|Table of Contents|

[1] Jian Lirong, Da Qingli, Chen Weida,. Variable Precision Rough Set and a Fuzzy Measureof Knowledge Based on Variable Precision Rough Set [J]. Journal of Southeast University (English Edition), 2002, 18 (4): 351-355. [doi:10.3969/j.issn.1003-7985.2002.04.013]
Copy

Variable Precision Rough Set and a Fuzzy Measureof Knowledge Based on Variable Precision Rough Set()
变精度粗糙集与基于变精度粗糙集的知识模糊度量
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
18
Issue:
2002 4
Page:
351-355
Research Field:
Computer Science and Engineering
Publishing date:
2002-12-30

Info

Title:
Variable Precision Rough Set and a Fuzzy Measureof Knowledge Based on Variable Precision Rough Set
变精度粗糙集与基于变精度粗糙集的知识模糊度量
Author(s):
Jian Lirong Da Qingli Chen Weida
College of Economics and Management, Southeast University, Nanjing 210096, China
菅利荣 达庆利 陈伟达
东南大学经济管理学院, 南京 210096
Keywords:
variable precision rough set fuzzy set information system fuzzy measures
变精度粗糙集 模糊集 信息系统 模糊度量
PACS:
TP311
DOI:
10.3969/j.issn.1003-7985.2002.04.013
Abstract:
Variable precision rough set(VPRS)is an extension of rough set theory(RST). By setting threshold value β, VPRS looses the strict definition of approximate boundary in RST. Confident threshold value for β is discussed and the method for deriving decision-making rules from an information system is given by an example. An approach to fuzzy measures of knowledge is proposed by applying VPRS to fuzzy sets. Some properties of this measure are studied and a pair of lower and upper approximation operators in fuzzy sets are described. Research results reveal that, based on VPRS, fuzzy membership functions can be explicitly interpreted and semantics of membership values can be explicitly stated.
变精度粗糙集是对标准粗糙集理论的一种扩展.它通过设置阈值参数β, 放松了标准粗糙集理论对近似边界的严格定义.文中讨论了变精度粗糙集的置信阈值β, 通过算例给出了信息系统中基于变精度粗糙集的规则提取方法;将变精度粗糙集模型应用于模糊集, 提出了在变精度粗糙集中知识的一种模糊度量方法, 对这种方法的一些性质进行了研究, 并用该模糊度量方法描述了近似算子.研究表明, 该方法可合理解释模糊隶属函数, 清晰说明了隶属度的含义.

References:

[1] Ziarko W. Variable precision rough set model[J]. Journal of Computer and System Sciences, 1993, 46(1):39-59.
[2] An A, Shan N, Chan C, et al. Discovering rules for water demand prediction: An enhanced rough-set approach[J]. Engineering Application and Artificial Intelligence, 1996, 9(6):645-653.
[3] Dimitras A I, Slowinski R, Susmaga R, et al. Business failure using rough sets[J]. European Journal of Operational Research, 1999, 114(2): 263-280.
[4] Skowron A, Rauszer C. Intelligent decision support-handbook of applications and advances of the rough sets theory[M]. Dordrecht: Luwer Academic Publishers, 1992.331-362.
[5] Dubois D, Prade H. Rough-fuzzy sets and fuzzy-rough sets[J]. International Journal of General Systems, 1990, 17(2):191-209.
[6] Zhang Wenxiu, Wu Weizhi, Liang jiye. Rough set theory and methodology[M]. Bejing:Science Press, 2001.128-158(in Chinese)

Memo

Memo:
* The project supported by the Project of Education Bureau Foundation of China(01JA630048).
** Born in 1968, female, graduate.
Last Update: 2002-12-20