|Table of Contents|

[1] Yang Ming, Yang Ping, Ji Genlin, et al. Fast FP-Growth for association rule mining [J]. Journal of Southeast University (English Edition), 2003, 19 (4): 320-323. [doi:10.3969/j.issn.1003-7985.2003.04.004]
Copy

Fast FP-Growth for association rule mining()
基于频繁模式树的快速关联规则挖掘算法
Share:

Journal of Southeast University (English Edition)[ISSN:1003-7985/CN:32-1325/N]

Volumn:
19
Issue:
2003 4
Page:
320-323
Research Field:
Computer Science and Engineering
Publishing date:
2003-12-30

Info

Title:
Fast FP-Growth for association rule mining
基于频繁模式树的快速关联规则挖掘算法
Author(s):
Yang Ming1 2 Yang Ping3 Ji Genlin2 Sun Zhihui2
1Department of Computer Science and Engineering, Auhui University of Technology and Science, Wuhu 241000, China
2Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China
3Departme
杨明1 2 杨萍3 吉根林2 孙志挥2
1安徽工程科技学院计算机科学与工程系, 芜湖 241000; 2东南大学计算机科学与工程系, 南京 210096; 3安徽工程科技学院应用数理系, 芜湖 241000
Keywords:
data mining frequent itemsets association rules frequent pattern tree(FP-tree)
数据挖掘 频繁项目集 关联规则 频繁模式树
PACS:
TP311
DOI:
10.3969/j.issn.1003-7985.2003.04.004
Abstract:
In this paper, we propose an efficient algorithm, called FFP-Growth(short for fast FP-Growth), to mine frequent itemsets. Similar to FP-Growth, FFP-Growth searches the FP-tree in the bottom-up order, but need not construct conditional pattern bases and sub-FP-trees, thus, saving a substantial amount of time and space, and the FP-tree created by it is much smaller than that created by TD-FP-Growth, hence improving efficiency. At the same time, FFP-Growth can be easily extended for reducing the search space as TD-FP-Growth(M)and TD-FP-Growth(C). Experimental results show that the algorithm of this paper is effective and efficient.
提出了一种挖掘频繁项目集的有效算法——FFP-Growth, 该算法采用自底向上的策略搜索频繁模式树, 但不同于FP-Growth的是它无须生成条件模式基和频繁模式子树, 且生成的频繁模式树较TD-FP-Growth生成的频繁模式树小, 因而能提高关联规则的挖掘效率. 类似于TD-FP-Growth的扩展TD-FP-Growth(M)和TD-FP-Growth(C), FFP-Growth很容易被扩展, 以此来有效地减小搜索空间. 实验结果表明本文提出的算法是有效可行的.

References:

[1] Agrawal R, Imielinski T, Swami A. Mining association rules between sets of items in large database [A]. In: Proc of the
  ACM SIGMOD Int Conf on Management of Data
[C]. Washington DC, 1993. 207-216.
[2] Agrawal R, Srikant R. Fast algorithms for mining association rules [A]. In: Proc of the 20th Int Conf Very Large Data Bases [C]. Santiago, Chile, 1994. 487-499.
[3] Han J W, Pei J, Yin Y. Mining frequent patterns without candidate generation [A]. In: Proc of the 2000 ACM SIGMOD Intl Conf on management of data [C]. Dallas, 2000.1-12.
[4] Han J W, Pei J, Yin Y. Mining partial periodicity using frequent pattern trees [R]. Canada: Simon Fraser University, Computing Science Technical Report: TR-99-10, 1999.
[5] Srikant R, Agrawal R. Mining generalized association rules [A]. In: Proc of the 21st Int Conf on Very Large DataBases [C]. Zurich, Switzerland, 1995. 407-419.
[6] Srikant R, Yu Q, Agrawal R. Mining association rules with item constraints [A]. In: Proc of the KDD[C]. Newport Beach, CA, 1997. 67-73.
[7] Liu B, Hsu W, Ma Y. Mining association rules with multiple minimum supports [A]. In: Proc of ACM SIGKDD [C]. San Diego, CA, 1999.337-341.
[8] Wang K, He Y, Han J W. Mining frequent itemsets using support constraints [A]. In: Proc Int Conf on Very Large Data Bases [C]. Cairo, 2000. 43-52.
[9] Wang K, Tang L, Han J W, et al. Top down FP-Growth for association rule mining [A]. In: Proc of the 6th Pacific Area Conf on Knowledge Discovery and Data Mining [C]. Taipei, 2002.

Memo

Memo:
Biography: Yang Ming(1964—), male, graduate, professor, yangming@seu.edu.cn.
Last Update: 2003-12-20