|Table of Contents|

[1] Zhu Daoyuan*, Zhao Shengli,. Quasi-χ2 Distribution and theIndependence of Wishart Distribution [J]. Journal of Southeast University (English Edition), 2002, 18 (2): 173-176. [doi:10.3969/j.issn.1003-7985.2002.02.014]
Copy

Quasi-χ2 Distribution and theIndependence of Wishart Distribution()
拟χ2分布与Wishart分布独立性
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
18
Issue:
2002 2
Page:
173-176
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2002-06-30

Info

Title:
Quasi-χ2 Distribution and theIndependence of Wishart Distribution
拟χ2分布与Wishart分布独立性
Author(s):
Zhu Daoyuan1* Zhao Shengli2
1Department of Mathematics, Southeast University, Nanjing 210096, China
2Qufu Normal University, Qufu 273165, China
朱道元 赵胜利
东南大学数学系, 南京 210096) (曲阜师范大学, 曲阜 273165
Keywords:
quasi-χ2 Wishart distribution independence
拟卡方分布 Wishart分布 独立性
PACS:
O212.1
DOI:
10.3969/j.issn.1003-7985.2002.02.014
Abstract:
In this paper, the authors generalize the definition of χ2 distribution and introduce a quasi-χ2 distribution, and then prove several properties of it, find the necessary and sufficient conditions of independence about multivariate normal distributions, matrix normal distributions and two parts of the Wishart distribution.
推广了卡方分布到拟卡方分布, 证明了它的若干性质, 并利用这些性质找到了Wishart分布内部及2个多元正态分布或矩阵正态分布之间独立的充要条件.

References:

[1] Anderson T W. An introduction to multivariate statistical analysis. 2nd edition[M].New York:Wiley. 1984.
[2] Zhang Yaoting, Fang Kaitai. An introduction to multivariate statistical analysis[M]. Beijing:Science Publication, 1982.(in Chinese)
[3] Muirhead R J. Aspects of muitivariate statitical theory [M]. New York: Wiley, 1982.
[4] Zhu Daoyuan, Wu Chengou, Qin Weiliang. Multivariate statistical analysis and the SAS software[M]. Nanjing: Southeast University Press, 1999.(in Chinese)

Memo

Memo:
* Born in 1947, male, professor.
Last Update: 2002-06-20