|Table of Contents|

[1] Zhou Hua, Tang Jian,. Some properties and structures of solutionsof the swift-Hohenberg equation [J]. Journal of Southeast University (English Edition), 2003, 19 (3): 301-306. [doi:10.3969/j.issn.1003-7985.2003.03.020]
Copy

Some properties and structures of solutionsof the swift-Hohenberg equation()
Swift-Hohenberg方程解的一些性质与结构
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
19
Issue:
2003 3
Page:
301-306
Research Field:
Mathematics, Physics, Mechanics
Publishing date:
2003-09-30

Info

Title:
Some properties and structures of solutionsof the swift-Hohenberg equation
Swift-Hohenberg方程解的一些性质与结构
Author(s):
Zhou Hua1, Tang Jian2
1Department of Mathematics and Physics, Nanjing University of Posts and Telecommunications, Nanjing 210003, China
2Department of Mathematics, Nanjing University of Technology, Nanjing 210009, China
周华1, 唐健2
1南京邮电学院应用数理系, 南京 210003; 2南京工业大学数学系, 南京 210003
Keywords:
shooting technique Swift-Hohenberg equation critical point periodic solution
打靶性 Swift-Hohenberg方程 临界点 周期解
PACS:
O175.12
DOI:
10.3969/j.issn.1003-7985.2003.03.020
Abstract:
Stationary even periodic solutions of the Swift-Hohenberg equation are analyzed for the critical parameter k=1, and it is proved that there exist periodic solutions having the same energy as the constant solution u=0. For k≤ 0, some qualitative properties of the solutions are also proved.
讨论了Swift-Hohenberg方程在临界参数k=1时的静止偶周期解, 证明了其具有与非平凡解u=0相同能量的偶周期解的存在性.对k是非正的情形本文也证明了方程解的一些定性性质.

References:

[1] Swift J B, Hohenberg P C. Hydrodynamic fluctuations at the convective instability [J]. Phys Rev, 1977, 15(4): 319-328.
[2] Bodenschatz E, Pesch W, Ahlers G. Recent developments in Rayleign-Bénard convection [J]. Ann Rev Fluid Mech, 2000, 32:709-778.
[3] Collet P, Eckmann J P. Instabilities and fronts in extended systems [J]. Princeton Series in Physics, 1990, 8(4):231-243.
[4] Cross M C, Hohenberg P C. Pattern formation outside of equilibrum [J]. Rev Mod Phys, 1993, 65(6): 851-1112.
[5] McLeod J B, Serrin J. The existence of similar solutions for some laminar boundary layer problems [J]. Arch Rational Mech Anal, 1968, 31(5): 288-303.
[6] Peletier L A, Troy W C. Spatial patterns described by the extended Fisher-Kolmogorov(EFK)equation: kinks [J]. Differential Integral Equations, 1995, 6(1): 1279-1304.
[7] Peletier L A, Troy W C. Spatial patterns described by the extended Fisher-Kolmogorov(EFK)equation: periodic solutions [J]. SIAM J Math Anal, 1997, 28(3): 1317-1353.
[8] Peletier L A, Troy W C. Chaotic solutions of the extended Fisher-Kolmogorov(EFK)equation [J]. J Differential Equations, 1996, 129(3): 458-508.
[9] Peletier L A, Troy W C. A topological shooting method and the existence of kinks of the extended Fisher-Kolmogorov equation [J]. Topol Methods Nonlinear Anal, 1996, 6(4): 331-355.
[10] Peletier L A, Troy W C. Multibump periodic travelling waves in suspension bridges [J]. Proc Roy Soc Edinburg, 1998, 128(2): 631-659.
[11] Peletier L A, Troy W C. Pattern formation described by the Swift-Hohenberg equation [A]. In: Research Institute for Mathematical Sciences ed. Proceedings of Kyoto[C]. Kyoto: Kyoto University, 2000.
[12] Tao Y, Zhang J. A shooting method for the Swift-Hohenberg equation [J]. Appl Math J Chinese Univ, Ser B, 2002, 17(4):391-403.
[13] Mizel V J, Peletier L A, Troy W C. Periodic phases in second-order materials [J]. Arch Rational Mech Anal, 1998, 145(4): 343-382.

Memo

Memo:
Biography: Zhou Hua(1965—), female, lecturer, zhoumo-nj@yahoo.com.cn.
Last Update: 2003-09-20