|Table of Contents|

[1] Wu Jianzhuan*, Xu Kexiang,. The Star-Extremality of Circulant Graphs [J]. Journal of Southeast University (English Edition), 2002, 18 (4): 377-379. [doi:10.3969/j.issn.1003-7985.2002.04.018]
Copy

The Star-Extremality of Circulant Graphs()
循环图的star-extremal 性质
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
18
Issue:
2002 4
Page:
377-379
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2002-12-30

Info

Title:
The Star-Extremality of Circulant Graphs
循环图的star-extremal 性质
Author(s):
Wu Jianzhuan* Xu Kexiang
Department of Mathematics, Southeast University, Nanjing 210096
吴建专 许克祥
东南大学数学系, 南京 210096
Keywords:
circular chromatic number fractional chromatic number circulant graph star-extremal graph
圆色数 分式色数 循环图 star-extremal图
PACS:
O157.5
DOI:
10.3969/j.issn.1003-7985.2002.04.018
Abstract:
The circular chromatic number and the fractional chromatic number are two generalizations of the ordinary chromatic number of a graph. We say a graph G is star-extremal if its circular chromatic number is equal to its fractional chromatic number. This paper gives an improvement of a theorem. And we show that several classes of circulant graphs are star-extremal.
圆色数和分式色数是图的点色数的两个推广.当图的圆色数等于分式色数时, 我们称此图是star-extremal.本文给出了一个定理改进, 同时给出了几类具有star-extremal 特征的循环图.

References:

[1] Vince A. Star chromatic number[J]. Graph Theory, 1988, 12:551-559.
[2] Zhu X. Circular chromatic number — a survey [J]. Discrete Math, 2001, 229:371-410.
[3] Larsen M, Propp J, Ullman D. The fractional chromatic number of Mycielski’s graphs[J]. Graph Theory, 1995, 19:411-416.
[4] Gao G, Zhu X. Star extremal graphs and the lexicographic product[J]. Discrete Math, 1996, 152:147-156.
[5] Lih K, Liu D D, Zhu X. Star extremal circulant graphs[J]. SIAM J Discrete Math, 1999, 12(4):491-499.

Memo

Memo:
* Born in 1970, female, lecturer.
Last Update: 2002-12-20