, vol.16, pp.557-569, 1992
[2] M. Larsen, J. Propp, and D. Ullman, The fractional chromatic number of Mycielski’s graphs, J. Graph Theory, vol.19, pp.411-416, 1995
[3] G.J. Chang, D.D-F. Liu, and X. Zhu, Distance Graph and T-coloring, J. Combin. Theory B, vol.75, pp.259-269, 1999
[4] G.J. Chang, L. Huang and X. Zhu, Circular chromatic numbers and the fractional chromatic numbers of distance graphs, Europ. J. Combin., vol.19, pp.423-431, 1998
[5] J. Chen, G.J. Chang, and K. Huang, Integral distance graphs, J. Graph Theory, vol.25, pp.287-294, 1997
[6] R. B. Eggleton, P. Erdos, and D. K. Dkilton, Coloring prime distance graphs, Graphs and Combin, vol.6, pp.17-32, 1990
[7] M. Voigt, and H. Walther, Chromatic number of prime distance graphs, Discrete Appl. Math., vol.51, pp.287-294, 1994
[8] J. Wu, and X. Yin, Chromatic number and fractional chromatic number of two classes of distance graphs, J. Nanjing Univ. of Chem. Tech., vol.23, no.6, pp.85-87, 2001

Memo

Memo:
* Born in 1964, male, master, lecturer.
Last Update: 2001-06-20