|Table of Contents|

[1] Wan Shui*, Wang Desheng,. Mesh Generation for Finite Element Analysisof Electric Machines [J]. Journal of Southeast University (English Edition), 2002, 18 (1): 69-73. [doi:10.3969/j.issn.1003-7985.2002.01.013]
Copy

Mesh Generation for Finite Element Analysisof Electric Machines()
电机有限元分析的网格生成
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
18
Issue:
2002 1
Page:
69-73
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2002-03-30

Info

Title:
Mesh Generation for Finite Element Analysisof Electric Machines
电机有限元分析的网格生成
Author(s):
Wan Shui1*, Wang Desheng2
1College of Traffic and Transportation Engineering, Southeast University, Nanjing 210096, China
2Academy of Mathematics and System Sciences, Chinese Academy of Sciences, Beijing 100080, China
, 万水, 王德生,
(东南大学交通学院, 南京 210096) (中国科学院数学与系统科学研究院数学研究所, 北京 100080
Keywords:
advancing front method automatic mesh generation Delaunay triangulation paving
波前法 自动网格生成 Delaunary三角形生成 铺砖法
PACS:
O242.21
DOI:
10.3969/j.issn.1003-7985.2002.01.013
Abstract:
This paper describes two modified methods for triangular and quadrilateral meshing for finite element analysis of 2D electric machines. One is coupling the classic Delaunay method and advancing front method to generate optimal triangulation; the other is coupling the classic paving and Delaunay triangulation for optimal quadrilateral meshing. Various electric machine models are meshed successfully to demonstrate the robustness and effectiveness of the methods.
该文描述了电机有限元分析中的2种修正的三角形和四边形网格的生成方法.一种是结合经典的Delaunary方法和波前法产生优化的三角形网格, 另一种是结合传统的铺砖法和Delaunary三角形方法来生成优化的四边形网格.这2种网格生成方法已成功地用于多种电机模型的网格划分, 证实了该方法的可靠性与有效性.

References:

[1] George P L, Hecht F, Vallet M G. Creation of internal points in voronoi type method[J]. Control Adaptation, Adv Eng Software, 1991, 13:303-312.
[2] Sapidis N, Perucchio K. Delaunay triangulation of arbitrarily shaped domains[J]. Comput Aided Geom Design, 1991, 8:421-437.
[3] Weatherill N P. The integrity of geometrical boundaries in the 2-dimensional delaunay triangulation[J]. Commun Appl Numer Methods, 1990, 6:101-109.
[4] Borouchaki H, George P L. Aspects of 2-D delaunay mesh generation[J]. Int J Numer Meth Engng, 1997, 40:1957-1975.
[5] Marcum D L, Weatherill N P. Unstructured grid generation using iterative point insertion and local reconnection[J]. AIAA, 1995, 33(9):1619-1625.
[6] Schroeder W J, Shepard M S. Geometry-based fully automatic mesh generation and the delaunay triangulation [J]. Int J Numer Meth Engng, 1988, 26:2503-2515.
[7] Chew L P. Guranteed quality mesh generation for curved surfaces[A].In:Proc 9th Annual Comput Geom[C].1993.274-280.
[8] Blacker T D, Stephenson M B. Paving: a new approach to automated quadrilateral mesh generation[J]. Int J Numer Meth Engng, 1991, 32:811-847.
[9] Joe B. Quadrilateral mesh generation in polygonal regions[J]. Comput Aid Des, 1995, 27:209-222.
[10] Zhu J Z, Zienkiewicz O C, Hinton E, Wu J. A new approach to the development of automatic quadrilateral mesh generation[J]. Int J Numer Meth Engng, 1991, 32:849-866.
[11] Talbert J A, Parkinson A R. Development of an automatic two dimensional finite element mesh generator using quadrilateral elements and bezier curve boundary definition[J]. Int J Numer Meth Engng, 1991, 29:1551-1567.
[12] Lo S H. Generating quadrilateral elements on plane and over curved surfaces[J]. Comput Struct, 1989, 31:421-426.
[13] Owen S J, Staten M L, Canann S A, Saigal S. Q-morph: an indirect approach to advancing front quad meshing [J]. Int J Numer Meth Engng, 1999, 44:1317-1340.
[14] Johnston B P, Sullivan J M, Kwasnik A. Automatic conversion of triangular finite element meshes to quadrilateral elements[J]. Int J Numer Meth Engng, 1991, 31:67-84.
[15] White D R, Kinney P. Redesign of the paving algorithm: robustness enhancements through element by element meshing[A]. In:Proc 6th Int Meshing Roundtable[C], 1995.441-449.
[16] Lee C K, Lo S H. A new scheme for the generation of a graded quadrilateral mesh[J]. Comput Struct, 1994, 52:847-857.
[17] Kinney P. Cleanup: improving quadrilateral finite element meshes[A]. In:Proc 6th Int Meshing Roundtable, 1995.449-461.
[18] Cherfils C, Hermeline F. Diagonal swap procedures and characterization of 2D-delaunay triangulations[J]. M2 AN2, 1990, 24(5):613-625.
[19] Frey W H, Field D A. Mesh relaxation: a new technique for improving triangulation[J]. Int J Numer Meth Engng, 1991, 31:1121-1131.
[20] Borouchaki H, George P L, Lo S H. Optimal delaunay point insertion[J]. Int J Numer Meth Engng, 1996, 39:3407-3437.
[21] Borouchaki H, Lo S H. Fast delaunay triangulation in three dimensions[J]. Comput J Numer Methods Eng, 1995, 128:153-167.
[22] Watson D F. Computing the delaunay tesselation with application to voronoi polytope[J]. Comput J, 1981, 24:167-172.

Memo

Memo:
* Born in 1960, male, associate professor.
Last Update: 2002-03-20